blob: 80d462f18ccd6e57c23da0fe9be4b855fcf54e88 [file] [log] [blame]
/*
* iceprog -- simple programming tool for FTDI-based Lattice iCE programmers
*
* Copyright (C) 2015 Clifford Wolf <clifford@clifford.at>
* Copyright (C) 2018 Piotr Esden-Tempski <piotr@esden.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Relevant Documents:
* -------------------
* http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
*/
#define _GNU_SOURCE
#include <ftdi.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include "mpsse.h"
// ---------------------------------------------------------
// MPSSE / FTDI definitions
// ---------------------------------------------------------
/* FTDI bank pinout typically used for iCE dev boards
* BUS IO | Signal | Control
* -------+--------+--------------
* xDBUS0 | SCK | MPSSE
* xDBUS1 | MOSI | MPSSE
* xDBUS2 | MISO | MPSSE
* xDBUS3 | nc |
* xDBUS4 | CS | GPIO
* xDBUS5 | nc |
* xDBUS6 | CDONE | GPIO
* xDBUS7 | CRESET | GPIO
*/
struct ftdi_context mpsse_ftdic;
bool mpsse_ftdic_open = false;
bool mpsse_ftdic_latency_set = false;
unsigned char mpsse_ftdi_latency;
/* MPSSE engine command definitions */
enum mpsse_cmd
{
/* Mode commands */
MC_SETB_LOW = 0x80, /* Set Data bits LowByte */
MC_READB_LOW = 0x81, /* Read Data bits LowByte */
MC_SETB_HIGH = 0x82, /* Set Data bits HighByte */
MC_READB_HIGH = 0x83, /* Read data bits HighByte */
MC_LOOPBACK_EN = 0x84, /* Enable loopback */
MC_LOOPBACK_DIS = 0x85, /* Disable loopback */
MC_SET_CLK_DIV = 0x86, /* Set clock divisor */
MC_FLUSH = 0x87, /* Flush buffer fifos to the PC. */
MC_WAIT_H = 0x88, /* Wait on GPIOL1 to go high. */
MC_WAIT_L = 0x89, /* Wait on GPIOL1 to go low. */
MC_TCK_X5 = 0x8A, /* Disable /5 div, enables 60MHz master clock */
MC_TCK_D5 = 0x8B, /* Enable /5 div, backward compat to FT2232D */
MC_EN_3PH_CLK = 0x8C, /* Enable 3 phase clk, DDR I2C */
MC_DIS_3PH_CLK = 0x8D, /* Disable 3 phase clk */
MC_CLK_N = 0x8E, /* Clock every bit, used for JTAG */
MC_CLK_N8 = 0x8F, /* Clock every byte, used for JTAG */
MC_CLK_TO_H = 0x94, /* Clock until GPIOL1 goes high */
MC_CLK_TO_L = 0x95, /* Clock until GPIOL1 goes low */
MC_EN_ADPT_CLK = 0x96, /* Enable adaptive clocking */
MC_DIS_ADPT_CLK = 0x97, /* Disable adaptive clocking */
MC_CLK8_TO_H = 0x9C, /* Clock until GPIOL1 goes high, count bytes */
MC_CLK8_TO_L = 0x9D, /* Clock until GPIOL1 goes low, count bytes */
MC_TRI = 0x9E, /* Set IO to only drive on 0 and tristate on 1 */
/* CPU mode commands */
MC_CPU_RS = 0x90, /* CPUMode read short address */
MC_CPU_RE = 0x91, /* CPUMode read extended address */
MC_CPU_WS = 0x92, /* CPUMode write short address */
MC_CPU_WE = 0x93, /* CPUMode write extended address */
};
/* Transfer Command bits */
/* All byte based commands consist of:
* - Command byte
* - Length lsb
* - Length msb
*
* If data out is enabled the data follows after the above command bytes,
* otherwise no additional data is needed.
* - Data * n
*
* All bit based commands consist of:
* - Command byte
* - Length
*
* If data out is enabled a byte containing bitst to transfer follows.
* Otherwise no additional data is needed. Only up to 8 bits can be transferred
* per transaction when in bit mode.
*/
/* b 0000 0000
* |||| |||`- Data out negative enable. Update DO on negative clock edge.
* |||| ||`-- Bit count enable. When reset count represents bytes.
* |||| |`--- Data in negative enable. Latch DI on negative clock edge.
* |||| `---- LSB enable. When set clock data out LSB first.
* ||||
* |||`------ Data out enable
* ||`------- Data in enable
* |`-------- TMS mode enable
* `--------- Special command mode enable. See mpsse_cmd enum.
*/
#define MC_DATA_TMS (0x40) /* When set use TMS mode */
#define MC_DATA_IN (0x20) /* When set read data (Data IN) */
#define MC_DATA_OUT (0x10) /* When set write data (Data OUT) */
#define MC_DATA_LSB (0x08) /* When set input/output data LSB first. */
#define MC_DATA_ICN (0x04) /* When set receive data on negative clock edge */
#define MC_DATA_BITS (0x02) /* When set count bits not bytes */
#define MC_DATA_OCN (0x01) /* When set update data on negative clock edge */
// ---------------------------------------------------------
// MPSSE / FTDI function implementations
// ---------------------------------------------------------
void mpsse_check_rx()
{
while (1) {
uint8_t data;
int rc = ftdi_read_data(&mpsse_ftdic, &data, 1);
if (rc <= 0)
break;
fprintf(stderr, "unexpected rx byte: %02X\n", data);
}
}
void mpsse_error(int status)
{
mpsse_check_rx();
fprintf(stderr, "ABORT.\n");
if (mpsse_ftdic_open) {
if (mpsse_ftdic_latency_set)
ftdi_set_latency_timer(&mpsse_ftdic, mpsse_ftdi_latency);
ftdi_usb_close(&mpsse_ftdic);
}
ftdi_deinit(&mpsse_ftdic);
exit(status);
}
uint8_t mpsse_recv_byte()
{
uint8_t data;
while (1) {
int rc = ftdi_read_data(&mpsse_ftdic, &data, 1);
if (rc < 0) {
fprintf(stderr, "Read error.\n");
mpsse_error(2);
}
if (rc == 1)
break;
usleep(100);
}
return data;
}
void mpsse_send_byte(uint8_t data)
{
int rc = ftdi_write_data(&mpsse_ftdic, &data, 1);
if (rc != 1) {
fprintf(stderr, "Write error (single byte, rc=%d, expected %d).\n", rc, 1);
mpsse_error(2);
}
}
void mpsse_send_spi(uint8_t *data, int n)
{
if (n < 1)
return;
/* Output only, update data on negative clock edge. */
mpsse_send_byte(MC_DATA_OUT | MC_DATA_OCN);
mpsse_send_byte(n - 1);
mpsse_send_byte((n - 1) >> 8);
int rc = ftdi_write_data(&mpsse_ftdic, data, n);
if (rc != n) {
fprintf(stderr, "Write error (chunk, rc=%d, expected %d).\n", rc, n);
mpsse_error(2);
}
}
void mpsse_xfer_spi(uint8_t *data, int n)
{
if (n < 1)
return;
/* Input and output, update data on negative edge read on positive. */
mpsse_send_byte(MC_DATA_IN | MC_DATA_OUT | MC_DATA_OCN);
mpsse_send_byte(n - 1);
mpsse_send_byte((n - 1) >> 8);
int rc = ftdi_write_data(&mpsse_ftdic, data, n);
if (rc != n) {
fprintf(stderr, "Write error (chunk, rc=%d, expected %d).\n", rc, n);
mpsse_error(2);
}
for (int i = 0; i < n; i++)
data[i] = mpsse_recv_byte();
}
uint8_t mpsse_xfer_spi_bits(uint8_t data, int n)
{
if (n < 1)
return 0;
/* Input and output, update data on negative edge read on positive, bits. */
mpsse_send_byte(MC_DATA_IN | MC_DATA_OUT | MC_DATA_OCN | MC_DATA_BITS);
mpsse_send_byte(n - 1);
mpsse_send_byte(data);
return mpsse_recv_byte();
}
void mpsse_set_gpio(uint8_t gpio, uint8_t direction)
{
mpsse_send_byte(MC_SETB_LOW);
mpsse_send_byte(gpio); /* Value */
mpsse_send_byte(direction); /* Direction */
}
int mpsse_readb_low(void)
{
uint8_t data;
mpsse_send_byte(MC_READB_LOW);
data = mpsse_recv_byte();
return data;
}
int mpsse_readb_high(void)
{
uint8_t data;
mpsse_send_byte(MC_READB_HIGH);
data = mpsse_recv_byte();
return data;
}
void mpsse_send_dummy_bytes(uint8_t n)
{
// add 8 x count dummy bits (aka n bytes)
mpsse_send_byte(MC_CLK_N8);
mpsse_send_byte(n - 1);
mpsse_send_byte(0x00);
}
void mpsse_send_dummy_bit(void)
{
// add 1 dummy bit
mpsse_send_byte(MC_CLK_N);
mpsse_send_byte(0x00);
}
void mpsse_init(int ifnum, const char *devstr, bool slow_clock)
{
enum ftdi_interface ftdi_ifnum = INTERFACE_A;
switch (ifnum) {
case 0:
ftdi_ifnum = INTERFACE_A;
break;
case 1:
ftdi_ifnum = INTERFACE_B;
break;
case 2:
ftdi_ifnum = INTERFACE_C;
break;
case 3:
ftdi_ifnum = INTERFACE_D;
break;
default:
ftdi_ifnum = INTERFACE_A;
break;
}
ftdi_init(&mpsse_ftdic);
ftdi_set_interface(&mpsse_ftdic, ftdi_ifnum);
if (devstr != NULL) {
if (ftdi_usb_open_string(&mpsse_ftdic, devstr)) {
fprintf(stderr, "Can't find iCE FTDI USB device (device string %s).\n", devstr);
mpsse_error(2);
}
} else {
if (ftdi_usb_open(&mpsse_ftdic, 0x0403, 0x6010) && ftdi_usb_open(&mpsse_ftdic, 0x0403, 0x6014)) {
fprintf(stderr, "Can't find iCE FTDI USB device (vendor_id 0x0403, device_id 0x6010 or 0x6014).\n");
mpsse_error(2);
}
}
mpsse_ftdic_open = true;
if (ftdi_usb_reset(&mpsse_ftdic)) {
fprintf(stderr, "Failed to reset iCE FTDI USB device.\n");
mpsse_error(2);
}
if (ftdi_usb_purge_buffers(&mpsse_ftdic)) {
fprintf(stderr, "Failed to purge buffers on iCE FTDI USB device.\n");
mpsse_error(2);
}
if (ftdi_get_latency_timer(&mpsse_ftdic, &mpsse_ftdi_latency) < 0) {
fprintf(stderr, "Failed to get latency timer (%s).\n", ftdi_get_error_string(&mpsse_ftdic));
mpsse_error(2);
}
/* 1 is the fastest polling, it means 1 kHz polling */
if (ftdi_set_latency_timer(&mpsse_ftdic, 1) < 0) {
fprintf(stderr, "Failed to set latency timer (%s).\n", ftdi_get_error_string(&mpsse_ftdic));
mpsse_error(2);
}
mpsse_ftdic_latency_set = true;
/* Enter MPSSE (Multi-Protocol Synchronous Serial Engine) mode. Set all pins to output. */
if (ftdi_set_bitmode(&mpsse_ftdic, 0xff, BITMODE_MPSSE) < 0) {
fprintf(stderr, "Failed to set BITMODE_MPSSE on iCE FTDI USB device.\n");
mpsse_error(2);
}
// enable clock divide by 5
mpsse_send_byte(MC_TCK_D5);
if (slow_clock) {
// set 50 kHz clock
mpsse_send_byte(MC_SET_CLK_DIV);
mpsse_send_byte(119);
mpsse_send_byte(0x00);
} else {
// set 6 MHz clock
mpsse_send_byte(MC_SET_CLK_DIV);
mpsse_send_byte(0x00);
mpsse_send_byte(0x00);
}
}
void mpsse_close(void)
{
ftdi_set_latency_timer(&mpsse_ftdic, mpsse_ftdi_latency);
ftdi_disable_bitbang(&mpsse_ftdic);
ftdi_usb_close(&mpsse_ftdic);
ftdi_deinit(&mpsse_ftdic);
}