blob: 043cb6bb67f2eb83ad080f551a793c258050302d [file] [log] [blame]
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "util.h"
/* This file contains utility functions widely used in *
* my programs. Many are simply versions of file and *
* memory grabbing routines that take the same *
* arguments as the standard library ones, but exit *
* the program if they find an error condition. */
int linenum; /* Line in file being parsed. */
FILE *my_fopen (char *fname, char *flag, int prompt) {
FILE *fp; /* prompt = 1: prompt user. prompt=0: use fname */
while (1) {
if (prompt)
scanf("%s",fname);
if ((fp = fopen(fname,flag)) != NULL)
break;
printf("Error opening file %s for %s access.\n",fname,flag);
if (!prompt)
exit(1);
printf("Please enter another filename.\n");
}
return (fp);
}
int my_atoi (const char *str) {
/* Returns the integer represented by the first part of the character *
* string. Unlike the normal atoi, I return -1 if the string doesn't *
* start with a numeric digit. */
if (str[0] < '0' || str[0] > '9')
return (-1);
return (atoi(str));
}
void *my_calloc (size_t nelem, size_t size) {
void *ret;
if ((ret = calloc (nelem,size)) == NULL) {
fprintf(stderr,"Error: Unable to calloc memory. Aborting.\n");
exit (1);
}
return (ret);
}
void *my_malloc (size_t size) {
void *ret;
if ((ret = malloc (size)) == NULL) {
fprintf(stderr,"Error: Unable to malloc memory. Aborting.\n");
abort ();
exit (1);
}
return (ret);
}
void *my_realloc (void *ptr, size_t size) {
void *ret;
if ((ret = realloc (ptr,size)) == NULL) {
fprintf(stderr,"Error: Unable to realloc memory. Aborting.\n");
exit (1);
}
return (ret);
}
void *my_chunk_malloc (size_t size, struct s_linked_vptr **chunk_ptr_head,
int *mem_avail_ptr, char **next_mem_loc_ptr) {
/* This routine should be used for allocating fairly small data *
* structures where memory-efficiency is crucial. This routine allocates *
* large "chunks" of data, and parcels them out as requested. Whenever *
* it mallocs a new chunk it adds it to the linked list pointed to by *
* chunk_ptr_head. This list can be used to free the chunked memory. *
* If chunk_ptr_head is NULL, no list of chunked memory blocks will be kept *
* -- this is useful for data structures that you never intend to free as *
* it means you don't have to keep track of the linked lists. *
* Information about the currently open "chunk" must be stored by the *
* user program. mem_avail_ptr points to an int storing how many bytes are *
* left in the current chunk, while next_mem_loc_ptr is the address of a *
* pointer to the next free bytes in the chunk. To start a new chunk, *
* simply set *mem_avail_ptr = 0. Each independent set of data structures *
* should use a new chunk. */
/* To make sure the memory passed back is properly aligned, I must *
* only send back chunks in multiples of the worst-case alignment *
* restriction of the machine. On most machines this should be *
* a long, but on 64-bit machines it might be a long long or a *
* double. Change the typedef below if this is the case. */
typedef long Align;
#define CHUNK_SIZE 32768
#define FRAGMENT_THRESHOLD 100
char *tmp_ptr;
int aligned_size;
if (*mem_avail_ptr < size) { /* Need to malloc more memory. */
if (size > CHUNK_SIZE) { /* Too big, use standard routine. */
tmp_ptr = my_malloc (size);
/*#ifdef DEBUG
printf("NB: my_chunk_malloc got a request for %d bytes.\n",
size);
printf("You should consider using my_malloc for such big requests.\n");
#endif */
if (chunk_ptr_head != NULL)
*chunk_ptr_head = insert_in_vptr_list (*chunk_ptr_head, tmp_ptr);
return (tmp_ptr);
}
if (*mem_avail_ptr < FRAGMENT_THRESHOLD) { /* Only a small scrap left. */
*next_mem_loc_ptr = my_malloc (CHUNK_SIZE);
*mem_avail_ptr = CHUNK_SIZE;
if (chunk_ptr_head != NULL)
*chunk_ptr_head = insert_in_vptr_list (*chunk_ptr_head,
*next_mem_loc_ptr);
}
/* Execute else clause only when the chunk we want is pretty big, *
* and would leave too big an unused fragment. Then we use malloc *
* to allocate normally. */
else {
tmp_ptr = my_malloc (size);
if (chunk_ptr_head != NULL)
*chunk_ptr_head = insert_in_vptr_list (*chunk_ptr_head, tmp_ptr);
return (tmp_ptr);
}
}
/* Find the smallest distance to advance the memory pointer and keep *
* everything aligned. */
if (size % sizeof (Align) == 0) {
aligned_size = size;
}
else {
aligned_size = size + sizeof(Align) - size % sizeof(Align);
}
tmp_ptr = *next_mem_loc_ptr;
*next_mem_loc_ptr += aligned_size;
*mem_avail_ptr -= aligned_size;
return (tmp_ptr);
}
void free_chunk_memory (struct s_linked_vptr *chunk_ptr_head) {
/* Frees the memory allocated by a sequence of calls to my_chunk_malloc. */
struct s_linked_vptr *curr_ptr, *prev_ptr;
curr_ptr = chunk_ptr_head;
while (curr_ptr != NULL) {
free (curr_ptr->data_vptr); /* Free memory "chunk". */
prev_ptr = curr_ptr;
curr_ptr = curr_ptr->next;
free (prev_ptr); /* Free memory used to track "chunk". */
}
}
struct s_linked_vptr *insert_in_vptr_list (struct s_linked_vptr *head,
void *vptr_to_add) {
/* Inserts a new element at the head of a linked list of void pointers. *
* Returns the new head of the list. */
struct s_linked_vptr *linked_vptr;
linked_vptr = (struct s_linked_vptr *) my_malloc (sizeof(struct
s_linked_vptr));
linked_vptr->data_vptr = vptr_to_add;
linked_vptr->next = head;
return (linked_vptr); /* New head of the list */
}
t_linked_int *insert_in_int_list (t_linked_int *head, int data, t_linked_int **
free_list_head_ptr) {
/* Inserts a new element at the head of a linked list of integers. Returns *
* the new head of the list. One argument is the address of the head of *
* a list of free ilist elements. If there are any elements on this free *
* list, the new element is taken from it. Otherwise a new one is malloced. */
t_linked_int *linked_int;
if (*free_list_head_ptr != NULL) {
linked_int = *free_list_head_ptr;
*free_list_head_ptr = linked_int->next;
}
else {
linked_int = (t_linked_int *) my_malloc (sizeof (t_linked_int));
}
linked_int->data = data;
linked_int->next = head;
return (linked_int);
}
void free_int_list (t_linked_int **int_list_head_ptr) {
/* This routine truly frees (calls free) all the integer list elements *
* on the linked list pointed to by *head, and sets head = NULL. */
t_linked_int *linked_int, *next_linked_int;
linked_int = *int_list_head_ptr;
while (linked_int != NULL) {
next_linked_int = linked_int->next;
free (linked_int);
linked_int = next_linked_int;
}
*int_list_head_ptr = NULL;
}
void alloc_ivector_and_copy_int_list (t_linked_int **list_head_ptr,
int num_items, struct s_ivec *ivec, t_linked_int
**free_list_head_ptr) {
/* Allocates an integer vector with num_items elements and copies the *
* integers from the list pointed to by list_head (of which there must be *
* num_items) over to it. The int_list is then put on the free list, and *
* the list_head_ptr is set to NULL. */
t_linked_int *linked_int, *list_head;
int i, *list;
list_head = *list_head_ptr;
if (num_items == 0) { /* Empty list. */
ivec->nelem = 0;
ivec->list = NULL;
if (list_head != NULL) {
printf ("Error in alloc_ivector_and_copy_int_list:\n Copied %d "
"elements, but list at %p contains more.\n", num_items, list_head);
exit (1);
}
return;
}
ivec->nelem = num_items;
list = (int *) my_malloc (num_items * sizeof (int));
ivec->list = list;
linked_int = list_head;
for (i=0;i<num_items-1;i++) {
list[i] = linked_int->data;
linked_int = linked_int->next;
}
list[num_items-1] = linked_int->data;
if (linked_int->next != NULL) {
printf ("Error in alloc_ivector_and_copy_int_list:\n Copied %d elements, "
"but list at %p contains more.\n", num_items, list_head);
exit (1);
}
linked_int->next = *free_list_head_ptr;
*free_list_head_ptr = list_head;
*list_head_ptr = NULL;
}
static int cont; /* line continued? */
char *my_fgets(char *buf, int max_size, FILE *fp) {
/* Get an input line, update the line number and cut off *
* any comment part. A \ at the end of a line with no *
* comment part (#) means continue. */
char *val;
int i;
cont = 0;
val = fgets(buf,max_size,fp);
linenum++;
if (val == NULL) return(val);
/* Check that line completely fit into buffer. (Flags long line *
* truncation). */
for (i=0;i<max_size;i++) {
if (buf[i] == '\n')
break;
if (buf[i] == '\0') {
printf("Error on line %d -- line is too long for input buffer.\n",
linenum);
printf("All lines must be at most %d characters long.\n",BUFSIZE-2);
printf("The problem could also be caused by a missing newline.\n");
exit (1);
}
}
for (i=0;i<max_size && buf[i] != '\0';i++) {
if (buf[i] == '#') {
buf[i] = '\0';
break;
}
}
if (i<2) return (val);
if (buf[i-1] == '\n' && buf[i-2] == '\\') {
cont = 1; /* line continued */
buf[i-2] = '\n'; /* May need this for tokens */
buf[i-1] = '\0';
}
return(val);
}
char *my_strtok(char *ptr, char *tokens, FILE *fp, char *buf) {
/* Get next token, and wrap to next line if \ at end of line. *
* There is a bit of a "gotcha" in strtok. It does not make a *
* copy of the character array which you pass by pointer on the *
* first call. Thus, you must make sure this array exists for *
* as long as you are using strtok to parse that line. Don't *
* use local buffers in a bunch of subroutines calling each *
* other; the local buffer may be overwritten when the stack is *
* restored after return from the subroutine. */
char *val;
val = strtok(ptr,tokens);
while (1) {
if (val != NULL || cont == 0) return(val);
/* return unless we have a null value and a continuation line */
if (my_fgets(buf,BUFSIZE,fp) == NULL)
return(NULL);
val = strtok(buf,tokens);
}
}
void free_ivec_vector (struct s_ivec *ivec_vector, int nrmin, int nrmax) {
/* Frees a 1D array of integer vectors. */
int i;
for (i=nrmin;i<=nrmax;i++)
if (ivec_vector[i].nelem != 0)
free (ivec_vector[i].list);
free (ivec_vector + nrmin);
}
void free_ivec_matrix (struct s_ivec **ivec_matrix, int nrmin, int nrmax,
int ncmin, int ncmax) {
/* Frees a 2D matrix of integer vectors (ivecs). */
int i, j;
for (i=nrmin;i<=nrmax;i++) {
for (j=ncmin;j<=ncmax;j++) {
if (ivec_matrix[i][j].nelem != 0) {
free (ivec_matrix[i][j].list);
}
}
}
free_matrix (ivec_matrix, nrmin, nrmax, ncmin, sizeof (struct s_ivec));
}
void free_ivec_matrix3 (struct s_ivec ***ivec_matrix3, int nrmin, int nrmax,
int ncmin, int ncmax, int ndmin, int ndmax) {
/* Frees a 3D matrix of integer vectors (ivecs). */
int i, j, k;
for (i=nrmin;i<=nrmax;i++) {
for (j=ncmin;j<=ncmax;j++) {
for (k=ndmin;k<=ndmax;k++) {
if (ivec_matrix3[i][j][k].nelem != 0) {
free (ivec_matrix3[i][j][k].list);
}
}
}
}
free_matrix3 (ivec_matrix3, nrmin, nrmax, ncmin, ncmax, ndmin,
sizeof (struct s_ivec));
}
void **alloc_matrix (int nrmin, int nrmax, int ncmin, int ncmax,
size_t elsize) {
/* allocates an generic matrix with nrmax-nrmin + 1 rows and ncmax - *
* ncmin + 1 columns, with each element of size elsize. i.e. *
* returns a pointer to a storage block [nrmin..nrmax][ncmin..ncmax].*
* Simply cast the returned array pointer to the proper type. */
int i;
char **cptr;
cptr = (char **) my_malloc ((nrmax - nrmin + 1) * sizeof (char *));
cptr -= nrmin;
for (i=nrmin;i<=nrmax;i++) {
cptr[i] = (char *) my_malloc ((ncmax - ncmin + 1) * elsize);
cptr[i] -= ncmin * elsize / sizeof(char); /* sizeof(char) = 1 */
}
return ((void **) cptr);
}
/* NB: need to make the pointer type void * instead of void ** to allow *
* any pointer to be passed in without a cast. */
void free_matrix (void *vptr, int nrmin, int nrmax, int ncmin,
size_t elsize) {
int i;
char **cptr;
cptr = (char **) vptr;
for (i=nrmin;i<=nrmax;i++)
free (cptr[i] + ncmin * elsize / sizeof (char));
free (cptr + nrmin);
}
void ***alloc_matrix3 (int nrmin, int nrmax, int ncmin, int ncmax,
int ndmin, int ndmax, size_t elsize) {
/* allocates a 3D generic matrix with nrmax-nrmin + 1 rows, ncmax - *
* ncmin + 1 columns, and a depth of ndmax-ndmin + 1, with each *
* element of size elsize. i.e. returns a pointer to a storage block *
* [nrmin..nrmax][ncmin..ncmax][ndmin..ndmax]. Simply cast the *
* returned array pointer to the proper type. */
int i, j;
char ***cptr;
cptr = (char ***) my_malloc ((nrmax - nrmin + 1) * sizeof (char **));
cptr -= nrmin;
for (i=nrmin;i<=nrmax;i++) {
cptr[i] = (char **) my_malloc ((ncmax - ncmin + 1) * sizeof (char *));
cptr[i] -= ncmin;
for (j=ncmin;j<=ncmax;j++) {
cptr[i][j] = (char *) my_malloc ((ndmax - ndmin + 1) * elsize);
cptr[i][j] -= ndmin * elsize / sizeof(char); /* sizeof(char) = 1) */
}
}
return ((void ***) cptr);
}
void free_matrix3 (void *vptr, int nrmin, int nrmax, int ncmin, int ncmax,
int ndmin, size_t elsize) {
int i, j;
char ***cptr;
cptr = (char ***) vptr;
for (i=nrmin;i<=nrmax;i++) {
for (j=ncmin;j<=ncmax;j++)
free (cptr[i][j] + ndmin * elsize / sizeof (char));
free (cptr[i] + ncmin);
}
free (cptr + nrmin);
}
/* Portable random number generator defined below. Taken from ANSI C by *
* K & R. Not a great generator, but fast, and good enough for my needs. */
#define IA 1103515245u
#define IC 12345u
#define IM 2147483648u
#define CHECK_RAND
static unsigned int current_random = 0;
void my_srandom (int seed) {
current_random = (unsigned int) seed;
}
int my_irand (int imax) {
/* Creates a random integer between 0 and imax, inclusive. i.e. [0..imax] */
int ival;
/* current_random = (current_random * IA + IC) % IM; */
current_random = current_random * IA + IC; /* Use overflow to wrap */
ival = current_random & (IM - 1); /* Modulus */
ival = (int) ((float) ival * (float) (imax + 0.999) / (float) IM);
#ifdef CHECK_RAND
if ((ival < 0) || (ival > imax)) {
printf("Bad value in my_irand, imax = %d ival = %d\n",imax,ival);
exit(1);
}
#endif
return(ival);
}
float my_frand (void) {
/* Creates a random float between 0 and 1. i.e. [0..1). */
float fval;
int ival;
current_random = current_random * IA + IC; /* Use overflow to wrap */
ival = current_random & (IM - 1); /* Modulus */
fval = (float) ival / (float) IM;
#ifdef CHECK_RAND
if ((fval < 0) || (fval > 1.)) {
printf("Bad value in my_frand, fval = %g\n",fval);
exit(1);
}
#endif
return(fval);
}