| #include <stdio.h> |
| #include "util.h" |
| #include "vpr_types.h" |
| #include "globals.h" |
| #include "route_common.h" |
| #include "route_tree_timing.h" |
| |
| /* This module keeps track of the partial routing tree for timing-driven * |
| * routing. The normal traceback structure doesn't provide enough info * |
| * about the partial routing during timing-driven routing, so the routines * |
| * in this module are used to keep a tree representation of the partial * |
| * routing during timing-driven routing. This allows rapid incremental * |
| * timing analysis. The net_delay module does timing analysis in one step * |
| * (not incrementally as pieces of the routing are added). I could probably * |
| * one day remove a lot of net_delay.c and call the corresponding routines * |
| * here, but it's useful to have a from-scratch delay calculator to check * |
| * the results of this one. */ |
| |
| |
| /********************** Variables local to this module ***********************/ |
| |
| /* Array below allows mapping from any rr_node to any rt_node currently in * |
| * the rt_tree. */ |
| |
| static t_rt_node **rr_node_to_rt_node = NULL; /* [0..num_rr_nodes-1] */ |
| |
| /* Frees lists for fast addition and deletion of nodes and edges. */ |
| |
| static t_rt_node *rt_node_free_list = NULL; |
| static t_linked_rt_edge *rt_edge_free_list = NULL; |
| |
| |
| |
| /********************** Subroutines local to this module *********************/ |
| |
| static t_rt_node *alloc_rt_node(void); |
| |
| static void free_rt_node(t_rt_node * rt_node); |
| |
| static t_linked_rt_edge *alloc_linked_rt_edge(void); |
| |
| static void free_linked_rt_edge(t_linked_rt_edge * rt_edge); |
| |
| static t_rt_node *add_path_to_route_tree(struct s_heap *hptr, |
| t_rt_node ** sink_rt_node_ptr); |
| |
| static void load_new_path_R_upstream(t_rt_node * start_of_new_path_rt_node); |
| |
| static t_rt_node *update_unbuffered_ancestors_C_downstream(t_rt_node |
| * |
| start_of_new_path_rt_node); |
| |
| static void load_rt_subtree_Tdel(t_rt_node * subtree_rt_root, |
| float Tarrival); |
| |
| |
| |
| /************************** Subroutine definitions ***************************/ |
| |
| void |
| alloc_route_tree_timing_structs(void) |
| { |
| |
| /* Allocates any structures needed to build the routing trees. */ |
| |
| if(rr_node_to_rt_node != NULL || rt_node_free_list != NULL || |
| rt_node_free_list != NULL) |
| { |
| printf("Error in alloc_route_tree_timing_structs: old structures " |
| "already exist.\n"); |
| exit(1); |
| } |
| |
| rr_node_to_rt_node = (t_rt_node **) my_malloc(num_rr_nodes * |
| sizeof(t_rt_node *)); |
| } |
| |
| |
| void |
| free_route_tree_timing_structs(void) |
| { |
| |
| /* Frees the structures needed to build routing trees, and really frees * |
| * (i.e. calls free) all the data on the free lists. */ |
| |
| t_rt_node *rt_node, *next_node; |
| t_linked_rt_edge *rt_edge, *next_edge; |
| |
| free(rr_node_to_rt_node); |
| rr_node_to_rt_node = NULL; |
| |
| rt_node = rt_node_free_list; |
| |
| while(rt_node != NULL) |
| { |
| next_node = rt_node->u.next; |
| free(rt_node); |
| rt_node = next_node; |
| } |
| |
| rt_node_free_list = NULL; |
| |
| rt_edge = rt_edge_free_list; |
| |
| while(rt_edge != NULL) |
| { |
| next_edge = rt_edge->next; |
| free(rt_edge); |
| rt_edge = next_edge; |
| } |
| |
| rt_edge_free_list = NULL; |
| } |
| |
| |
| static t_rt_node * |
| alloc_rt_node(void) |
| { |
| |
| /* Allocates a new rt_node, from the free list if possible, from the free * |
| * store otherwise. */ |
| |
| t_rt_node *rt_node; |
| |
| rt_node = rt_node_free_list; |
| |
| if(rt_node != NULL) |
| { |
| rt_node_free_list = rt_node->u.next; |
| } |
| else |
| { |
| rt_node = (t_rt_node *) my_malloc(sizeof(t_rt_node)); |
| } |
| |
| return (rt_node); |
| } |
| |
| |
| static void |
| free_rt_node(t_rt_node * rt_node) |
| { |
| |
| /* Adds rt_node to the proper free list. */ |
| |
| rt_node->u.next = rt_node_free_list; |
| rt_node_free_list = rt_node; |
| } |
| |
| |
| static t_linked_rt_edge * |
| alloc_linked_rt_edge(void) |
| { |
| |
| /* Allocates a new linked_rt_edge, from the free list if possible, from the * |
| * free store otherwise. */ |
| |
| t_linked_rt_edge *linked_rt_edge; |
| |
| linked_rt_edge = rt_edge_free_list; |
| |
| if(linked_rt_edge != NULL) |
| { |
| rt_edge_free_list = linked_rt_edge->next; |
| } |
| else |
| { |
| linked_rt_edge = (t_linked_rt_edge *) my_malloc(sizeof |
| (t_linked_rt_edge)); |
| } |
| |
| return (linked_rt_edge); |
| } |
| |
| |
| static void |
| free_linked_rt_edge(t_linked_rt_edge * rt_edge) |
| { |
| |
| /* Adds the rt_edge to the rt_edge free list. */ |
| |
| rt_edge->next = rt_edge_free_list; |
| rt_edge_free_list = rt_edge; |
| } |
| |
| |
| t_rt_node * |
| init_route_tree_to_source(int inet) |
| { |
| |
| /* Initializes the routing tree to just the net source, and returns the root * |
| * node of the rt_tree (which is just the net source). */ |
| |
| t_rt_node *rt_root; |
| int inode; |
| |
| rt_root = alloc_rt_node(); |
| rt_root->u.child_list = NULL; |
| rt_root->parent_node = NULL; |
| rt_root->parent_switch = OPEN; |
| rt_root->re_expand = TRUE; |
| |
| inode = net_rr_terminals[inet][0]; /* Net source */ |
| |
| rt_root->inode = inode; |
| rt_root->C_downstream = rr_node[inode].C; |
| rt_root->R_upstream = rr_node[inode].R; |
| rt_root->Tdel = 0.5 * rr_node[inode].R * rr_node[inode].C; |
| rr_node_to_rt_node[inode] = rt_root; |
| |
| return (rt_root); |
| } |
| |
| |
| t_rt_node * |
| update_route_tree(struct s_heap * hptr) |
| { |
| |
| /* Adds the most recently finished wire segment to the routing tree, and * |
| * updates the Tdel, etc. numbers for the rest of the routing tree. hptr * |
| * is the heap pointer of the SINK that was reached. This routine returns * |
| * a pointer to the rt_node of the SINK that it adds to the routing. */ |
| |
| t_rt_node *start_of_new_path_rt_node, *sink_rt_node; |
| t_rt_node *unbuffered_subtree_rt_root, *subtree_parent_rt_node; |
| float Tdel_start; |
| short iswitch; |
| |
| start_of_new_path_rt_node = add_path_to_route_tree(hptr, &sink_rt_node); |
| load_new_path_R_upstream(start_of_new_path_rt_node); |
| unbuffered_subtree_rt_root = |
| update_unbuffered_ancestors_C_downstream(start_of_new_path_rt_node); |
| |
| subtree_parent_rt_node = unbuffered_subtree_rt_root->parent_node; |
| |
| if(subtree_parent_rt_node != NULL) |
| { /* Parent exists. */ |
| Tdel_start = subtree_parent_rt_node->Tdel; |
| iswitch = unbuffered_subtree_rt_root->parent_switch; |
| Tdel_start += switch_inf[iswitch].R * |
| unbuffered_subtree_rt_root->C_downstream; |
| Tdel_start += switch_inf[iswitch].Tdel; |
| } |
| else |
| { /* Subtree starts at SOURCE */ |
| Tdel_start = 0.; |
| } |
| |
| load_rt_subtree_Tdel(unbuffered_subtree_rt_root, Tdel_start); |
| |
| return (sink_rt_node); |
| } |
| |
| |
| static t_rt_node * |
| add_path_to_route_tree(struct s_heap *hptr, |
| t_rt_node ** sink_rt_node_ptr) |
| { |
| |
| /* Adds the most recent wire segment, ending at the SINK indicated by hptr, * |
| * to the routing tree. It returns the first (most upstream) new rt_node, * |
| * and (via a pointer) the rt_node of the new SINK. */ |
| |
| int inode, remaining_connections_to_sink; |
| short iedge, iswitch; |
| float C_downstream; |
| t_rt_node *rt_node, *downstream_rt_node, *sink_rt_node; |
| t_linked_rt_edge *linked_rt_edge; |
| |
| |
| inode = hptr->index; |
| |
| #ifdef DEBUG |
| if(rr_node[inode].type != SINK) |
| { |
| printf |
| ("Error in add_path_to_route_tree. Expected type = SINK (%d).\n", |
| SINK); |
| printf("Got type = %d.", rr_node[inode].type); |
| exit(1); |
| } |
| #endif |
| |
| remaining_connections_to_sink = rr_node_route_inf[inode].target_flag; |
| sink_rt_node = alloc_rt_node(); |
| sink_rt_node->u.child_list = NULL; |
| sink_rt_node->inode = inode; |
| C_downstream = rr_node[inode].C; |
| sink_rt_node->C_downstream = C_downstream; |
| rr_node_to_rt_node[inode] = sink_rt_node; |
| |
| /* In the code below I'm marking SINKs and IPINs as not to be re-expanded. * |
| * Undefine NO_ROUTE_THROUGHS if you want route-throughs or ipin doglegs. * |
| * It makes the code more efficient (though not vastly) to prune this way * |
| * when there aren't route-throughs or ipin doglegs. */ |
| |
| #define NO_ROUTE_THROUGHS 1 /* Can't route through unused FB outputs */ |
| |
| #ifdef NO_ROUTE_THROUGHS |
| sink_rt_node->re_expand = FALSE; |
| #else |
| if(remaining_connections_to_sink == 0) |
| { /* Usual case */ |
| sink_rt_node->re_expand = TRUE; |
| } |
| |
| /* Weird case. This net connects several times to the same SINK. Thus I * |
| * can't re_expand this node as part of the partial routing for subsequent * |
| * connections, since I need to reach it again via another path. */ |
| |
| else |
| { |
| sink_rt_node->re_expand = FALSE; |
| } |
| #endif |
| |
| |
| /* Now do it's predecessor. */ |
| |
| downstream_rt_node = sink_rt_node; |
| inode = hptr->u.prev_node; |
| iedge = hptr->prev_edge; |
| iswitch = rr_node[inode].switches[iedge]; |
| |
| /* For all "new" nodes in the path */ |
| |
| while(rr_node_route_inf[inode].prev_node != NO_PREVIOUS) |
| { |
| linked_rt_edge = alloc_linked_rt_edge(); |
| linked_rt_edge->child = downstream_rt_node; |
| linked_rt_edge->iswitch = iswitch; |
| linked_rt_edge->next = NULL; |
| |
| rt_node = alloc_rt_node(); |
| downstream_rt_node->parent_node = rt_node; |
| downstream_rt_node->parent_switch = iswitch; |
| |
| rt_node->u.child_list = linked_rt_edge; |
| rt_node->inode = inode; |
| |
| if(switch_inf[iswitch].buffered == FALSE) |
| C_downstream += rr_node[inode].C; |
| else |
| C_downstream = rr_node[inode].C; |
| |
| rt_node->C_downstream = C_downstream; |
| rr_node_to_rt_node[inode] = rt_node; |
| |
| #ifdef NO_ROUTE_THROUGHS |
| if(rr_node[inode].type == IPIN) |
| rt_node->re_expand = FALSE; |
| else |
| rt_node->re_expand = TRUE; |
| |
| #else |
| if(remaining_connections_to_sink == 0) |
| { /* Normal case */ |
| rt_node->re_expand = TRUE; |
| } |
| else |
| { /* This is the IPIN before a multiply-connected SINK */ |
| rt_node->re_expand = FALSE; |
| |
| /* Reset flag so wire segments get reused */ |
| |
| remaining_connections_to_sink = 0; |
| } |
| #endif |
| |
| downstream_rt_node = rt_node; |
| iedge = rr_node_route_inf[inode].prev_edge; |
| inode = rr_node_route_inf[inode].prev_node; |
| iswitch = rr_node[inode].switches[iedge]; |
| } |
| |
| /* Inode is the join point to the old routing */ |
| |
| rt_node = rr_node_to_rt_node[inode]; |
| |
| linked_rt_edge = alloc_linked_rt_edge(); |
| linked_rt_edge->child = downstream_rt_node; |
| linked_rt_edge->iswitch = iswitch; |
| linked_rt_edge->next = rt_node->u.child_list; |
| rt_node->u.child_list = linked_rt_edge; |
| |
| downstream_rt_node->parent_node = rt_node; |
| downstream_rt_node->parent_switch = iswitch; |
| |
| *sink_rt_node_ptr = sink_rt_node; |
| return (downstream_rt_node); |
| } |
| |
| |
| static void |
| load_new_path_R_upstream(t_rt_node * start_of_new_path_rt_node) |
| { |
| |
| /* Sets the R_upstream values of all the nodes in the new path to the * |
| * correct value. */ |
| |
| float R_upstream; |
| int inode; |
| short iswitch; |
| t_rt_node *rt_node, *parent_rt_node; |
| t_linked_rt_edge *linked_rt_edge; |
| |
| rt_node = start_of_new_path_rt_node; |
| iswitch = rt_node->parent_switch; |
| inode = rt_node->inode; |
| parent_rt_node = rt_node->parent_node; |
| |
| R_upstream = switch_inf[iswitch].R + rr_node[inode].R; |
| |
| if(switch_inf[iswitch].buffered == FALSE) |
| R_upstream += parent_rt_node->R_upstream; |
| |
| rt_node->R_upstream = R_upstream; |
| |
| /* Note: the traversal below makes use of the fact that this new path * |
| * really is a path (not a tree with branches) to do a traversal without * |
| * recursion, etc. */ |
| |
| linked_rt_edge = rt_node->u.child_list; |
| |
| while(linked_rt_edge != NULL) |
| { /* While SINK not reached. */ |
| |
| #ifdef DEBUG |
| if(linked_rt_edge->next != NULL) |
| { |
| printf |
| ("Error in load_new_path_R_upstream: new routing addition is\n" |
| "a tree (not a path).\n"); |
| exit(1); |
| } |
| #endif |
| |
| rt_node = linked_rt_edge->child; |
| iswitch = linked_rt_edge->iswitch; |
| inode = rt_node->inode; |
| |
| if(switch_inf[iswitch].buffered) |
| R_upstream = switch_inf[iswitch].R + rr_node[inode].R; |
| else |
| R_upstream += switch_inf[iswitch].R + rr_node[inode].R; |
| |
| rt_node->R_upstream = R_upstream; |
| linked_rt_edge = rt_node->u.child_list; |
| } |
| } |
| |
| |
| static t_rt_node * |
| update_unbuffered_ancestors_C_downstream(t_rt_node |
| * start_of_new_path_rt_node) |
| { |
| |
| /* Updates the C_downstream values for the ancestors of the new path. Once * |
| * a buffered switch is found amongst the ancestors, no more ancestors are * |
| * affected. Returns the root of the "unbuffered subtree" whose Tdel * |
| * values are affected by the new path's addition. */ |
| |
| t_rt_node *rt_node, *parent_rt_node; |
| short iswitch; |
| float C_downstream_addition; |
| |
| rt_node = start_of_new_path_rt_node; |
| C_downstream_addition = rt_node->C_downstream; |
| parent_rt_node = rt_node->parent_node; |
| iswitch = rt_node->parent_switch; |
| |
| while(parent_rt_node != NULL && switch_inf[iswitch].buffered == FALSE) |
| { |
| rt_node = parent_rt_node; |
| rt_node->C_downstream += C_downstream_addition; |
| parent_rt_node = rt_node->parent_node; |
| iswitch = rt_node->parent_switch; |
| } |
| |
| return (rt_node); |
| } |
| |
| |
| static void |
| load_rt_subtree_Tdel(t_rt_node * subtree_rt_root, |
| float Tarrival) |
| { |
| |
| /* Updates the Tdel values of the subtree rooted at subtree_rt_root by * |
| * by calling itself recursively. The C_downstream values of all the nodes * |
| * must be correct before this routine is called. Tarrival is the time at * |
| * at which the signal arrives at this node's *input*. */ |
| |
| int inode; |
| short iswitch; |
| t_rt_node *child_node; |
| t_linked_rt_edge *linked_rt_edge; |
| float Tdel, Tchild; |
| |
| inode = subtree_rt_root->inode; |
| |
| /* Assuming the downstream connections are, on average, connected halfway * |
| * along a wire segment's length. See discussion in net_delay.c if you want * |
| * to change this. */ |
| |
| Tdel = Tarrival + 0.5 * subtree_rt_root->C_downstream * rr_node[inode].R; |
| subtree_rt_root->Tdel = Tdel; |
| |
| /* Now expand the children of this node to load their Tdel values (depth- * |
| * first pre-order traversal). */ |
| |
| linked_rt_edge = subtree_rt_root->u.child_list; |
| |
| while(linked_rt_edge != NULL) |
| { |
| iswitch = linked_rt_edge->iswitch; |
| child_node = linked_rt_edge->child; |
| |
| Tchild = Tdel + switch_inf[iswitch].R * child_node->C_downstream; |
| Tchild += switch_inf[iswitch].Tdel; /* Intrinsic switch delay. */ |
| load_rt_subtree_Tdel(child_node, Tchild); |
| |
| linked_rt_edge = linked_rt_edge->next; |
| } |
| } |
| |
| |
| void |
| free_route_tree(t_rt_node * rt_node) |
| { |
| |
| /* Puts the rt_nodes and edges in the tree rooted at rt_node back on the * |
| * free lists. Recursive, depth-first post-order traversal. */ |
| |
| t_rt_node *child_node; |
| t_linked_rt_edge *rt_edge, *next_edge; |
| |
| rt_edge = rt_node->u.child_list; |
| |
| while(rt_edge != NULL) |
| { /* For all children */ |
| child_node = rt_edge->child; |
| free_route_tree(child_node); |
| next_edge = rt_edge->next; |
| free_linked_rt_edge(rt_edge); |
| rt_edge = next_edge; |
| } |
| |
| free_rt_node(rt_node); |
| } |
| |
| |
| void |
| update_net_delays_from_route_tree(float *net_delay, |
| t_rt_node ** rt_node_of_sink, |
| int inet) |
| { |
| |
| /* Goes through all the sinks of this net and copies their delay values from * |
| * the route_tree to the net_delay array. */ |
| |
| int isink; |
| t_rt_node *sink_rt_node; |
| |
| for(isink = 1; isink <= net[inet].num_sinks; isink++) |
| { |
| sink_rt_node = rt_node_of_sink[isink]; |
| net_delay[isink] = sink_rt_node->Tdel; |
| } |
| } |