| /* |
| * nextpnr -- Next Generation Place and Route |
| * |
| * Copyright (C) 2018 David Shah <david@symbioticeda.com> |
| * Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "timing.h" |
| #include <algorithm> |
| #include <boost/range/adaptor/reversed.hpp> |
| #include <deque> |
| #include <unordered_map> |
| #include <utility> |
| #include "log.h" |
| #include "util.h" |
| |
| NEXTPNR_NAMESPACE_BEGIN |
| |
| typedef std::vector<const PortRef *> PortRefVector; |
| typedef std::map<int, unsigned> DelayFrequency; |
| |
| struct Timing |
| { |
| Context *ctx; |
| bool net_delays; |
| bool update; |
| delay_t min_slack; |
| PortRefVector *crit_path; |
| DelayFrequency *slack_histogram; |
| |
| struct TimingData |
| { |
| TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {} |
| TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {} |
| delay_t max_arrival; |
| unsigned max_path_length = 0; |
| delay_t min_remaining_budget; |
| }; |
| |
| Timing(Context *ctx, bool net_delays, bool update, PortRefVector *crit_path = nullptr, |
| DelayFrequency *slack_histogram = nullptr) |
| : ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq), |
| crit_path(crit_path), slack_histogram(slack_histogram) |
| { |
| } |
| |
| delay_t walk_paths() |
| { |
| const auto clk_period = delay_t(1.0e12 / ctx->target_freq); |
| |
| // First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph |
| // TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops |
| std::vector<NetInfo *> topographical_order; |
| std::unordered_map<const NetInfo *, TimingData> net_data; |
| // In lieu of deleting edges from the graph, simply count the number of fanins to each output port |
| std::unordered_map<const PortInfo *, unsigned> port_fanin; |
| |
| std::vector<IdString> input_ports; |
| std::vector<const PortInfo *> output_ports; |
| for (auto &cell : ctx->cells) { |
| input_ports.clear(); |
| output_ports.clear(); |
| for (auto &port : cell.second->ports) { |
| if (!port.second.net) |
| continue; |
| if (port.second.type == PORT_OUT) |
| output_ports.push_back(&port.second); |
| else |
| input_ports.push_back(port.first); |
| } |
| |
| for (auto o : output_ports) { |
| IdString clockPort; |
| TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clockPort); |
| // If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing |
| // start-point |
| if (portClass == TMG_REGISTER_OUTPUT) { |
| DelayInfo clkToQ; |
| ctx->getCellDelay(cell.second.get(), clockPort, o->name, clkToQ); |
| topographical_order.emplace_back(o->net); |
| net_data.emplace(o->net, TimingData{clkToQ.maxDelay()}); |
| } else { |
| // TODO(eddieh): Generated clocks and ignored ports are currently added into the ordering as if it |
| // was a regular timing start point in order to enable the full topographical order to be computed, |
| // however these false nets (and their downstream paths) should not be in the final ordering |
| if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) { |
| topographical_order.emplace_back(o->net); |
| net_data.emplace(o->net, TimingData{}); |
| } |
| // Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and |
| // the current output port, increment fanin counter |
| for (auto i : input_ports) { |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay); |
| if (is_path) |
| port_fanin[o]++; |
| } |
| } |
| } |
| } |
| |
| // If these constant nets exist, add them to the topographical ordering too |
| // TODO(eddieh): Also false paths and should be removed from ordering |
| auto it = ctx->nets.find(ctx->id("$PACKER_VCC_NET")); |
| if (it != ctx->nets.end()) { |
| topographical_order.emplace_back(it->second.get()); |
| net_data.emplace(it->second.get(), TimingData{}); |
| } |
| it = ctx->nets.find(ctx->id("$PACKER_GND_NET")); |
| if (it != ctx->nets.end()) { |
| topographical_order.emplace_back(it->second.get()); |
| net_data.emplace(it->second.get(), TimingData{}); |
| } |
| |
| std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end()); |
| |
| // Now walk the design, from the start points identified previously, building up a topographical order |
| while (!queue.empty()) { |
| const auto net = queue.front(); |
| queue.pop_front(); |
| |
| for (auto &usr : net->users) { |
| IdString clockPort; |
| TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort); |
| if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT) |
| continue; |
| for (auto &port : usr.cell->ports) { |
| if (port.second.type != PORT_OUT || !port.second.net) |
| continue; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, clockPort); |
| |
| // Skip if this is a clocked output (but allow non-clocked ones) |
| if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE || |
| portClass == TMG_GEN_CLOCK) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); |
| if (!is_path) |
| continue; |
| // Decrement the fanin count, and only add to topographical order if all its fanins have already |
| // been visited |
| auto it = port_fanin.find(&port.second); |
| NPNR_ASSERT(it != port_fanin.end()); |
| if (--it->second == 0) { |
| topographical_order.emplace_back(port.second.net); |
| queue.emplace_back(port.second.net); |
| port_fanin.erase(it); |
| } |
| } |
| } |
| } |
| |
| // Sanity check to ensure that all ports where fanins were recorded were indeed visited |
| NPNR_ASSERT(port_fanin.empty()); |
| |
| // Go forwards topographically to find the maximum arrival time and max path length for each net |
| for (auto net : topographical_order) { |
| auto &nd = net_data.at(net); |
| const auto net_arrival = nd.max_arrival; |
| const auto net_length_plus_one = nd.max_path_length + 1; |
| nd.min_remaining_budget = clk_period; |
| for (auto &usr : net->users) { |
| IdString clockPort; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort); |
| if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) { |
| } else { |
| auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); |
| auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); |
| auto usr_arrival = net_arrival + net_delay; |
| // Iterate over all output ports on the same cell as the sink |
| for (auto port : usr.cell->ports) { |
| if (port.second.type != PORT_OUT || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| // Look up delay through this path |
| bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); |
| if (!is_path) |
| continue; |
| auto &data = net_data[port.second.net]; |
| auto &arrival = data.max_arrival; |
| arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay()); |
| if (!budget_override) { // Do not increment path length if budget overriden since it doesn't |
| // require a share of the slack |
| auto &path_length = data.max_path_length; |
| path_length = std::max(path_length, net_length_plus_one); |
| } |
| } |
| } |
| } |
| } |
| |
| const NetInfo *crit_net = nullptr; |
| |
| // Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly |
| // between all nets on the path |
| for (auto net : boost::adaptors::reverse(topographical_order)) { |
| auto &nd = net_data.at(net); |
| const delay_t net_length_plus_one = nd.max_path_length + 1; |
| auto &net_min_remaining_budget = nd.min_remaining_budget; |
| for (auto &usr : net->users) { |
| auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); |
| auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); |
| IdString associatedClock; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, associatedClock); |
| if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) { |
| const auto net_arrival = nd.max_arrival; |
| auto path_budget = clk_period - (net_arrival + net_delay); |
| if (update) { |
| auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; |
| usr.budget = std::min(usr.budget, net_delay + budget_share); |
| net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share); |
| } |
| |
| if (path_budget < min_slack) { |
| min_slack = path_budget; |
| if (crit_path) { |
| crit_path->clear(); |
| crit_path->push_back(&usr); |
| crit_net = net; |
| } |
| } |
| if (slack_histogram) { |
| int slack_ps = ctx->getDelayNS(path_budget) * 1000; |
| (*slack_histogram)[slack_ps]++; |
| } |
| } else if (update) { |
| // Iterate over all output ports on the same cell as the sink |
| for (const auto &port : usr.cell->ports) { |
| if (port.second.type != PORT_OUT || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); |
| if (!is_path) |
| continue; |
| auto path_budget = net_data.at(port.second.net).min_remaining_budget; |
| auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; |
| usr.budget = std::min(usr.budget, net_delay + budget_share); |
| net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share); |
| } |
| } |
| } |
| } |
| |
| if (crit_path) { |
| // Walk backwards from the most critical net |
| while (crit_net) { |
| const PortInfo *crit_ipin = nullptr; |
| delay_t max_arrival = std::numeric_limits<delay_t>::min(); |
| |
| // Look at all input ports on its driving cell |
| for (const auto &port : crit_net->driver.cell->ports) { |
| if (port.second.type != PORT_IN || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = |
| ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay); |
| if (!is_path) |
| continue; |
| // If input port is influenced by a clock, skip |
| IdString portClock; |
| TimingPortClass portClass = ctx->getPortTimingClass(crit_net->driver.cell, port.first, portClock); |
| if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || |
| portClass == TMG_IGNORE) |
| continue; |
| |
| // And find the fanin net with the latest arrival time |
| const auto net_arrival = net_data.at(port.second.net).max_arrival; |
| if (net_arrival > max_arrival) { |
| max_arrival = net_arrival; |
| crit_ipin = &port.second; |
| } |
| } |
| |
| if (!crit_ipin) |
| break; |
| |
| // Now convert PortInfo* into a PortRef* |
| for (auto &usr : crit_ipin->net->users) { |
| if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) { |
| crit_path->push_back(&usr); |
| break; |
| } |
| } |
| crit_net = crit_ipin->net; |
| } |
| std::reverse(crit_path->begin(), crit_path->end()); |
| } |
| return min_slack; |
| } |
| |
| void assign_budget() |
| { |
| // Clear delays to a very high value first |
| for (auto &net : ctx->nets) { |
| for (auto &usr : net.second->users) { |
| usr.budget = std::numeric_limits<delay_t>::max(); |
| } |
| } |
| |
| walk_paths(); |
| } |
| }; |
| |
| void assign_budget(Context *ctx, bool quiet) |
| { |
| if (!quiet) { |
| log_break(); |
| log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6); |
| } |
| |
| Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */); |
| timing.assign_budget(); |
| |
| if (!quiet || ctx->verbose) { |
| for (auto &net : ctx->nets) { |
| for (auto &user : net.second->users) { |
| // Post-update check |
| if (!ctx->auto_freq && user.budget < 0) |
| log_warning("port %s.%s, connected to net '%s', has negative " |
| "timing budget of %fns\n", |
| user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx), |
| ctx->getDelayNS(user.budget)); |
| else if (ctx->verbose) |
| log_info("port %s.%s, connected to net '%s', has " |
| "timing budget of %fns\n", |
| user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx), |
| ctx->getDelayNS(user.budget)); |
| } |
| } |
| } |
| |
| // For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the |
| // currently achieved maximum |
| if (ctx->auto_freq && ctx->slack_redist_iter > 0) { |
| delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq); |
| ctx->target_freq = 1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack); |
| if (ctx->verbose) |
| log_info("minimum slack for this assign = %.2f ns, target Fmax for next " |
| "update = %.2f MHz\n", |
| ctx->getDelayNS(timing.min_slack), ctx->target_freq / 1e6); |
| } |
| |
| if (!quiet) |
| log_info("Checksum: 0x%08x\n", ctx->checksum()); |
| } |
| |
| void timing_analysis(Context *ctx, bool print_histogram, bool print_path) |
| { |
| PortRefVector crit_path; |
| DelayFrequency slack_histogram; |
| |
| Timing timing(ctx, true /* net_delays */, false /* update */, print_path ? &crit_path : nullptr, |
| print_histogram ? &slack_histogram : nullptr); |
| auto min_slack = timing.walk_paths(); |
| |
| if (print_path) { |
| if (crit_path.empty()) { |
| log_info("Design contains no timing paths\n"); |
| } else { |
| delay_t total = 0; |
| log_break(); |
| log_info("Critical path report:\n"); |
| log_info("curr total\n"); |
| |
| auto &front = crit_path.front(); |
| auto &front_port = front->cell->ports.at(front->port); |
| auto &front_driver = front_port.net->driver; |
| |
| IdString last_port; |
| ctx->getPortTimingClass(front_driver.cell, front_driver.port, last_port); |
| for (auto sink : crit_path) { |
| auto sink_cell = sink->cell; |
| auto &port = sink_cell->ports.at(sink->port); |
| auto net = port.net; |
| auto &driver = net->driver; |
| auto driver_cell = driver.cell; |
| DelayInfo comb_delay; |
| ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay); |
| total += comb_delay.maxDelay(); |
| log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total), |
| driver_cell->name.c_str(ctx), driver.port.c_str(ctx)); |
| auto net_delay = ctx->getNetinfoRouteDelay(net, *sink); |
| total += net_delay; |
| auto driver_loc = ctx->getBelLocation(driver_cell->bel); |
| auto sink_loc = ctx->getBelLocation(sink_cell->bel); |
| log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay), |
| ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x, |
| driver_loc.y, sink_loc.x, sink_loc.y); |
| log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx)); |
| last_port = sink->port; |
| } |
| log_break(); |
| } |
| } |
| |
| delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq); |
| log_info("estimated Fmax = %.2f MHz\n", 1e3 / ctx->getDelayNS(default_slack - min_slack)); |
| |
| if (print_histogram && slack_histogram.size() > 0) { |
| constexpr unsigned num_bins = 20; |
| unsigned bar_width = 60; |
| auto min_slack = slack_histogram.begin()->first; |
| auto max_slack = slack_histogram.rbegin()->first; |
| auto bin_size = (max_slack - min_slack) / num_bins; |
| std::vector<unsigned> bins(num_bins + 1); |
| unsigned max_freq = 0; |
| for (const auto &i : slack_histogram) { |
| auto &bin = bins[(i.first - min_slack) / bin_size]; |
| bin += i.second; |
| max_freq = std::max(max_freq, bin); |
| } |
| bar_width = std::min(bar_width, max_freq); |
| |
| log_break(); |
| log_info("Slack histogram:\n"); |
| log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width); |
| log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width); |
| for (unsigned i = 0; i < bins.size(); ++i) |
| log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1), |
| std::string(bins[i] * bar_width / max_freq, '*').c_str(), |
| (bins[i] * bar_width) % max_freq > 0 ? '+' : ' '); |
| } |
| } |
| |
| NEXTPNR_NAMESPACE_END |