| /* |
| * nextpnr -- Next Generation Place and Route |
| * |
| * Copyright (C) 2018 David Shah <david@symbioticeda.com> |
| * Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "timing.h" |
| #include <algorithm> |
| #include <boost/range/adaptor/reversed.hpp> |
| #include <deque> |
| #include <map> |
| #include <unordered_map> |
| #include <utility> |
| #include "log.h" |
| #include "util.h" |
| |
| NEXTPNR_NAMESPACE_BEGIN |
| |
| namespace { |
| struct ClockEvent |
| { |
| IdString clock; |
| ClockEdge edge; |
| |
| bool operator==(const ClockEvent &other) const { return clock == other.clock && edge == other.edge; } |
| }; |
| |
| struct ClockPair |
| { |
| ClockEvent start, end; |
| |
| bool operator==(const ClockPair &other) const { return start == other.start && end == other.end; } |
| }; |
| } // namespace |
| |
| NEXTPNR_NAMESPACE_END |
| namespace std { |
| |
| template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent> |
| { |
| std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockEvent &obj) const noexcept |
| { |
| std::size_t seed = 0; |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(obj.clock)); |
| boost::hash_combine(seed, hash<int>()(int(obj.edge))); |
| return seed; |
| } |
| }; |
| |
| template <> struct hash<NEXTPNR_NAMESPACE_PREFIX ClockPair> |
| { |
| std::size_t operator()(const NEXTPNR_NAMESPACE_PREFIX ClockPair &obj) const noexcept |
| { |
| std::size_t seed = 0; |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start)); |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX ClockEvent>()(obj.start)); |
| return seed; |
| } |
| }; |
| |
| } // namespace std |
| NEXTPNR_NAMESPACE_BEGIN |
| |
| typedef std::vector<const PortRef *> PortRefVector; |
| typedef std::map<int, unsigned> DelayFrequency; |
| |
| struct CriticalPath |
| { |
| PortRefVector ports; |
| delay_t path_delay; |
| delay_t path_period; |
| }; |
| |
| typedef std::unordered_map<ClockPair, CriticalPath> CriticalPathMap; |
| typedef std::unordered_map<IdString, NetCriticalityInfo> NetCriticalityMap; |
| |
| struct Timing |
| { |
| Context *ctx; |
| bool net_delays; |
| bool update; |
| delay_t min_slack; |
| CriticalPathMap *crit_path; |
| DelayFrequency *slack_histogram; |
| NetCriticalityMap *net_crit; |
| IdString async_clock; |
| |
| struct TimingData |
| { |
| TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {} |
| TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {} |
| delay_t max_arrival; |
| unsigned max_path_length = 0; |
| delay_t min_remaining_budget; |
| bool false_startpoint = false; |
| std::vector<delay_t> min_required; |
| std::unordered_map<ClockEvent, delay_t> arrival_time; |
| }; |
| |
| Timing(Context *ctx, bool net_delays, bool update, CriticalPathMap *crit_path = nullptr, |
| DelayFrequency *slack_histogram = nullptr, NetCriticalityMap *net_crit = nullptr) |
| : ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->setting<float>("target_freq")), |
| crit_path(crit_path), slack_histogram(slack_histogram), net_crit(net_crit), |
| async_clock(ctx->id("$async$")) |
| { |
| } |
| |
| delay_t walk_paths() |
| { |
| const auto clk_period = ctx->getDelayFromNS(1.0e9 / ctx->setting<float>("target_freq")).maxDelay(); |
| |
| // First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph |
| // TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops |
| std::vector<NetInfo *> topographical_order; |
| std::unordered_map<const NetInfo *, std::unordered_map<ClockEvent, TimingData>> net_data; |
| // In lieu of deleting edges from the graph, simply count the number of fanins to each output port |
| std::unordered_map<const PortInfo *, unsigned> port_fanin; |
| |
| std::vector<IdString> input_ports; |
| std::vector<const PortInfo *> output_ports; |
| for (auto &cell : ctx->cells) { |
| input_ports.clear(); |
| output_ports.clear(); |
| for (auto &port : cell.second->ports) { |
| if (!port.second.net) |
| continue; |
| if (port.second.type == PORT_OUT) |
| output_ports.push_back(&port.second); |
| else |
| input_ports.push_back(port.first); |
| } |
| |
| for (auto o : output_ports) { |
| int clocks = 0; |
| TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clocks); |
| // If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing |
| // start-point |
| if (portClass == TMG_REGISTER_OUTPUT) { |
| topographical_order.emplace_back(o->net); |
| for (int i = 0; i < clocks; i++) { |
| TimingClockingInfo clkInfo = ctx->getPortClockingInfo(cell.second.get(), o->name, i); |
| const NetInfo *clknet = get_net_or_empty(cell.second.get(), clkInfo.clock_port); |
| IdString clksig = clknet ? clknet->name : async_clock; |
| net_data[o->net][ClockEvent{clksig, clknet ? clkInfo.edge : RISING_EDGE}] = |
| TimingData{clkInfo.clockToQ.maxDelay()}; |
| } |
| |
| } else { |
| if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) { |
| topographical_order.emplace_back(o->net); |
| TimingData td; |
| td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE); |
| td.max_arrival = 0; |
| net_data[o->net][ClockEvent{async_clock, RISING_EDGE}] = td; |
| } |
| |
| // Don't analyse paths from a clock input to other pins - they will be considered by the |
| // special-case handling register input/output class ports |
| if (portClass == TMG_CLOCK_INPUT) |
| continue; |
| |
| // Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and |
| // the current output port, increment fanin counter |
| for (auto i : input_ports) { |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay); |
| if (is_path) |
| port_fanin[o]++; |
| } |
| } |
| } |
| } |
| |
| // In out-of-context mode, handle top-level ports correctly |
| if (bool_or_default(ctx->settings, ctx->id("arch.ooc"))) { |
| for (auto &p : ctx->ports) { |
| if (p.second.type != PORT_IN || p.second.net == nullptr) |
| continue; |
| topographical_order.emplace_back(p.second.net); |
| } |
| } |
| |
| std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end()); |
| // Now walk the design, from the start points identified previously, building up a topographical order |
| while (!queue.empty()) { |
| const auto net = queue.front(); |
| queue.pop_front(); |
| |
| for (auto &usr : net->users) { |
| int user_clocks; |
| TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, user_clocks); |
| if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT) |
| continue; |
| for (auto &port : usr.cell->ports) { |
| if (port.second.type != PORT_OUT || !port.second.net) |
| continue; |
| int port_clocks; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, port_clocks); |
| |
| // Skip if this is a clocked output (but allow non-clocked ones) |
| if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE || |
| portClass == TMG_GEN_CLOCK) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); |
| if (!is_path) |
| continue; |
| // Decrement the fanin count, and only add to topographical order if all its fanins have already |
| // been visited |
| auto it = port_fanin.find(&port.second); |
| NPNR_ASSERT(it != port_fanin.end()); |
| if (--it->second == 0) { |
| topographical_order.emplace_back(port.second.net); |
| queue.emplace_back(port.second.net); |
| port_fanin.erase(it); |
| } |
| } |
| } |
| } |
| |
| // Sanity check to ensure that all ports where fanins were recorded were indeed visited |
| if (!port_fanin.empty() && !bool_or_default(ctx->settings, ctx->id("timing/ignoreLoops"), false)) { |
| for (auto fanin : port_fanin) { |
| NetInfo *net = fanin.first->net; |
| if (net != nullptr) { |
| log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx), |
| net->name.c_str(ctx)); |
| if (net->driver.cell != nullptr) |
| log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx), |
| net->driver.port.c_str(ctx)); |
| for (auto net_user : net->users) |
| log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx)); |
| } else { |
| log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx)); |
| } |
| } |
| if (ctx->force) |
| log_warning("timing analysis failed due to presence of combinatorial loops, incomplete specification " |
| "of timing ports, etc.\n"); |
| else |
| log_error("timing analysis failed due to presence of combinatorial loops, incomplete specification of " |
| "timing ports, etc.\n"); |
| } |
| |
| // Go forwards topographically to find the maximum arrival time and max path length for each net |
| for (auto net : topographical_order) { |
| if (!net_data.count(net)) |
| continue; |
| auto &nd_map = net_data.at(net); |
| for (auto &startdomain : nd_map) { |
| ClockEvent start_clk = startdomain.first; |
| auto &nd = startdomain.second; |
| if (nd.false_startpoint) |
| continue; |
| const auto net_arrival = nd.max_arrival; |
| const auto net_length_plus_one = nd.max_path_length + 1; |
| nd.min_remaining_budget = clk_period; |
| for (auto &usr : net->users) { |
| int port_clocks; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks); |
| auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); |
| auto usr_arrival = net_arrival + net_delay; |
| |
| if (portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || portClass == TMG_CLOCK_INPUT) { |
| // Skip |
| } else { |
| auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); |
| // Iterate over all output ports on the same cell as the sink |
| for (auto port : usr.cell->ports) { |
| if (port.second.type != PORT_OUT || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| // Look up delay through this path |
| bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); |
| if (!is_path) |
| continue; |
| auto &data = net_data[port.second.net][start_clk]; |
| auto &arrival = data.max_arrival; |
| arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay()); |
| if (!budget_override) { // Do not increment path length if budget overriden since it doesn't |
| // require a share of the slack |
| auto &path_length = data.max_path_length; |
| path_length = std::max(path_length, net_length_plus_one); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| std::unordered_map<ClockPair, std::pair<delay_t, NetInfo *>> crit_nets; |
| |
| // Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly |
| // between all nets on the path |
| for (auto net : boost::adaptors::reverse(topographical_order)) { |
| if (!net_data.count(net)) |
| continue; |
| auto &nd_map = net_data.at(net); |
| for (auto &startdomain : nd_map) { |
| auto &nd = startdomain.second; |
| // Ignore false startpoints |
| if (nd.false_startpoint) |
| continue; |
| const delay_t net_length_plus_one = nd.max_path_length + 1; |
| auto &net_min_remaining_budget = nd.min_remaining_budget; |
| for (auto &usr : net->users) { |
| auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t(); |
| auto budget_override = ctx->getBudgetOverride(net, usr, net_delay); |
| int port_clocks; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks); |
| if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) { |
| auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) { |
| const auto net_arrival = nd.max_arrival; |
| const auto endpoint_arrival = net_arrival + net_delay + setup; |
| delay_t period; |
| // Set default period |
| if (edge == startdomain.first.edge) { |
| period = clk_period; |
| } else { |
| period = clk_period / 2; |
| } |
| if (clksig != async_clock) { |
| if (ctx->nets.at(clksig)->clkconstr) { |
| if (edge == startdomain.first.edge) { |
| // same edge |
| period = ctx->nets.at(clksig)->clkconstr->period.minDelay(); |
| } else if (edge == RISING_EDGE) { |
| // falling -> rising |
| period = ctx->nets.at(clksig)->clkconstr->low.minDelay(); |
| } else if (edge == FALLING_EDGE) { |
| // rising -> falling |
| period = ctx->nets.at(clksig)->clkconstr->high.minDelay(); |
| } |
| } |
| } |
| auto path_budget = period - endpoint_arrival; |
| |
| if (update) { |
| auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; |
| usr.budget = std::min(usr.budget, net_delay + budget_share); |
| net_min_remaining_budget = |
| std::min(net_min_remaining_budget, path_budget - budget_share); |
| } |
| |
| if (path_budget < min_slack) |
| min_slack = path_budget; |
| |
| if (slack_histogram) { |
| int slack_ps = ctx->getDelayNS(path_budget) * 1000; |
| (*slack_histogram)[slack_ps]++; |
| } |
| ClockEvent dest_ev{clksig, edge}; |
| ClockPair clockPair{startdomain.first, dest_ev}; |
| nd.arrival_time[dest_ev] = std::max(nd.arrival_time[dest_ev], endpoint_arrival); |
| |
| if (crit_path) { |
| if (!crit_nets.count(clockPair) || crit_nets.at(clockPair).first < endpoint_arrival) { |
| crit_nets[clockPair] = std::make_pair(endpoint_arrival, net); |
| (*crit_path)[clockPair].path_delay = endpoint_arrival; |
| (*crit_path)[clockPair].path_period = period; |
| (*crit_path)[clockPair].ports.clear(); |
| (*crit_path)[clockPair].ports.push_back(&usr); |
| } |
| } |
| }; |
| if (portClass == TMG_REGISTER_INPUT) { |
| for (int i = 0; i < port_clocks; i++) { |
| TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, i); |
| const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port); |
| IdString clksig = clknet ? clknet->name : async_clock; |
| process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, clkInfo.setup.maxDelay()); |
| } |
| } else { |
| process_endpoint(async_clock, RISING_EDGE, 0); |
| } |
| |
| } else if (update) { |
| |
| // Iterate over all output ports on the same cell as the sink |
| for (const auto &port : usr.cell->ports) { |
| if (port.second.type != PORT_OUT || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay); |
| if (!is_path) |
| continue; |
| if (net_data.count(port.second.net) && |
| net_data.at(port.second.net).count(startdomain.first)) { |
| auto path_budget = |
| net_data.at(port.second.net).at(startdomain.first).min_remaining_budget; |
| auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one; |
| usr.budget = std::min(usr.budget, net_delay + budget_share); |
| net_min_remaining_budget = |
| std::min(net_min_remaining_budget, path_budget - budget_share); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (crit_path) { |
| // Walk backwards from the most critical net |
| for (auto crit_pair : crit_nets) { |
| NetInfo *crit_net = crit_pair.second.second; |
| auto &cp_ports = (*crit_path)[crit_pair.first].ports; |
| while (crit_net) { |
| const PortInfo *crit_ipin = nullptr; |
| delay_t max_arrival = std::numeric_limits<delay_t>::min(); |
| // Look at all input ports on its driving cell |
| for (const auto &port : crit_net->driver.cell->ports) { |
| if (port.second.type != PORT_IN || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = |
| ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay); |
| if (!is_path) |
| continue; |
| // If input port is influenced by a clock, skip |
| int port_clocks; |
| TimingPortClass portClass = |
| ctx->getPortTimingClass(crit_net->driver.cell, port.first, port_clocks); |
| if (portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE || |
| portClass == TMG_REGISTER_INPUT) |
| continue; |
| // And find the fanin net with the latest arrival time |
| if (net_data.count(port.second.net) && |
| net_data.at(port.second.net).count(crit_pair.first.start)) { |
| auto net_arrival = net_data.at(port.second.net).at(crit_pair.first.start).max_arrival; |
| if (net_delays) { |
| for (auto &user : port.second.net->users) |
| if (user.port == port.first && user.cell == crit_net->driver.cell) { |
| net_arrival += ctx->getNetinfoRouteDelay(port.second.net, user); |
| break; |
| } |
| } |
| net_arrival += comb_delay.maxDelay(); |
| if (net_arrival > max_arrival) { |
| max_arrival = net_arrival; |
| crit_ipin = &port.second; |
| } |
| } |
| } |
| |
| if (!crit_ipin) |
| break; |
| // Now convert PortInfo* into a PortRef* |
| for (auto &usr : crit_ipin->net->users) { |
| if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) { |
| cp_ports.push_back(&usr); |
| break; |
| } |
| } |
| crit_net = crit_ipin->net; |
| } |
| std::reverse(cp_ports.begin(), cp_ports.end()); |
| } |
| } |
| |
| if (net_crit) { |
| NPNR_ASSERT(crit_path); |
| // Go through in reverse topographical order to set required times |
| for (auto net : boost::adaptors::reverse(topographical_order)) { |
| if (!net_data.count(net)) |
| continue; |
| auto &nd_map = net_data.at(net); |
| for (auto &startdomain : nd_map) { |
| auto &nd = startdomain.second; |
| if (nd.false_startpoint) |
| continue; |
| if (startdomain.first.clock == async_clock) |
| continue; |
| if (nd.min_required.empty()) |
| nd.min_required.resize(net->users.size(), std::numeric_limits<delay_t>::max()); |
| delay_t net_min_required = std::numeric_limits<delay_t>::max(); |
| for (size_t i = 0; i < net->users.size(); i++) { |
| auto &usr = net->users.at(i); |
| auto net_delay = ctx->getNetinfoRouteDelay(net, usr); |
| int port_clocks; |
| TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, port_clocks); |
| if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) { |
| auto process_endpoint = [&](IdString clksig, ClockEdge edge, delay_t setup) { |
| delay_t period; |
| // Set default period |
| if (edge == startdomain.first.edge) { |
| period = clk_period; |
| } else { |
| period = clk_period / 2; |
| } |
| if (clksig != async_clock) { |
| if (ctx->nets.at(clksig)->clkconstr) { |
| if (edge == startdomain.first.edge) { |
| // same edge |
| period = ctx->nets.at(clksig)->clkconstr->period.minDelay(); |
| } else if (edge == RISING_EDGE) { |
| // falling -> rising |
| period = ctx->nets.at(clksig)->clkconstr->low.minDelay(); |
| } else if (edge == FALLING_EDGE) { |
| // rising -> falling |
| period = ctx->nets.at(clksig)->clkconstr->high.minDelay(); |
| } |
| } |
| } |
| nd.min_required.at(i) = std::min(period - setup, nd.min_required.at(i)); |
| }; |
| if (portClass == TMG_REGISTER_INPUT) { |
| for (int j = 0; j < port_clocks; j++) { |
| TimingClockingInfo clkInfo = ctx->getPortClockingInfo(usr.cell, usr.port, j); |
| const NetInfo *clknet = get_net_or_empty(usr.cell, clkInfo.clock_port); |
| IdString clksig = clknet ? clknet->name : async_clock; |
| process_endpoint(clksig, clknet ? clkInfo.edge : RISING_EDGE, |
| clkInfo.setup.maxDelay()); |
| } |
| } else { |
| process_endpoint(async_clock, RISING_EDGE, 0); |
| } |
| } |
| net_min_required = std::min(net_min_required, nd.min_required.at(i) - net_delay); |
| } |
| PortRef &drv = net->driver; |
| if (drv.cell == nullptr) |
| continue; |
| for (const auto &port : drv.cell->ports) { |
| if (port.second.type != PORT_IN || !port.second.net) |
| continue; |
| DelayInfo comb_delay; |
| bool is_path = ctx->getCellDelay(drv.cell, port.first, drv.port, comb_delay); |
| if (!is_path) |
| continue; |
| int cc; |
| auto pclass = ctx->getPortTimingClass(drv.cell, port.first, cc); |
| if (pclass != TMG_COMB_INPUT) |
| continue; |
| NetInfo *sink_net = port.second.net; |
| if (net_data.count(sink_net) && net_data.at(sink_net).count(startdomain.first)) { |
| auto &sink_nd = net_data.at(sink_net).at(startdomain.first); |
| if (sink_nd.min_required.empty()) |
| sink_nd.min_required.resize(sink_net->users.size(), |
| std::numeric_limits<delay_t>::max()); |
| for (size_t i = 0; i < sink_net->users.size(); i++) { |
| auto &user = sink_net->users.at(i); |
| if (user.cell == drv.cell && user.port == port.first) { |
| sink_nd.min_required.at(i) = std::min(sink_nd.min_required.at(i), |
| net_min_required - comb_delay.maxDelay()); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| std::unordered_map<ClockEvent, delay_t> worst_slack; |
| |
| // Assign slack values |
| for (auto &net_entry : net_data) { |
| const NetInfo *net = net_entry.first; |
| for (auto &startdomain : net_entry.second) { |
| auto &nd = startdomain.second; |
| if (startdomain.first.clock == async_clock) |
| continue; |
| if (nd.min_required.empty()) |
| continue; |
| auto &nc = (*net_crit)[net->name]; |
| if (nc.slack.empty()) |
| nc.slack.resize(net->users.size(), std::numeric_limits<delay_t>::max()); |
| #if 0 |
| if (ctx->debug) |
| log_info("Net %s cd %s\n", net->name.c_str(ctx), startdomain.first.clock.c_str(ctx)); |
| #endif |
| for (size_t i = 0; i < net->users.size(); i++) { |
| delay_t slack = nd.min_required.at(i) - |
| (nd.max_arrival + ctx->getNetinfoRouteDelay(net, net->users.at(i))); |
| #if 0 |
| if (ctx->debug) |
| log_info(" user %s.%s required %.02fns arrival %.02f route %.02f slack %.02f\n", |
| net->users.at(i).cell->name.c_str(ctx), net->users.at(i).port.c_str(ctx), |
| ctx->getDelayNS(nd.min_required.at(i)), ctx->getDelayNS(nd.max_arrival), |
| ctx->getDelayNS(ctx->getNetinfoRouteDelay(net, net->users.at(i))), ctx->getDelayNS(slack)); |
| #endif |
| if (worst_slack.count(startdomain.first)) |
| worst_slack.at(startdomain.first) = std::min(worst_slack.at(startdomain.first), slack); |
| else |
| worst_slack[startdomain.first] = slack; |
| nc.slack.at(i) = slack; |
| } |
| if (ctx->debug) |
| log_break(); |
| } |
| } |
| // Assign criticality values |
| for (auto &net_entry : net_data) { |
| const NetInfo *net = net_entry.first; |
| for (auto &startdomain : net_entry.second) { |
| if (startdomain.first.clock == async_clock) |
| continue; |
| auto &nd = startdomain.second; |
| if (nd.min_required.empty()) |
| continue; |
| auto &nc = (*net_crit)[net->name]; |
| if (nc.slack.empty()) |
| continue; |
| if (nc.criticality.empty()) |
| nc.criticality.resize(net->users.size(), 0); |
| // Only consider intra-clock paths for criticality |
| if (!crit_path->count(ClockPair{startdomain.first, startdomain.first})) |
| continue; |
| delay_t dmax = crit_path->at(ClockPair{startdomain.first, startdomain.first}).path_delay; |
| for (size_t i = 0; i < net->users.size(); i++) { |
| float criticality = |
| 1.0f - ((float(nc.slack.at(i)) - float(worst_slack.at(startdomain.first))) / dmax); |
| nc.criticality.at(i) = std::min<double>(1.0, std::max<double>(0.0, criticality)); |
| } |
| nc.max_path_length = nd.max_path_length; |
| nc.cd_worst_slack = worst_slack.at(startdomain.first); |
| } |
| } |
| #if 0 |
| if (ctx->debug) { |
| for (auto &nc : *net_crit) { |
| NetInfo *net = ctx->nets.at(nc.first).get(); |
| log_info("Net %s maxlen %d worst_slack %.02fns: \n", nc.first.c_str(ctx), nc.second.max_path_length, |
| ctx->getDelayNS(nc.second.cd_worst_slack)); |
| if (!nc.second.criticality.empty() && !nc.second.slack.empty()) { |
| for (size_t i = 0; i < net->users.size(); i++) { |
| log_info(" user %s.%s slack %.02fns crit %.03f\n", net->users.at(i).cell->name.c_str(ctx), |
| net->users.at(i).port.c_str(ctx), ctx->getDelayNS(nc.second.slack.at(i)), |
| nc.second.criticality.at(i)); |
| } |
| } |
| log_break(); |
| } |
| } |
| #endif |
| } |
| return min_slack; |
| } |
| |
| void assign_budget() |
| { |
| // Clear delays to a very high value first |
| for (auto &net : ctx->nets) { |
| for (auto &usr : net.second->users) { |
| usr.budget = std::numeric_limits<delay_t>::max(); |
| } |
| } |
| |
| walk_paths(); |
| } |
| }; |
| |
| void assign_budget(Context *ctx, bool quiet) |
| { |
| if (!quiet) { |
| log_break(); |
| log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", |
| ctx->setting<float>("target_freq") / 1e6); |
| } |
| |
| Timing timing(ctx, ctx->setting<int>("slack_redist_iter") > 0 /* net_delays */, true /* update */); |
| timing.assign_budget(); |
| |
| if (!quiet || ctx->verbose) { |
| for (auto &net : ctx->nets) { |
| for (auto &user : net.second->users) { |
| // Post-update check |
| if (!ctx->setting<bool>("auto_freq") && user.budget < 0) |
| log_info("port %s.%s, connected to net '%s', has negative " |
| "timing budget of %fns\n", |
| user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx), |
| ctx->getDelayNS(user.budget)); |
| else if (ctx->debug) |
| log_info("port %s.%s, connected to net '%s', has " |
| "timing budget of %fns\n", |
| user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx), |
| ctx->getDelayNS(user.budget)); |
| } |
| } |
| } |
| |
| // For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the |
| // currently achieved maximum |
| if (ctx->setting<bool>("auto_freq") && ctx->setting<int>("slack_redist_iter") > 0) { |
| delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->setting<float>("target_freq")); |
| ctx->settings[ctx->id("target_freq")] = |
| std::to_string(1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack)); |
| if (ctx->verbose) |
| log_info("minimum slack for this assign = %.2f ns, target Fmax for next " |
| "update = %.2f MHz\n", |
| ctx->getDelayNS(timing.min_slack), ctx->setting<float>("target_freq") / 1e6); |
| } |
| |
| if (!quiet) |
| log_info("Checksum: 0x%08x\n", ctx->checksum()); |
| } |
| |
| void timing_analysis(Context *ctx, bool print_histogram, bool print_fmax, bool print_path, bool warn_on_failure) |
| { |
| auto format_event = [ctx](const ClockEvent &e, int field_width = 0) { |
| std::string value; |
| if (e.clock == ctx->id("$async$")) |
| value = std::string("<async>"); |
| else |
| value = (e.edge == FALLING_EDGE ? std::string("negedge ") : std::string("posedge ")) + e.clock.str(ctx); |
| if (int(value.length()) < field_width) |
| value.insert(value.length(), field_width - int(value.length()), ' '); |
| return value; |
| }; |
| |
| CriticalPathMap crit_paths; |
| DelayFrequency slack_histogram; |
| |
| Timing timing(ctx, true /* net_delays */, false /* update */, (print_path || print_fmax) ? &crit_paths : nullptr, |
| print_histogram ? &slack_histogram : nullptr); |
| timing.walk_paths(); |
| std::map<IdString, std::pair<ClockPair, CriticalPath>> clock_reports; |
| std::map<IdString, double> clock_fmax; |
| std::vector<ClockPair> xclock_paths; |
| std::set<IdString> empty_clocks; // set of clocks with no interior paths |
| if (print_path || print_fmax) { |
| for (auto path : crit_paths) { |
| const ClockEvent &a = path.first.start; |
| const ClockEvent &b = path.first.end; |
| empty_clocks.insert(a.clock); |
| empty_clocks.insert(b.clock); |
| } |
| for (auto path : crit_paths) { |
| const ClockEvent &a = path.first.start; |
| const ClockEvent &b = path.first.end; |
| if (a.clock != b.clock || a.clock == ctx->id("$async$")) |
| continue; |
| double Fmax; |
| empty_clocks.erase(a.clock); |
| if (a.edge == b.edge) |
| Fmax = 1000 / ctx->getDelayNS(path.second.path_delay); |
| else |
| Fmax = 500 / ctx->getDelayNS(path.second.path_delay); |
| if (!clock_fmax.count(a.clock) || Fmax < clock_fmax.at(a.clock)) { |
| clock_reports[a.clock] = path; |
| clock_fmax[a.clock] = Fmax; |
| } |
| } |
| |
| for (auto &path : crit_paths) { |
| const ClockEvent &a = path.first.start; |
| const ClockEvent &b = path.first.end; |
| if (a.clock == b.clock && a.clock != ctx->id("$async$")) |
| continue; |
| xclock_paths.push_back(path.first); |
| } |
| |
| if (clock_reports.empty()) { |
| log_warning("No clocks found in design\n"); |
| } |
| |
| std::sort(xclock_paths.begin(), xclock_paths.end(), [ctx](const ClockPair &a, const ClockPair &b) { |
| if (a.start.clock.str(ctx) < b.start.clock.str(ctx)) |
| return true; |
| if (a.start.clock.str(ctx) > b.start.clock.str(ctx)) |
| return false; |
| if (a.start.edge < b.start.edge) |
| return true; |
| if (a.start.edge > b.start.edge) |
| return false; |
| if (a.end.clock.str(ctx) < b.end.clock.str(ctx)) |
| return true; |
| if (a.end.clock.str(ctx) > b.end.clock.str(ctx)) |
| return false; |
| if (a.end.edge < b.end.edge) |
| return true; |
| return false; |
| }); |
| } |
| |
| if (print_path) { |
| auto print_path_report = [ctx](ClockPair &clocks, PortRefVector &crit_path) { |
| delay_t total = 0, logic_total = 0, route_total = 0; |
| auto &front = crit_path.front(); |
| auto &front_port = front->cell->ports.at(front->port); |
| auto &front_driver = front_port.net->driver; |
| |
| int port_clocks; |
| auto portClass = ctx->getPortTimingClass(front_driver.cell, front_driver.port, port_clocks); |
| IdString last_port = front_driver.port; |
| int clock_start = -1; |
| if (portClass == TMG_REGISTER_OUTPUT) { |
| for (int i = 0; i < port_clocks; i++) { |
| TimingClockingInfo clockInfo = ctx->getPortClockingInfo(front_driver.cell, front_driver.port, i); |
| const NetInfo *clknet = get_net_or_empty(front_driver.cell, clockInfo.clock_port); |
| if (clknet != nullptr && clknet->name == clocks.start.clock && |
| clockInfo.edge == clocks.start.edge) { |
| last_port = clockInfo.clock_port; |
| clock_start = i; |
| break; |
| } |
| } |
| } |
| |
| log_info("curr total\n"); |
| for (auto sink : crit_path) { |
| auto sink_cell = sink->cell; |
| auto &port = sink_cell->ports.at(sink->port); |
| auto net = port.net; |
| auto &driver = net->driver; |
| auto driver_cell = driver.cell; |
| DelayInfo comb_delay; |
| if (clock_start != -1) { |
| auto clockInfo = ctx->getPortClockingInfo(driver_cell, driver.port, clock_start); |
| comb_delay = clockInfo.clockToQ; |
| clock_start = -1; |
| } else if (last_port == driver.port) { |
| // Case where we start with a STARTPOINT etc |
| comb_delay = ctx->getDelayFromNS(0); |
| } else { |
| ctx->getCellDelay(driver_cell, last_port, driver.port, comb_delay); |
| } |
| total += comb_delay.maxDelay(); |
| logic_total += comb_delay.maxDelay(); |
| log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total), |
| driver_cell->name.c_str(ctx), driver.port.c_str(ctx)); |
| auto net_delay = ctx->getNetinfoRouteDelay(net, *sink); |
| total += net_delay; |
| route_total += net_delay; |
| auto driver_loc = ctx->getBelLocation(driver_cell->bel); |
| auto sink_loc = ctx->getBelLocation(sink_cell->bel); |
| log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay), |
| ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x, |
| driver_loc.y, sink_loc.x, sink_loc.y); |
| log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx)); |
| if (ctx->verbose) { |
| auto driver_wire = ctx->getNetinfoSourceWire(net); |
| auto sink_wire = ctx->getNetinfoSinkWire(net, *sink); |
| log_info(" prediction: %f ns estimate: %f ns\n", |
| ctx->getDelayNS(ctx->predictDelay(net, *sink)), |
| ctx->getDelayNS(ctx->estimateDelay(driver_wire, sink_wire))); |
| auto cursor = sink_wire; |
| delay_t delay; |
| while (driver_wire != cursor) { |
| #ifdef ARCH_ECP5 |
| if (net->is_global) |
| break; |
| #endif |
| auto it = net->wires.find(cursor); |
| assert(it != net->wires.end()); |
| auto pip = it->second.pip; |
| NPNR_ASSERT(pip != PipId()); |
| delay = ctx->getPipDelay(pip).maxDelay(); |
| log_info(" %1.3f %s\n", ctx->getDelayNS(delay), |
| ctx->getPipName(pip).c_str(ctx)); |
| cursor = ctx->getPipSrcWire(pip); |
| } |
| } |
| last_port = sink->port; |
| } |
| int clockCount = 0; |
| auto sinkClass = ctx->getPortTimingClass(crit_path.back()->cell, crit_path.back()->port, clockCount); |
| if (sinkClass == TMG_REGISTER_INPUT && clockCount > 0) { |
| auto sinkClockInfo = ctx->getPortClockingInfo(crit_path.back()->cell, crit_path.back()->port, 0); |
| delay_t setup = sinkClockInfo.setup.maxDelay(); |
| total += setup; |
| logic_total += setup; |
| log_info("%4.1f %4.1f Setup %s.%s\n", ctx->getDelayNS(setup), ctx->getDelayNS(total), |
| crit_path.back()->cell->name.c_str(ctx), crit_path.back()->port.c_str(ctx)); |
| } |
| log_info("%.1f ns logic, %.1f ns routing\n", ctx->getDelayNS(logic_total), ctx->getDelayNS(route_total)); |
| }; |
| |
| for (auto &clock : clock_reports) { |
| log_break(); |
| std::string start = |
| clock.second.first.start.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge"); |
| std::string end = |
| clock.second.first.end.edge == FALLING_EDGE ? std::string("negedge") : std::string("posedge"); |
| log_info("Critical path report for clock '%s' (%s -> %s):\n", clock.first.c_str(ctx), start.c_str(), |
| end.c_str()); |
| auto &crit_path = clock.second.second.ports; |
| print_path_report(clock.second.first, crit_path); |
| } |
| |
| for (auto &xclock : xclock_paths) { |
| log_break(); |
| std::string start = format_event(xclock.start); |
| std::string end = format_event(xclock.end); |
| log_info("Critical path report for cross-domain path '%s' -> '%s':\n", start.c_str(), end.c_str()); |
| auto &crit_path = crit_paths.at(xclock).ports; |
| print_path_report(xclock, crit_path); |
| } |
| } |
| if (print_fmax) { |
| log_break(); |
| unsigned max_width = 0; |
| for (auto &clock : clock_reports) |
| max_width = std::max<unsigned>(max_width, clock.first.str(ctx).size()); |
| for (auto &clock : clock_reports) { |
| const auto &clock_name = clock.first.str(ctx); |
| const int width = max_width - clock_name.size(); |
| float target = ctx->setting<float>("target_freq") / 1e6; |
| if (ctx->nets.at(clock.first)->clkconstr) |
| target = 1000 / ctx->getDelayNS(ctx->nets.at(clock.first)->clkconstr->period.minDelay()); |
| |
| bool passed = target < clock_fmax[clock.first]; |
| if (!warn_on_failure || passed) |
| log_info("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", |
| clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target); |
| else if (bool_or_default(ctx->settings, ctx->id("timing/allowFail"), false)) |
| log_warning("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", |
| clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target); |
| else |
| log_nonfatal_error("Max frequency for clock %*s'%s': %.02f MHz (%s at %.02f MHz)\n", width, "", |
| clock_name.c_str(), clock_fmax[clock.first], passed ? "PASS" : "FAIL", target); |
| } |
| for (auto &eclock : empty_clocks) { |
| if (eclock != ctx->id("$async$")) |
| log_info("Clock '%s' has no interior paths\n", eclock.c_str(ctx)); |
| } |
| log_break(); |
| |
| int start_field_width = 0, end_field_width = 0; |
| for (auto &xclock : xclock_paths) { |
| start_field_width = std::max((int)format_event(xclock.start).length(), start_field_width); |
| end_field_width = std::max((int)format_event(xclock.end).length(), end_field_width); |
| } |
| |
| for (auto &xclock : xclock_paths) { |
| const ClockEvent &a = xclock.start; |
| const ClockEvent &b = xclock.end; |
| auto &path = crit_paths.at(xclock); |
| auto ev_a = format_event(a, start_field_width), ev_b = format_event(b, end_field_width); |
| log_info("Max delay %s -> %s: %0.02f ns\n", ev_a.c_str(), ev_b.c_str(), ctx->getDelayNS(path.path_delay)); |
| } |
| log_break(); |
| } |
| |
| if (print_histogram && slack_histogram.size() > 0) { |
| unsigned num_bins = 20; |
| unsigned bar_width = 60; |
| auto min_slack = slack_histogram.begin()->first; |
| auto max_slack = slack_histogram.rbegin()->first; |
| auto bin_size = std::max<unsigned>(1, ceil((max_slack - min_slack + 1) / float(num_bins))); |
| std::vector<unsigned> bins(num_bins); |
| unsigned max_freq = 0; |
| for (const auto &i : slack_histogram) { |
| auto &bin = bins[(i.first - min_slack) / bin_size]; |
| bin += i.second; |
| max_freq = std::max(max_freq, bin); |
| } |
| bar_width = std::min(bar_width, max_freq); |
| |
| log_break(); |
| log_info("Slack histogram:\n"); |
| log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width); |
| log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width); |
| for (unsigned i = 0; i < num_bins; ++i) |
| log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1), |
| std::string(bins[i] * bar_width / max_freq, '*').c_str(), |
| (bins[i] * bar_width) % max_freq > 0 ? '+' : ' '); |
| } |
| } |
| |
| void get_criticalities(Context *ctx, NetCriticalityMap *net_crit) |
| { |
| CriticalPathMap crit_paths; |
| net_crit->clear(); |
| Timing timing(ctx, true, true, &crit_paths, nullptr, net_crit); |
| timing.walk_paths(); |
| } |
| |
| NEXTPNR_NAMESPACE_END |