blob: f585fcf5b625f8ff36e9fa3740481b61a0937a03 [file] [log] [blame]
//
// Copyright (C) 2016 Clifford Wolf <clifford@clifford.at>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <stdint.h>
#include <sys/time.h>
#include <map>
#include <vector>
#include <string>
#include <fstream>
#include <iostream>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
using std::map;
using std::pair;
using std::vector;
using std::string;
using std::ifstream;
using std::getline;
uint64_t x;
uint64_t xorshift64star(void) {
x ^= x >> 12; // a
x ^= x << 25; // b
x ^= x >> 27; // c
return x * UINT64_C(2685821657736338717);
}
void push_back_bitvector(vector<vector<bool>> &hexfile, const vector<int> &digits)
{
if (digits.empty())
return;
hexfile.push_back(vector<bool>(digits.size() * 4));
for (int i = 0; i < int(digits.size()) * 4; i++)
if ((digits.at(digits.size() - i/4 -1) & (1 << (i%4))) != 0)
hexfile.back().at(i) = true;
}
void parse_hexfile_line(const char *filename, int linenr, vector<vector<bool>> &hexfile, string &line)
{
vector<int> digits;
for (char c : line) {
if ('0' <= c && c <= '9')
digits.push_back(c - '0');
else if ('a' <= c && c <= 'f')
digits.push_back(10 + c - 'a');
else if ('A' <= c && c <= 'F')
digits.push_back(10 + c - 'A');
else if ('x' == c || 'X' == c ||
'z' == c || 'Z' == c)
digits.push_back(0);
else if ('_' == c)
;
else if (' ' == c || '\t' == c || '\r' == c) {
push_back_bitvector(hexfile, digits);
digits.clear();
} else goto error;
}
push_back_bitvector(hexfile, digits);
return;
error:
fprintf(stderr, "Can't parse line %d of %s: %s\n", linenr, filename, line.c_str());
exit(1);
}
void help(const char *cmd)
{
printf("\n");
printf("Usage: %s [options] <from_hexfile> <to_hexfile>\n", cmd);
printf(" %s [options] -g [-s <seed>] <width> <depth>\n", cmd);
printf("\n");
printf("Replace BRAM initialization data in a .asc file. This can be used\n");
printf("for example to replace firmware images without re-running synthesis\n");
printf("and place&route.\n");
printf("\n");
printf(" -g\n");
printf(" generate a hex file with random contents.\n");
printf(" use this to generate the hex file used during synthesis, then\n");
printf(" use the same file as <from_hexfile> later.\n");
printf("\n");
printf(" -s <seed>\n");
printf(" seed random generator with fixed value.\n");
printf("\n");
printf(" -v\n");
printf(" verbose output\n");
printf("\n");
exit(1);
}
int main(int argc, char **argv)
{
#ifdef __EMSCRIPTEN__
EM_ASM(
if (ENVIRONMENT_IS_NODE)
{
FS.mkdir('/hostcwd');
FS.mount(NODEFS, { root: '.' }, '/hostcwd');
FS.mkdir('/hostfs');
FS.mount(NODEFS, { root: '/' }, '/hostfs');
}
);
#endif
bool verbose = false;
bool generate = false;
bool seed = false;
uint32_t seed_nr = getpid();
int opt;
while ((opt = getopt(argc, argv, "vgs:")) != -1)
{
switch (opt)
{
case 'v':
verbose = true;
break;
case 'g':
generate = true;
break;
case 's':
seed = true;
seed_nr = atoi(optarg);
break;
default:
help(argv[0]);
}
}
if (generate)
{
if (optind+2 != argc)
help(argv[0]);
int width = atoi(argv[optind]);
int depth = atoi(argv[optind+1]);
if (width <= 0 || width % 4 != 0) {
fprintf(stderr, "Hexfile width (%d bits) is not divisible by 4 or nonpositive!\n", width);
exit(1);
}
if (depth <= 0 || depth % 256 != 0) {
fprintf(stderr, "Hexfile number of words (%d) is not divisible by 256 or nonpositive!\n", depth);
exit(1);
}
if (verbose && seed)
fprintf(stderr, "Seed: %d\n", seed_nr);
x = uint64_t(seed_nr) << 32;
x ^= uint64_t(depth) << 16;
x ^= uint64_t(width) << 10;
xorshift64star();
xorshift64star();
xorshift64star();
if (!seed){
struct timeval tv;
gettimeofday(&tv, NULL);
x ^= uint64_t(tv.tv_sec) << 20;
x ^= uint64_t(tv.tv_usec);
}
else {
x ^= uint64_t(seed) << 20;
x ^= uint64_t(seed);
}
xorshift64star();
xorshift64star();
xorshift64star();
for (int i = 0; i < depth; i++) {
for (int j = 0; j < width / 4; j++) {
int digit = xorshift64star() & 15;
std::cout << "0123456789abcdef"[digit];
}
std::cout << std::endl;
}
exit(0);
}
if (optind+2 != argc)
help(argv[0]);
// -------------------------------------------------------
// Load from_hexfile and to_hexfile
const char *from_hexfile_n = argv[optind];
ifstream from_hexfile_f(from_hexfile_n);
vector<vector<bool>> from_hexfile;
const char *to_hexfile_n = argv[optind+1];
ifstream to_hexfile_f(to_hexfile_n);
vector<vector<bool>> to_hexfile;
string line;
for (int i = 1; getline(from_hexfile_f, line); i++)
parse_hexfile_line(from_hexfile_n, i, from_hexfile, line);
for (int i = 1; getline(to_hexfile_f, line); i++)
parse_hexfile_line(to_hexfile_n, i, to_hexfile, line);
if (to_hexfile.size() > 0 && from_hexfile.size() > to_hexfile.size()) {
if (verbose)
fprintf(stderr, "Padding to_hexfile from %d words to %d\n",
int(to_hexfile.size()), int(from_hexfile.size()));
do
to_hexfile.push_back(vector<bool>(to_hexfile.at(0).size()));
while (from_hexfile.size() > to_hexfile.size());
}
if (from_hexfile.size() != to_hexfile.size()) {
fprintf(stderr, "Hexfiles have different number of words! (%d vs. %d)\n", int(from_hexfile.size()), int(to_hexfile.size()));
exit(1);
}
if (from_hexfile.size() % 256 != 0) {
fprintf(stderr, "Hexfile number of words (%d) is not divisible by 256!\n", int(from_hexfile.size()));
exit(1);
}
for (size_t i = 1; i < from_hexfile.size(); i++)
if (from_hexfile.at(i-1).size() != from_hexfile.at(i).size()) {
fprintf(stderr, "Inconsistent word width at line %d of %s!\n", int(i), from_hexfile_n);
exit(1);
}
for (size_t i = 1; i < to_hexfile.size(); i++) {
while (to_hexfile.at(i-1).size() > to_hexfile.at(i).size())
to_hexfile.at(i).push_back(false);
if (to_hexfile.at(i-1).size() != to_hexfile.at(i).size()) {
fprintf(stderr, "Inconsistent word width at line %d of %s!\n", int(i+1), to_hexfile_n);
exit(1);
}
}
if (from_hexfile.size() == 0 || from_hexfile.at(0).size() == 0) {
fprintf(stderr, "Empty from/to hexfiles!\n");
exit(1);
}
if (verbose)
fprintf(stderr, "Loaded pattern for %d bits wide and %d words deep memory.\n", int(from_hexfile.at(0).size()), int(from_hexfile.size()));
// -------------------------------------------------------
// Create bitslices from pattern data
map<vector<bool>, pair<vector<bool>, int>> pattern;
for (int i = 0; i < int(from_hexfile.at(0).size()); i++)
{
vector<bool> pattern_from, pattern_to;
for (int j = 0; j < int(from_hexfile.size()); j++)
{
pattern_from.push_back(from_hexfile.at(j).at(i));
pattern_to.push_back(to_hexfile.at(j).at(i));
if (pattern_from.size() == 256) {
if (pattern.count(pattern_from)) {
fprintf(stderr, "Conflicting from pattern for bit slice from_hexfile[%d:%d][%d]!\n", j, j-255, i);
exit(1);
}
pattern[pattern_from] = std::make_pair(pattern_to, 0);
pattern_from.clear(), pattern_to.clear();
}
}
assert(pattern_from.empty());
assert(pattern_to.empty());
}
if (verbose)
fprintf(stderr, "Extracted %d bit slices from from/to hexfile data.\n", int(pattern.size()));
// -------------------------------------------------------
// Read ascfile from stdin
vector<string> ascfile_lines;
map<string, vector<vector<bool>>> ascfile_hexdata;
for (int i = 1; getline(std::cin, line); i++)
{
next_asc_stmt:
ascfile_lines.push_back(line);
if (line.substr(0, 9) == ".ram_data")
{
auto &hexdata = ascfile_hexdata[line];
for (; getline(std::cin, line); i++) {
if (line.substr(0, 1) == ".")
goto next_asc_stmt;
parse_hexfile_line("stdin", i, hexdata, line);
}
}
}
if (verbose)
fprintf(stderr, "Found %d initialized bram cells in asc file.\n", int(ascfile_hexdata.size()));
// -------------------------------------------------------
// Replace bram data
int max_replace_cnt = 0;
for (auto &bram_it : ascfile_hexdata)
{
auto &bram_data = bram_it.second;
for (int i = 0; i < 16; i++)
{
vector<bool> from_bitslice;
for (int j = 0; j < 256; j++)
from_bitslice.push_back(bram_data.at(j / 16).at(16 * (j % 16) + i));
auto p = pattern.find(from_bitslice);
if (p != pattern.end())
{
auto &to_bitslice = p->second.first;
for (int j = 0; j < 256; j++)
bram_data.at(j / 16).at(16 * (j % 16) + i) = to_bitslice.at(j);
max_replace_cnt = std::max(++p->second.second, max_replace_cnt);
}
}
}
int min_replace_cnt = max_replace_cnt;
for (auto &it : pattern)
min_replace_cnt = std::min(min_replace_cnt, it.second.second);
if (min_replace_cnt != max_replace_cnt) {
fprintf(stderr, "Found some bitslices up to %d times, others only %d times!\n", max_replace_cnt, min_replace_cnt);
exit(1);
}
if (verbose)
fprintf(stderr, "Found and replaced %d instances of the memory.\n", max_replace_cnt);
// -------------------------------------------------------
// Write ascfile to stdout
for (size_t i = 0; i < ascfile_lines.size(); i++) {
auto &line = ascfile_lines.at(i);
std::cout << line << std::endl;
if (ascfile_hexdata.count(line)) {
for (auto &word : ascfile_hexdata.at(line)) {
for (int k = word.size()-4; k >= 0; k -= 4) {
int digit = (word[k+3] ? 8 : 0) + (word[k+2] ? 4 : 0) + (word[k+1] ? 2 : 0) + (word[k] ? 1 : 0);
std::cout << "0123456789abcdef"[digit];
}
std::cout << std::endl;
}
}
}
return 0;
}