blob: d441042a826fb9d6b8195f1152d2078c7dd85065 [file] [log] [blame]
//
// Copyright (C) 2015 Clifford Wolf <clifford@clifford.at>
//
// Based on a reference implementation provided by Mathias Lasser
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//
#if !defined(_WIN32) && !defined(_GNU_SOURCE)
// for vasprintf()
#define _GNU_SOURCE
#endif
#include <set>
#include <tuple>
#include <vector>
#include <string>
#include <fstream>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <cstdint>
#include <stdio.h>
#include <stdarg.h>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
#ifdef _WIN32
#define __PRETTY_FUNCTION__ __FUNCTION__
#endif
using std::vector;
using std::string;
int log_level = 0;
#define log(...) fprintf(stderr, __VA_ARGS__);
#define info(...) do { if (log_level > 0) fprintf(stderr, __VA_ARGS__); } while (0)
#define debug(...) do { if (log_level > 1) fprintf(stderr, __VA_ARGS__); } while (0)
#define error(...) do { fprintf(stderr, "Error: " __VA_ARGS__); exit(1); } while (0)
#define panic(fmt, ...) do { fprintf(stderr, "Internal Error at %s:%d: " fmt, __FILE__, __LINE__, ##__VA_ARGS__); abort(); } while (0)
string vstringf(const char *fmt, va_list ap)
{
string string;
char *str = NULL;
#ifdef _WIN32
int sz = 64, rc;
while (1) {
va_list apc;
va_copy(apc, ap);
str = (char*)realloc(str, sz);
rc = vsnprintf(str, sz, fmt, apc);
va_end(apc);
if (rc >= 0 && rc < sz)
break;
sz *= 2;
}
#else
if (vasprintf(&str, fmt, ap) < 0)
str = NULL;
#endif
if (str != NULL) {
string = str;
free(str);
}
return string;
}
string stringf(const char *fmt, ...)
{
string string;
va_list ap;
va_start(ap, fmt);
string = vstringf(fmt, ap);
va_end(ap);
return string;
}
// ==================================================================
// FpgaConfig stuff
struct FpgaConfig
{
string device;
string freqrange;
string nosleep;
string warmboot;
// cram[BANK][X][Y]
int cram_width, cram_height;
vector<vector<vector<bool>>> cram;
// bram[BANK][X][Y]
int bram_width, bram_height;
vector<vector<vector<bool>>> bram;
bool skip_bram_initialization;
// data before preamble
vector<uint8_t> initblop;
// bitstream i/o
void read_bits(std::istream &ifs);
void write_bits(std::ostream &ofs) const;
// icebox i/o
void read_ascii(std::istream &ifs, bool nosleep);
void write_ascii(std::ostream &ofs) const;
// netpbm i/o
void write_cram_pbm(std::ostream &ofs, int bank_num = -1) const;
void write_bram_pbm(std::ostream &ofs, int bank_num = -1) const;
// query chip type metadata
int chip_width() const;
int chip_height() const;
vector<int> chip_cols() const;
// query tile metadata
string tile_type(int x, int y) const;
int tile_width(const string &type) const;
// cram bit manipulation
void cram_clear();
void cram_fill_tiles();
void cram_checkerboard(int m = 0);
};
struct CramIndexConverter
{
const FpgaConfig *fpga;
int tile_x, tile_y;
string tile_type;
int tile_width;
int column_width;
bool left_right_io;
bool right_half;
bool top_half;
int bank_num;
int bank_tx;
int bank_ty;
int bank_xoff;
int bank_yoff;
CramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y);
void get_cram_index(int bit_x, int bit_y, int &cram_bank, int &cram_x, int &cram_y) const;
};
struct BramIndexConverter
{
const FpgaConfig *fpga;
int tile_x, tile_y;
int bank_num;
int bank_off;
BramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y);
void get_bram_index(int bit_x, int bit_y, int &bram_bank, int &bram_x, int &bram_y) const;
};
static void update_crc16(uint16_t &crc, uint8_t byte)
{
// CRC-16-CCITT, Initialize to 0xFFFF, No zero padding
for (int i = 7; i >= 0; i--) {
uint16_t xor_value = ((crc >> 15) ^ ((byte >> i) & 1)) ? 0x1021 : 0;
crc = (crc << 1) ^ xor_value;
}
}
static uint8_t read_byte(std::istream &ifs, uint16_t &crc_value, int &file_offset)
{
int byte = ifs.get();
if (byte < 0)
error("Unexpected end of file.\n");
file_offset++;
update_crc16(crc_value, byte);
return byte;
}
static void write_byte(std::ostream &ofs, uint16_t &crc_value, int &file_offset, uint8_t byte)
{
ofs << byte;
file_offset++;
update_crc16(crc_value, byte);
}
void FpgaConfig::read_bits(std::istream &ifs)
{
int file_offset = 0;
uint16_t crc_value = 0;
debug("## %s\n", __PRETTY_FUNCTION__);
info("Parsing bitstream file..\n");
// skip initial comments until preamble is found
uint32_t preamble = 0;
while (1)
{
uint8_t byte = read_byte(ifs, crc_value, file_offset);
preamble = (preamble << 8) | byte;
if (preamble == 0xffffffff)
error("No preamble found in bitstream.\n");
if (preamble == 0x7EAA997E) {
info("Found preamble at offset %d.\n", file_offset-4);
break;
}
initblop.push_back(byte);
}
initblop.pop_back();
initblop.pop_back();
initblop.pop_back();
// main parser loop
int current_bank = 0;
int current_width = 0;
int current_height = 0;
int current_offset = 0;
bool wakeup = false;
this->cram_width = 0;
this->cram_height = 0;
this->bram_width = 0;
this->bram_height = 0;
while (!wakeup)
{
// one command byte. the lower 4 bits of the command byte specify
// the length of the command payload.
uint8_t command = read_byte(ifs, crc_value, file_offset);
uint32_t payload = 0;
for (int i = 0; i < (command & 0x0f); i++)
payload = (payload << 8) | read_byte(ifs, crc_value, file_offset);
debug("Next command at offset %d: 0x%02x 0x%0*x\n", file_offset - 1 - (command & 0x0f),
command, 2*(command & 0x0f), payload);
uint16_t end_token;
switch (command & 0xf0)
{
case 0x00:
switch (payload)
{
case 0x01:
info("CRAM Data [%d]: %d x %d bits = %d bits = %d bytes\n",
current_bank, current_width, current_height,
current_height*current_width, (current_height*current_width)/8);
this->cram_width = std::max(this->cram_width, current_width);
this->cram_height = std::max(this->cram_height, current_offset + current_height);
this->cram.resize(4);
this->cram[current_bank].resize(this->cram_width);
for (int x = 0; x < current_width; x++)
this->cram[current_bank][x].resize(this->cram_height);
for (int i = 0; i < (current_height*current_width)/8; i++) {
uint8_t byte = read_byte(ifs, crc_value, file_offset);
for (int j = 0; j < 8; j++) {
int x = (i*8 + j) % current_width;
int y = (i*8 + j) / current_width + current_offset;
this->cram[current_bank][x][y] = ((byte << j) & 0x80) != 0;
}
}
end_token = read_byte(ifs, crc_value, file_offset);
end_token = (end_token << 8) | read_byte(ifs, crc_value, file_offset);
if (end_token)
error("Expeded 0x0000 after CRAM data, got 0x%04x\n", end_token);
break;
case 0x03:
info("BRAM Data [%d]: %d x %d bits = %d bits = %d bytes\n",
current_bank, current_width, current_height,
current_height*current_width, (current_height*current_width)/8);
this->bram_width = std::max(this->bram_width, current_width);
this->bram_height = std::max(this->bram_height, current_offset + current_height);
this->bram.resize(4);
this->bram[current_bank].resize(this->bram_width);
for (int x = 0; x < current_width; x++)
this->bram[current_bank][x].resize(this->bram_height);
for (int i = 0; i < (current_height*current_width)/8; i++) {
uint8_t byte = read_byte(ifs, crc_value, file_offset);
for (int j = 0; j < 8; j++) {
int x = (i*8 + j) % current_width;
int y = (i*8 + j) / current_width + current_offset;
this->bram[current_bank][x][y] = ((byte << j) & 0x80) != 0;
}
}
end_token = read_byte(ifs, crc_value, file_offset);
end_token = (end_token << 8) | read_byte(ifs, crc_value, file_offset);
if (end_token)
error("Expeded 0x0000 after BRAM data, got 0x%04x\n", end_token);
break;
case 0x05:
debug("Resetting CRC.\n");
crc_value = 0xffff;
break;
case 0x06:
info("Wakeup.\n");
wakeup = true;
break;
default:
error("Unknown command: 0x%02x 0x%02x\n", command, payload);
}
break;
case 0x10:
current_bank = payload;
debug("Set bank to %d.\n", current_bank);
break;
case 0x20:
if (crc_value != 0)
error("CRC Check FAILED.\n");
info("CRC Check OK.\n");
break;
case 0x50:
if (payload == 0)
this->freqrange = "low";
else if (payload == 1)
this->freqrange = "medium";
else if (payload == 2)
this->freqrange = "high";
else
error("Unknown freqrange payload 0x%02x\n", payload);
info("Setting freqrange to '%s'.\n", this->freqrange.c_str());
break;
case 0x60:
current_width = payload + 1;
debug("Setting bank width to %d.\n", current_width);
break;
case 0x70:
current_height = payload;
debug("Setting bank height to %d.\n", current_height);
break;
case 0x80:
current_offset = payload;
debug("Setting bank offset to %d.\n", current_offset);
break;
case 0x90:
switch(payload)
{
case 0:
this->warmboot = "disabled";
this->nosleep = "disabled";
break;
case 1:
this->warmboot = "disabled";
this->nosleep = "enabled";
break;
case 32:
this->warmboot = "enabled";
this->nosleep = "disabled";
break;
case 33:
this->warmboot = "enabled";
this->nosleep = "enabled";
break;
default:
error("Unknown warmboot/nosleep payload 0x%02x\n", payload);
}
info("Setting warmboot to '%s', nosleep to '%s'.\n", this->warmboot.c_str(), this->nosleep.c_str());
break;
default:
error("Unknown command: 0x%02x 0x%02x\n", command, payload);
}
}
if (this->cram_width == 182 && this->cram_height == 80)
this->device = "384";
else if (this->cram_width == 332 && this->cram_height == 144)
this->device = "1k";
else if (this->cram_width == 872 && this->cram_height == 272)
this->device = "8k";
else if (this->cram_width == 692 && this->cram_height == 336)
this->device = "5k";
else if (this->cram_width == 692 && this->cram_height == 176)
this->device = "u4k";
else if (this->cram_width == 656 && this->cram_height == 176)
this->device = "lm4k";
else
error("Failed to detect chip type.\n");
info("Chip type is '%s'.\n", this->device.c_str());
}
void FpgaConfig::write_bits(std::ostream &ofs) const
{
int file_offset = 0;
uint16_t crc_value = 0;
debug("## %s\n", __PRETTY_FUNCTION__);
info("Writing bitstream file..\n");
for (auto byte : this->initblop)
ofs << byte;
debug("Writing preamble.\n");
write_byte(ofs, crc_value, file_offset, 0x7E);
write_byte(ofs, crc_value, file_offset, 0xAA);
write_byte(ofs, crc_value, file_offset, 0x99);
write_byte(ofs, crc_value, file_offset, 0x7E);
debug("Setting freqrange to '%s'.\n", this->freqrange.c_str());
write_byte(ofs, crc_value, file_offset, 0x51);
if (this->freqrange == "low")
write_byte(ofs, crc_value, file_offset, 0x00);
else if (this->freqrange == "medium")
write_byte(ofs, crc_value, file_offset, 0x01);
else if (this->freqrange == "high")
write_byte(ofs, crc_value, file_offset, 0x02);
else
error("Unknown freqrange '%s'.\n", this->freqrange.c_str());
debug("Resetting CRC.\n");
write_byte(ofs, crc_value, file_offset, 0x01);
write_byte(ofs, crc_value, file_offset, 0x05);
crc_value = 0xffff;
{
uint8_t nosleep_flag;
debug("Setting warmboot to '%s', nosleep to '%s'.\n", this->warmboot.c_str(), this->nosleep.c_str());
write_byte(ofs, crc_value, file_offset, 0x92);
write_byte(ofs, crc_value, file_offset, 0x00);
if (this->nosleep == "disabled")
nosleep_flag = 0;
else if (this->nosleep == "enabled")
nosleep_flag = 1;
else
error("Unknown nosleep setting '%s'.\n", this->nosleep.c_str());
if (this->warmboot == "disabled")
write_byte(ofs, crc_value, file_offset, 0x00 | nosleep_flag);
else if (this->warmboot == "enabled")
write_byte(ofs, crc_value, file_offset, 0x20 | nosleep_flag);
else
error("Unknown warmboot setting '%s'.\n", this->warmboot.c_str());
}
debug("CRAM: Setting bank width to %d.\n", this->cram_width);
write_byte(ofs, crc_value, file_offset, 0x62);
write_byte(ofs, crc_value, file_offset, (this->cram_width-1) >> 8);
write_byte(ofs, crc_value, file_offset, (this->cram_width-1));
if(this->device != "5k") {
debug("CRAM: Setting bank height to %d.\n", this->cram_height);
write_byte(ofs, crc_value, file_offset, 0x72);
write_byte(ofs, crc_value, file_offset, this->cram_height >> 8);
write_byte(ofs, crc_value, file_offset, this->cram_height);
}
debug("CRAM: Setting bank offset to 0.\n");
write_byte(ofs, crc_value, file_offset, 0x82);
write_byte(ofs, crc_value, file_offset, 0x00);
write_byte(ofs, crc_value, file_offset, 0x00);
for (int cram_bank = 0; cram_bank < 4; cram_bank++)
{
vector<bool> cram_bits;
int height = this->cram_height;
if(this->device == "5k" && ((cram_bank % 2) == 1))
height = height / 2 + 8;
for (int cram_y = 0; cram_y < height; cram_y++)
for (int cram_x = 0; cram_x < this->cram_width; cram_x++)
cram_bits.push_back(this->cram[cram_bank][cram_x][cram_y]);
if(this->device == "5k") {
debug("CRAM: Setting bank height to %d.\n", height);
write_byte(ofs, crc_value, file_offset, 0x72);
write_byte(ofs, crc_value, file_offset, height >> 8);
write_byte(ofs, crc_value, file_offset, height);
}
debug("CRAM: Setting bank %d.\n", cram_bank);
write_byte(ofs, crc_value, file_offset, 0x11);
write_byte(ofs, crc_value, file_offset, cram_bank);
debug("CRAM: Writing bank %d data.\n", cram_bank);
write_byte(ofs, crc_value, file_offset, 0x01);
write_byte(ofs, crc_value, file_offset, 0x01);
for (int i = 0; i < int(cram_bits.size()); i += 8) {
uint8_t byte = 0;
for (int j = 0; j < 8; j++)
byte = (byte << 1) | (cram_bits[i+j] ? 1 : 0);
write_byte(ofs, crc_value, file_offset, byte);
}
write_byte(ofs, crc_value, file_offset, 0x00);
write_byte(ofs, crc_value, file_offset, 0x00);
}
int bram_chunk_size = 128;
if (this->bram_width && this->bram_height)
{
if(this->device != "5k") {
debug("BRAM: Setting bank width to %d.\n", this->bram_width);
write_byte(ofs, crc_value, file_offset, 0x62);
write_byte(ofs, crc_value, file_offset, (this->bram_width-1) >> 8);
write_byte(ofs, crc_value, file_offset, (this->bram_width-1));
}
debug("BRAM: Setting bank height to %d.\n", this->bram_height);
write_byte(ofs, crc_value, file_offset, 0x72);
write_byte(ofs, crc_value, file_offset, bram_chunk_size >> 8);
write_byte(ofs, crc_value, file_offset, bram_chunk_size);
for (int bram_bank = 0; bram_bank < 4; bram_bank++)
{
debug("BRAM: Setting bank %d.\n", bram_bank);
write_byte(ofs, crc_value, file_offset, 0x11);
write_byte(ofs, crc_value, file_offset, bram_bank);
for (int offset = 0; offset < this->bram_height; offset += bram_chunk_size)
{
vector<bool> bram_bits;
int width = this->bram_width;
if(this->device == "5k" && ((bram_bank % 2) == 1))
width = width / 2;
for (int bram_y = 0; bram_y < bram_chunk_size; bram_y++)
for (int bram_x = 0; bram_x < width; bram_x++)
bram_bits.push_back(this->bram[bram_bank][bram_x][bram_y+offset]);
debug("BRAM: Setting bank offset to %d.\n", offset);
write_byte(ofs, crc_value, file_offset, 0x82);
write_byte(ofs, crc_value, file_offset, offset >> 8);
write_byte(ofs, crc_value, file_offset, offset);
if(this->device == "5k") {
debug("BRAM: Setting bank width to %d.\n", width);
write_byte(ofs, crc_value, file_offset, 0x62);
write_byte(ofs, crc_value, file_offset, (width-1) >> 8);
write_byte(ofs, crc_value, file_offset, (width-1));
}
if (!this->skip_bram_initialization) {
debug("BRAM: Writing bank %d data.\n", bram_bank);
write_byte(ofs, crc_value, file_offset, 0x01);
write_byte(ofs, crc_value, file_offset, 0x03);
for (int i = 0; i < int(bram_bits.size()); i += 8) {
uint8_t byte = 0;
for (int j = 0; j < 8; j++)
byte = (byte << 1) | (bram_bits[i+j] ? 1 : 0);
write_byte(ofs, crc_value, file_offset, byte);
}
write_byte(ofs, crc_value, file_offset, 0x00);
write_byte(ofs, crc_value, file_offset, 0x00);
}
}
}
}
debug("Writing CRC value.\n");
write_byte(ofs, crc_value, file_offset, 0x22);
uint8_t crc_hi = crc_value >> 8, crc_lo = crc_value;
write_byte(ofs, crc_value, file_offset, crc_hi);
write_byte(ofs, crc_value, file_offset, crc_lo);
debug("Wakeup.\n");
write_byte(ofs, crc_value, file_offset, 0x01);
write_byte(ofs, crc_value, file_offset, 0x06);
debug("Padding byte.\n");
write_byte(ofs, crc_value, file_offset, 0x00);
}
void FpgaConfig::read_ascii(std::istream &ifs, bool nosleep)
{
debug("## %s\n", __PRETTY_FUNCTION__);
info("Parsing ascii file..\n");
bool got_device = false;
this->cram.clear();
this->bram.clear();
this->freqrange = "low";
this->warmboot = "enabled";
bool reuse_line = true;
string line, command;
while (reuse_line || getline(ifs, line))
{
reuse_line = false;
std::istringstream is(line);
is >> command;
if (command.empty())
continue;
debug("Next command: %s\n", line.c_str());
if (command == ".comment")
{
this->initblop.clear();
this->initblop.push_back(0xff);
this->initblop.push_back(0x00);
while (getline(ifs, line))
{
if (line.substr(0, 1) == ".") {
reuse_line = true;
break;
}
for (auto ch : line)
this->initblop.push_back(ch);
this->initblop.push_back(0);
}
this->initblop.push_back(0x00);
this->initblop.push_back(0xff);
continue;
}
if (command == ".device")
{
if (got_device)
error("More than one .device statement.\n");
is >> this->device;
if (this->device == "384") {
this->cram_width = 182;
this->cram_height = 80;
this->bram_width = 0;
this->bram_height = 0;
} else
if (this->device == "1k") {
this->cram_width = 332;
this->cram_height = 144;
this->bram_width = 64;
this->bram_height = 2 * 128;
} else
if (this->device == "8k") {
this->cram_width = 872;
this->cram_height = 272;
this->bram_width = 128;
this->bram_height = 2 * 128;
} else
if (this->device == "5k") {
this->cram_width = 692;
this->cram_height = 336;
this->bram_width = 160;
this->bram_height = 2 * 128;
} else
if (this->device == "u4k") {
this->cram_width = 692;
this->cram_height = 176;
this->bram_width = 80;
this->bram_height = 2 * 128;
} else
if (this->device == "lm4k") {
this->cram_width = 656;
this->cram_height = 176;
this->bram_width = 80;
this->bram_height = 2 * 128;
} else
error("Unsupported chip type '%s'.\n", this->device.c_str());
this->cram.resize(4);
if(this->device == "5k") {
for (int i = 0; i < 4; i++) {
this->cram[i].resize(this->cram_width);
for (int x = 0; x < this->cram_width; x++)
this->cram[i][x].resize(((i % 2) == 1) ? (this->cram_height / 2 + 8) : this->cram_height);
}
this->bram.resize(4);
for (int i = 0; i < 4; i++) {
int width = ((i % 2) == 1) ? (this->bram_width / 2) : this->bram_width;
this->bram[i].resize(width);
for (int x = 0; x < width; x++)
this->bram[i][x].resize(this->bram_height);
}
} else {
for (int i = 0; i < 4; i++) {
this->cram[i].resize(this->cram_width);
for (int x = 0; x < this->cram_width; x++)
this->cram[i][x].resize(this->cram_height);
}
this->bram.resize(4);
for (int i = 0; i < 4; i++) {
this->bram[i].resize(this->bram_width);
for (int x = 0; x < this->bram_width; x++)
this->bram[i][x].resize(this->bram_height);
}
}
got_device = true;
continue;
}
if (command == ".warmboot")
{
is >> this->warmboot;
if (this->warmboot != "disabled" &&
this->warmboot != "enabled")
error("Unknown warmboot setting '%s'.\n",
this->warmboot.c_str());
continue;
}
// No ".nosleep" section despite sharing the same byte as .warmboot.
// ".nosleep" is specified when icepack is invoked, which is too late.
// So we inject the section based on command line argument.
if (nosleep)
this->nosleep = "enabled";
else
this->nosleep = "disabled";
if (command == ".io_tile" || command == ".logic_tile" || command == ".ramb_tile" || command == ".ramt_tile" || command.substr(0, 4) == ".dsp" || command == ".ipcon_tile")
{
if (!got_device)
error("Missing .device statement before %s.\n", command.c_str());
int tile_x, tile_y;
is >> tile_x >> tile_y;
CramIndexConverter cic(this, tile_x, tile_y);
if (("." + cic.tile_type + "_tile") != command)
error("Got %s statement for %s tile %d %d.\n",
command.c_str(), cic.tile_type.c_str(), tile_x, tile_y);
for (int bit_y = 0; bit_y < 16 && getline(ifs, line); bit_y++)
{
if (line.substr(0, 1) == ".") {
reuse_line = true;
break;
}
for (int bit_x = 0; bit_x < int(line.size()) && bit_x < cic.tile_width; bit_x++)
if (line[bit_x] == '1') {
int cram_bank, cram_x, cram_y;
cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y);
this->cram[cram_bank][cram_x][cram_y] = true;
}
}
continue;
}
if (command == ".ram_data")
{
if (!got_device)
error("Missing .device statement before %s.\n", command.c_str());
int tile_x, tile_y;
is >> tile_x >> tile_y;
BramIndexConverter bic(this, tile_x, tile_y);
for (int bit_y = 0; bit_y < 16 && getline(ifs, line); bit_y++)
{
if (line.substr(0, 1) == ".") {
reuse_line = true;
break;
}
for (int bit_x = 256-4, ch_idx = 0; ch_idx < int(line.size()) && bit_x >= 0; bit_x -= 4, ch_idx++)
{
int value = -1;
if ('0' <= line[ch_idx] && line[ch_idx] <= '9')
value = line[ch_idx] - '0';
if ('a' <= line[ch_idx] && line[ch_idx] <= 'f')
value = line[ch_idx] - 'a' + 10;
if ('A' <= line[ch_idx] && line[ch_idx] <= 'F')
value = line[ch_idx] - 'A' + 10;
if (value < 0)
error("Not a hex character: '%c' (in line '%s')\n", line[ch_idx], line.c_str());
for (int i = 0; i < 4; i++)
if ((value & (1 << i)) != 0) {
int bram_bank, bram_x, bram_y;
bic.get_bram_index(bit_x+i, bit_y, bram_bank, bram_x, bram_y);
this->bram[bram_bank][bram_x][bram_y] = true;
}
}
}
continue;
}
if (command == ".extra_bit")
{
if (!got_device)
error("Missing .device statement before %s.\n", command.c_str());
int cram_bank, cram_x, cram_y;
is >> cram_bank >> cram_x >> cram_y;
this->cram[cram_bank][cram_x][cram_y] = true;
continue;
}
if (command == ".sym")
continue;
if (command.substr(0, 1) == ".")
error("Unknown statement: %s\n", command.c_str());
error("Unexpected data line: %s\n", line.c_str());
}
}
void FpgaConfig::write_ascii(std::ostream &ofs) const
{
debug("## %s\n", __PRETTY_FUNCTION__);
info("Writing ascii file..\n");
ofs << ".comment";
bool insert_newline = true;
for (auto ch : this->initblop) {
if (ch == 0) {
insert_newline = true;
} else if (ch == 0xff) {
insert_newline = false;
} else {
if (insert_newline)
ofs << '\n';
ofs << ch;
insert_newline = false;
}
}
ofs << stringf("\n.device %s\n", this->device.c_str());
if (this->warmboot != "enabled")
ofs << stringf(".warmboot %s\n", this->warmboot.c_str());
// As "nosleep" is an icepack command, we do not write out a ".nosleep"
// section. However, we parse it in read_bits() and notify the user in
// info.
typedef std::tuple<int, int, int> tile_bit_t;
std::set<tile_bit_t> tile_bits;
for (int y = 0; y <= this->chip_height()+1; y++)
for (int x = 0; x <= this->chip_width()+1; x++)
{
CramIndexConverter cic(this, x, y);
if (cic.tile_type == "corner" || cic.tile_type == "unsupported")
continue;
ofs << stringf(".%s_tile %d %d\n", cic.tile_type.c_str(), x, y);
for (int bit_y = 0; bit_y < 16; bit_y++) {
for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) {
int cram_bank, cram_x, cram_y;
cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y);
tile_bits.insert(tile_bit_t(cram_bank, cram_x, cram_y));
if (cram_x > int(this->cram[cram_bank].size())) {
error("cram_x %d (bit %d, %d) larger than bank size %lu\n", cram_x, bit_x, bit_y, this->cram[cram_bank].size());
}
if (cram_y > int(this->cram[cram_bank][cram_x].size())) {
error("cram_y %d (bit %d, %d) larger than bank %d size %lu\n", cram_y, bit_x, bit_y, cram_bank, this->cram[cram_bank][cram_x].size());
}
ofs << (this->cram[cram_bank][cram_x][cram_y] ? '1' : '0');
}
ofs << '\n';
}
if (cic.tile_type == "ramb" && !this->bram.empty())
{
BramIndexConverter bic(this, x, y);
ofs << stringf(".ram_data %d %d\n", x, y);
for (int bit_y = 0; bit_y < 16; bit_y++) {
for (int bit_x = 256-4; bit_x >= 0; bit_x -= 4) {
int value = 0;
for (int i = 0; i < 4; i++) {
int bram_bank, bram_x, bram_y;
bic.get_bram_index(bit_x+i, bit_y, bram_bank, bram_x, bram_y);
if (bram_x >= int(this->bram[bram_bank].size())) {
error("%d %d bram_x %d higher than loaded bram size %lu\n",bit_x+i, bit_y, bram_x, this->bram[bram_bank].size());
break;
}
if (bram_y >= int(this->bram[bram_bank][bram_x].size())) {
error("bram_y %d higher than loaded bram size %lu\n", bram_y, this->bram[bram_bank][bram_x].size());
break;
}
if (this->bram[bram_bank][bram_x][bram_y])
value += 1 << i;
}
ofs << "0123456789abcdef"[value];
}
ofs << '\n';
}
}
}
for (int i = 0; i < 4; i++)
for (int x = 0; x < this->cram_width; x++)
for (int y = 0; y < this->cram_height; y++)
if (this->cram[i][x][y] && tile_bits.count(tile_bit_t(i, x, y)) == 0)
ofs << stringf(".extra_bit %d %d %d\n", i, x, y);
#if 0
for (int i = 0; i < 4; i++) {
ofs << stringf(".bram_bank %d\n", i);
for (int x = 0; x < this->bram_width; x++) {
for (int y = 0; y < this->bram_height; y += 4)
ofs << "0123456789abcdef"[(this->bram[i][x][y] ? 1 : 0) + (this->bram[i][x][y+1] ? 2 : 0) +
(this->bram[i][x][y+2] ? 4 : 0) + (this->bram[i][x][y+3] ? 8 : 0)];
ofs << '\n';
}
}
#endif
}
void FpgaConfig::write_cram_pbm(std::ostream &ofs, int bank_num) const
{
debug("## %s\n", __PRETTY_FUNCTION__);
info("Writing cram pbm file..\n");
ofs << "P3\n";
ofs << stringf("%d %d\n", 2*this->cram_width, 2*this->cram_height);
ofs << "255\n";
uint32_t tile_type[4][this->cram_width][this->cram_height];
for (int y = 0; y <= this->chip_height()+1; y++)
for (int x = 0; x <= this->chip_width()+1; x++)
{
CramIndexConverter cic(this, x, y);
uint32_t color = 0x000000;
if (cic.tile_type == "io") {
color = 0x00aa00;
} else if (cic.tile_type == "logic") {
if ((x + y) % 2 == 0) {
color = 0x0000ff;
} else {
color = 0x0000aa;
}
if (x == 12 && y == 25) {
color = 0xaa00aa;
}
if (x == 12 && y == 24) {
color = 0x888888;
}
} else if (cic.tile_type == "ramt") {
color = 0xff0000;
} else if (cic.tile_type == "ramb") {
color = 0xaa0000;
} else if (cic.tile_type == "unsupported") {
color = 0x333333;
} else {
info("%s\n", cic.tile_type.c_str());
}
for (int bit_y = 0; bit_y < 16; bit_y++)
for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) {
int cram_bank, cram_x, cram_y;
cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y);
tile_type[cram_bank][cram_x][cram_y] = color;
}
}
for (int y = 2*this->cram_height-1; y >= 0; y--) {
for (int x = 0; x < 2*this->cram_width; x++) {
int bank = 0, bank_x = x, bank_y = y;
if (bank_x >= this->cram_width)
bank |= 1, bank_x = 2*this->cram_width - bank_x - 1;
if (bank_y >= this->cram_height)
bank |= 2, bank_y = 2*this->cram_height - bank_y - 1;
if (bank_num >= 0 && bank != bank_num)
ofs << " 255 255 255";
else if (this->cram[bank][bank_x][bank_y]) {
ofs << " 255 255 255";
} else {
uint32_t color = tile_type[bank][bank_x][bank_y];
uint8_t r = color >> 16;
uint8_t g = color >> 8;
uint8_t b = color & 0xff;
ofs << stringf(" %d %d %d", r, g, b);
}
}
ofs << '\n';
}
}
void FpgaConfig::write_bram_pbm(std::ostream &ofs, int bank_num) const
{
debug("## %s\n", __PRETTY_FUNCTION__);
info("Writing bram pbm file..\n");
ofs << "P1\n";
ofs << stringf("%d %d\n", 2*this->bram_width, 2*this->bram_height);
for (int y = 2*this->bram_height-1; y >= 0; y--) {
for (int x = 0; x < 2*this->bram_width; x++) {
int bank = 0, bank_x = x, bank_y = y;
if (bank_x >= this->bram_width)
bank |= 1, bank_x = 2*this->bram_width - bank_x - 1;
if (bank_y >= this->bram_height)
bank |= 2, bank_y = 2*this->bram_height - bank_y - 1;
info("%d %d %d\n", bank, bank_x, bank_y);
if (bank_num >= 0 && bank != bank_num)
ofs << " 0";
else
ofs << (this->bram[bank][bank_x][bank_y] ? " 1" : " 0");
}
ofs << '\n';
}
}
int FpgaConfig::chip_width() const
{
if (this->device == "384") return 6;
if (this->device == "1k") return 12;
if (this->device == "5k") return 24;
if (this->device == "u4k") return 24;
if (this->device == "lm4k") return 24;
if (this->device == "8k") return 32;
panic("Unknown chip type '%s'.\n", this->device.c_str());
}
int FpgaConfig::chip_height() const
{
if (this->device == "384") return 8;
if (this->device == "1k") return 16;
if (this->device == "5k") return 30;
if (this->device == "u4k") return 20;
if (this->device == "lm4k") return 20;
if (this->device == "8k") return 32;
panic("Unknown chip type '%s'.\n", this->device.c_str());
}
vector<int> FpgaConfig::chip_cols() const
{
if (this->device == "384") return vector<int>({18, 54, 54, 54, 54});
if (this->device == "1k") return vector<int>({18, 54, 54, 42, 54, 54, 54});
if (this->device == "u4k") return vector<int>({54, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54});
if (this->device == "lm4k") return vector<int>({18, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54});
// Its IPConnect or Mutiplier block, five logic, ram, six logic.
if (this->device == "5k") return vector<int>({54, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54});
if (this->device == "8k") return vector<int>({18, 54, 54, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54, 54, 54});
panic("Unknown chip type '%s'.\n", this->device.c_str());
}
string FpgaConfig::tile_type(int x, int y) const
{
if ((x == 0 || x == this->chip_width()+1) && (y == 0 || y == this->chip_height()+1)) return "corner";
// The sides on the 5k devices are IPConnect or DSP tiles
if (this->device == "5k" && (x == 0 || x == this->chip_width()+1)) {
if( (y == 5) || (y == 10) || (y == 15) || (y == 23))
return "dsp0";
if( (y == 6) || (y == 11) || (y == 16) || (y == 24))
return "dsp1";
if( (y == 7) || (y == 12) || (y == 17) || (y == 25))
return "dsp2";
if( (y == 8) || (y == 13) || (y == 18) || (y == 26))
return "dsp3";
return "ipcon";
}
if (this->device == "u4k" && (x == 0 || x == this->chip_width()+1)) {
if( (y == 5) || (y == 13))
return "dsp0";
if( (y == 6) || (y == 14))
return "dsp1";
if( (y == 7) || (y == 15))
return "dsp2";
if( (y == 8) || (y == 16))
return "dsp3";
return "ipcon";
}
if ((x == 0 || x == this->chip_width()+1) || (y == 0 || y == this->chip_height()+1)) return "io";
if (this->device == "384") return "logic";
if (this->device == "1k") {
if (x == 3 || x == 10) return y % 2 == 1 ? "ramb" : "ramt";
return "logic";
}
if (this->device == "5k" || this->device == "u4k" || this->device == "lm4k") {
if (x == 6 || x == 19) return y % 2 == 1 ? "ramb" : "ramt";
return "logic";
}
if (this->device == "8k") {
if (x == 8 || x == 25) return y % 2 == 1 ? "ramb" : "ramt";
return "logic";
}
panic("Unknown chip type '%s'.\n", this->device.c_str());
}
int FpgaConfig::tile_width(const string &type) const
{
if (type == "corner") return 0;
if (type == "logic") return 54;
if (type == "ramb") return 42;
if (type == "ramt") return 42;
if (type == "io") return 18;
if (type.substr(0, 3) == "dsp") return 54;
if (type == "ipcon") return 54;
panic("Unknown tile type '%s'.\n", type.c_str());
}
void FpgaConfig::cram_clear()
{
for (int i = 0; i < 4; i++)
for (int x = 0; x < this->cram_width; x++)
for (int y = 0; y < this->cram_height; y++)
this->cram[i][x][y] = false;
}
void FpgaConfig::cram_fill_tiles()
{
for (int y = 0; y <= this->chip_height()+1; y++)
for (int x = 0; x <= this->chip_width()+1; x++)
{
CramIndexConverter cic(this, x, y);
for (int bit_y = 0; bit_y < 16; bit_y++)
for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) {
int cram_bank, cram_x, cram_y;
cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y);
this->cram[cram_bank][cram_x][cram_y] = true;
}
}
}
void FpgaConfig::cram_checkerboard(int m)
{
for (int y = 0; y <= this->chip_height()+1; y++)
for (int x = 0; x <= this->chip_width()+1; x++)
{
if ((x+y) % 2 == m)
continue;
CramIndexConverter cic(this, x, y);
for (int bit_y = 0; bit_y < 16; bit_y++)
for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) {
int cram_bank, cram_x, cram_y;
cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y);
this->cram[cram_bank][cram_x][cram_y] = true;
}
}
}
CramIndexConverter::CramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y)
{
this->fpga = fpga;
this->tile_x = tile_x;
this->tile_y = tile_y;
this->tile_type = fpga->tile_type(this->tile_x, this->tile_y);
this->tile_width = fpga->tile_width(this->tile_type);
auto chip_width = fpga->chip_width();
auto chip_height = fpga->chip_height();
auto chip_cols = fpga->chip_cols();
this->left_right_io = this->tile_x == 0 || this->tile_x == chip_width+1;
this->right_half = this->tile_x > chip_width / 2;
if (this->fpga->device == "5k") {
this->top_half = this->tile_y > (chip_height * 2 / 3);
} else {
this->top_half = this->tile_y > chip_height / 2;
}
this->bank_num = 0;
if (this->top_half) this->bank_num |= 1;
if (this->right_half) this->bank_num |= 2;
this->bank_tx = this->right_half ? chip_width + 1 - this->tile_x : this->tile_x;
this->bank_ty = this->top_half ? chip_height + 1 - this->tile_y : this->tile_y;
this->bank_xoff = 0;
for (int i = 0; i < this->bank_tx; i++)
this->bank_xoff += chip_cols.at(i);
this->bank_yoff = 16 * this->bank_ty;
this->column_width = chip_cols.at(this->bank_tx);
}
void CramIndexConverter::get_cram_index(int bit_x, int bit_y, int &cram_bank, int &cram_x, int &cram_y) const
{
static const int io_top_bottom_permx[18] = {23, 25, 26, 27, 16, 17, 18, 19, 20, 14, 32, 33, 34, 35, 36, 37, 4, 5};
static const int io_top_bottom_permy[16] = {0, 1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14};
cram_bank = bank_num;
if (tile_type == "io")
{
if (left_right_io)
{
cram_x = bank_xoff + column_width - 1 - bit_x;
if (top_half)
cram_y = bank_yoff + 15 - bit_y;
else
cram_y = bank_yoff + bit_y;
}
else
{
cram_y = bank_yoff + 15 - io_top_bottom_permy[bit_y];
if (right_half)
cram_x = bank_xoff + column_width - 1 - io_top_bottom_permx[bit_x];
else
cram_x = bank_xoff + io_top_bottom_permx[bit_x];
}
}
else
{
if (right_half)
cram_x = bank_xoff + column_width - 1 - bit_x;
else
cram_x = bank_xoff + bit_x;
if (top_half)
cram_y = bank_yoff + (15 - bit_y);
else
cram_y = bank_yoff + bit_y;
}
}
BramIndexConverter::BramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y)
{
this->fpga = fpga;
this->tile_x = tile_x;
this->tile_y = tile_y;
auto chip_width = fpga->chip_width();
auto chip_height = fpga->chip_height();
bool right_half = this->tile_x > chip_width / 2;
bool top_half = this->tile_y > chip_height / 2;
// The UltraPlus 5k line is special because the top quarter of the chip is
// used for SRAM instead of logic. Therefore the bitstream for the top two
// quadrants are half the height of the bottom.
if (this->fpga->device == "5k") {
top_half = this->tile_y > (2 * chip_height / 3);
}
this->bank_num = 0;
int y_offset = this->tile_y - 1;
if (this->fpga->device == "5k") {
if (top_half) {
this->bank_num |= 1;
y_offset = this->tile_y - (2 * chip_height / 3);
} else {
//y_offset = this->tile_y - (2 * chip_height / 3);
}
} else if (top_half) {
this->bank_num |= 1;
y_offset = this->tile_y - chip_height / 2;
}
if (right_half) this->bank_num |= 2;
this->bank_off = 16 * (y_offset / 2);
}
void BramIndexConverter::get_bram_index(int bit_x, int bit_y, int &bram_bank, int &bram_x, int &bram_y) const
{
int index = 256 * bit_y + (16*(bit_x/16) + 15 - bit_x%16);
bram_bank = bank_num;
bram_x = bank_off + index % 16;
bram_y = index / 16;
}
// ==================================================================
// Main program
void usage()
{
log("\n");
log("Usage: icepack [options] [input-file [output-file]]\n");
log("\n");
log(" -u\n");
log(" unpack mode (implied when called as 'iceunpack')\n");
log("\n");
log(" -v\n");
log(" verbose (repeat to increase verbosity)\n");
log("\n");
log(" -s\n");
log(" disable final deep-sleep SPI flash command after bitstream is loaded\n");
log("\n");
log(" -b\n");
log(" write cram bitmap as netpbm file\n");
log("\n");
log(" -f\n");
log(" write cram bitmap (fill tiles) as netpbm file\n");
log("\n");
log(" -c\n");
log(" write cram bitmap (checkerboard) as netpbm file\n");
log(" repeat to flip the selection of tiles\n");
log("\n");
log(" -r\n");
log(" write bram data, not cram, to the netpbm file\n");
log("\n");
log(" -B0, -B1, -B2, -B3\n");
log(" only include the specified bank in the netpbm file\n");
log("\n");
log(" -n\n");
log(" skip initializing BRAM\n");
log("\n");
exit(1);
}
int main(int argc, char **argv)
{
#ifdef __EMSCRIPTEN__
EM_ASM(
if (ENVIRONMENT_IS_NODE)
{
FS.mkdir('/hostcwd');
FS.mount(NODEFS, { root: '.' }, '/hostcwd');
FS.mkdir('/hostfs');
FS.mount(NODEFS, { root: '/' }, '/hostfs');
}
);
#endif
vector<string> parameters;
bool unpack_mode = false;
bool nosleep_mode = false;
bool netpbm_mode = false;
bool netpbm_bram = false;
bool netpbm_fill_tiles = false;
bool netpbm_checkerboard = false;
bool skip_bram_initialization = false;
int netpbm_banknum = -1;
int checkerboard_m = 1;
for (int i = 0; argv[0][i]; i++)
if (string(argv[0]+i) == "iceunpack")
unpack_mode = true;
for (int i = 1; i < argc; i++)
{
string arg(argv[i]);
if (arg[0] == '-' && arg.size() > 1) {
for (int i = 1; i < int(arg.size()); i++)
if (arg[i] == 'u') {
unpack_mode = true;
} else if (arg[i] == 'b') {
netpbm_mode = true;
} else if (arg[i] == 'r') {
netpbm_mode = true;
netpbm_bram = true;
} else if (arg[i] == 'f') {
netpbm_mode = true;
netpbm_fill_tiles = true;
} else if (arg[i] == 'c') {
netpbm_mode = true;
netpbm_checkerboard = true;
checkerboard_m = !checkerboard_m;
} else if (arg[i] == 'B') {
netpbm_mode = true;
netpbm_banknum = arg[++i] - '0';
} else if (arg[i] == 's') {
nosleep_mode = true;
} else if (arg[i] == 'v') {
log_level++;
} else if (arg[i] == 'n') {
skip_bram_initialization = true;
} else
usage();
continue;
}
parameters.push_back(arg);
}
std::ifstream ifs;
std::ofstream ofs;
std::istream *isp;
std::ostream *osp;
if (parameters.size() >= 1 && parameters[0] != "-") {
ifs.open(parameters[0], std::ios::binary);
if (!ifs.is_open())
error("Failed to open input file.\n");
isp = &ifs;
} else {
isp = &std::cin;
}
if (parameters.size() >= 2 && parameters[1] != "-") {
ofs.open(parameters[1], std::ios::binary);
if (!ofs.is_open())
error("Failed to open output file.\n");
osp = &ofs;
} else {
osp = &std::cout;
}
if (parameters.size() > 2)
usage();
FpgaConfig fpga_config;
fpga_config.skip_bram_initialization = skip_bram_initialization;
if (unpack_mode) {
fpga_config.read_bits(*isp);
if (!netpbm_mode)
fpga_config.write_ascii(*osp);
} else {
fpga_config.read_ascii(*isp, nosleep_mode);
if (!netpbm_mode)
fpga_config.write_bits(*osp);
}
if (netpbm_checkerboard) {
fpga_config.cram_clear();
fpga_config.cram_checkerboard(checkerboard_m);
}
info("netpbm\n");
if (netpbm_fill_tiles)
fpga_config.cram_fill_tiles();
info("fill done\n");
if (netpbm_mode) {
if (netpbm_bram)
fpga_config.write_bram_pbm(*osp, netpbm_banknum);
else
fpga_config.write_cram_pbm(*osp, netpbm_banknum);
}
info("Done.\n");
return 0;
}