| // Copyright (C) 2020-2021 The SymbiFlow Authors. |
| // |
| // Use of this source code is governed by a ISC-style |
| // license that can be found in the LICENSE file or at |
| // https://opensource.org/licenses/ISC |
| // |
| // SPDX-License-Identifier:ISC |
| |
| module macc_simple ( |
| input wire clk, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output reg [15:0] Z |
| ); |
| |
| always @(posedge clk) |
| Z <= Z + (A * B); |
| |
| endmodule |
| |
| module macc_simple_clr ( |
| input wire clk, |
| input wire clr, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output reg [15:0] Z |
| ); |
| |
| always @(posedge clk) |
| if (clr) Z <= (A * B); |
| else Z <= Z + (A * B); |
| |
| endmodule |
| |
| module macc_simple_arst ( |
| input wire clk, |
| input wire rst, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output reg [15:0] Z |
| ); |
| |
| always @(posedge clk or posedge rst) |
| if (rst) Z <= 0; |
| else Z <= Z + (A * B); |
| |
| endmodule |
| |
| module macc_simple_ena ( |
| input wire clk, |
| input wire ena, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output reg [15:0] Z |
| ); |
| |
| always @(posedge clk) |
| if (ena) Z <= Z + (A * B); |
| |
| endmodule |
| |
| module macc_simple_arst_clr_ena ( |
| input wire clk, |
| input wire rst, |
| input wire clr, |
| input wire ena, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output reg [15:0] Z |
| ); |
| |
| always @(posedge clk or posedge rst) |
| if (rst) Z <= 0; |
| else if (ena) begin |
| if (clr) Z <= (A * B); |
| else Z <= Z + (A * B); |
| end |
| |
| endmodule |
| |
| module macc_simple_preacc ( |
| input wire clk, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output wire [15:0] Z |
| ); |
| |
| reg [15:0] acc; |
| |
| assign Z = acc + (A * B); |
| |
| always @(posedge clk) |
| acc <= Z; |
| |
| endmodule |
| |
| module macc_simple_preacc_clr ( |
| input wire clk, |
| input wire clr, |
| input wire [ 7:0] A, |
| input wire [ 7:0] B, |
| output reg [15:0] Z |
| ); |
| |
| reg [15:0] acc; |
| |
| assign Z = (clr) ? (A * B) : (acc + (A * B)); |
| |
| always @(posedge clk) |
| acc <= Z; |
| |
| endmodule |
| |