| /* |
| * nextpnr -- Next Generation Place and Route |
| * |
| * Copyright (C) 2018 David Shah <david@symbioticeda.com> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| /* |
| * Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells |
| * on a critical path |
| * |
| * Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs" |
| * https://www.cerc.utexas.edu/utda/publications/C205.pdf |
| * |
| * Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles, |
| * and deal with the fact that not every cell on the crit path may be swappable. |
| */ |
| |
| #include "timing_opt.h" |
| #include <boost/range/adaptor/reversed.hpp> |
| #include <queue> |
| #include "nextpnr.h" |
| #include "timing.h" |
| #include "util.h" |
| |
| namespace std { |
| |
| template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString>> |
| { |
| std::size_t |
| operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString> &idp) const |
| noexcept |
| { |
| std::size_t seed = 0; |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first)); |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.second)); |
| return seed; |
| } |
| }; |
| |
| template <> struct hash<std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId>> |
| { |
| std::size_t operator()(const std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept |
| { |
| std::size_t seed = 0; |
| boost::hash_combine(seed, hash<int>()(idp.first)); |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second)); |
| return seed; |
| } |
| }; |
| #ifndef ARCH_GENERIC |
| template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId>> |
| { |
| std::size_t |
| operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept |
| { |
| std::size_t seed = 0; |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first)); |
| boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second)); |
| return seed; |
| } |
| }; |
| #endif |
| } // namespace std |
| |
| NEXTPNR_NAMESPACE_BEGIN |
| |
| class TimingOptimiser |
| { |
| public: |
| TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg){}; |
| bool optimise() |
| { |
| log_info("Running timing-driven placement optimisation...\n"); |
| if (ctx->verbose) |
| timing_analysis(ctx, false, true, false, false); |
| for (int i = 0; i < 30; i++) { |
| log_info(" Iteration %d...\n", i); |
| get_criticalities(ctx, &net_crit); |
| setup_delay_limits(); |
| auto crit_paths = find_crit_paths(0.98, 50000); |
| for (auto &path : crit_paths) |
| optimise_path(path); |
| if (ctx->verbose) |
| timing_analysis(ctx, false, true, false, false); |
| } |
| return true; |
| } |
| |
| private: |
| void setup_delay_limits() |
| { |
| max_net_delay.clear(); |
| for (auto net : sorted(ctx->nets)) { |
| NetInfo *ni = net.second; |
| for (auto usr : ni->users) { |
| max_net_delay[std::make_pair(usr.cell->name, usr.port)] = std::numeric_limits<delay_t>::max(); |
| } |
| if (!net_crit.count(net.first)) |
| continue; |
| auto &nc = net_crit.at(net.first); |
| if (nc.slack.empty()) |
| continue; |
| for (size_t i = 0; i < ni->users.size(); i++) { |
| auto &usr = ni->users.at(i); |
| delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr); |
| if (nc.max_path_length != 0) { |
| max_net_delay[std::make_pair(usr.cell->name, usr.port)] = |
| net_delay + ((nc.slack.at(i) - nc.cd_worst_slack) / 10); |
| } |
| } |
| } |
| } |
| |
| bool check_cell_delay_limits(CellInfo *cell) |
| { |
| for (const auto &port : cell->ports) { |
| int nc; |
| if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE) |
| continue; |
| NetInfo *net = port.second.net; |
| if (net == nullptr) |
| continue; |
| if (port.second.type == PORT_IN) { |
| if (net->driver.cell == nullptr || net->driver.cell->bel == BelId()) |
| continue; |
| for (auto user : net->users) { |
| if (user.cell == cell && user.port == port.first) { |
| if (ctx->predictDelay(net, user) > |
| 1.1 * max_net_delay.at(std::make_pair(cell->name, port.first))) |
| return false; |
| } |
| } |
| |
| } else if (port.second.type == PORT_OUT) { |
| for (auto user : net->users) { |
| // This could get expensive for high-fanout nets?? |
| BelId dstBel = user.cell->bel; |
| if (dstBel == BelId()) |
| continue; |
| if (ctx->predictDelay(net, user) > |
| 1.1 * max_net_delay.at(std::make_pair(user.cell->name, user.port))) { |
| |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| BelId cell_swap_bel(CellInfo *cell, BelId newBel) |
| { |
| BelId oldBel = cell->bel; |
| if (oldBel == newBel) |
| return oldBel; |
| CellInfo *other_cell = ctx->getBoundBelCell(newBel); |
| NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK); |
| ctx->unbindBel(oldBel); |
| if (other_cell != nullptr) { |
| ctx->unbindBel(newBel); |
| ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK); |
| } |
| ctx->bindBel(newBel, cell, STRENGTH_WEAK); |
| return oldBel; |
| } |
| |
| // Check that a series of moves are both legal and remain within maximum delay bounds |
| // Moves are specified as a vector of pairs <cell, oldBel> |
| bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true) |
| { |
| for (auto &entry : move) { |
| if (!ctx->isBelLocationValid(entry.first->bel)) |
| return false; |
| if (!ctx->isBelLocationValid(entry.second)) |
| return false; |
| if (!check_delays) |
| continue; |
| if (!check_cell_delay_limits(entry.first)) |
| return false; |
| // We might have swapped another cell onto the original bel. Check this for max delay violations |
| // too |
| CellInfo *swapped = ctx->getBoundBelCell(entry.second); |
| if (swapped != nullptr && !check_cell_delay_limits(swapped)) |
| return false; |
| } |
| return true; |
| } |
| |
| int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap) |
| { |
| BelId curr = cell->bel; |
| Loc curr_loc = ctx->getBelLocation(curr); |
| int found_count = 0; |
| cell_neighbour_bels[cell->name] = std::unordered_set<BelId>{}; |
| for (int dy = -d; dy <= d; dy++) { |
| for (int dx = -d; dx <= d; dx++) { |
| // Go through all the Bels at this location |
| // First, find all bels of the correct type that are either unbound or bound normally |
| // Strongly bound bels are ignored |
| // FIXME: This means that we cannot touch carry chains or similar relatively constrained macros |
| std::vector<BelId> free_bels_at_loc; |
| std::vector<BelId> bound_bels_at_loc; |
| for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) { |
| if (ctx->getBelType(bel) != cell->type) |
| continue; |
| CellInfo *bound = ctx->getBoundBelCell(bel); |
| if (bound == nullptr) { |
| free_bels_at_loc.push_back(bel); |
| } else if (bound->belStrength <= STRENGTH_WEAK && bound->constr_parent == nullptr && |
| bound->constr_children.empty()) { |
| bound_bels_at_loc.push_back(bel); |
| } |
| } |
| BelId candidate; |
| |
| while (!free_bels_at_loc.empty() || !bound_bels_at_loc.empty()) { |
| BelId try_bel; |
| if (!free_bels_at_loc.empty()) { |
| int try_idx = ctx->rng(int(free_bels_at_loc.size())); |
| try_bel = free_bels_at_loc.at(try_idx); |
| free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx); |
| } else { |
| int try_idx = ctx->rng(int(bound_bels_at_loc.size())); |
| try_bel = bound_bels_at_loc.at(try_idx); |
| bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx); |
| } |
| if (bel_candidate_cells.count(try_bel) && !allow_swap) { |
| // Overlap is only allowed if it is with the previous cell (this is handled by removing those |
| // edges in the graph), or if allow_swap is true to deal with cases where overlap means few |
| // neighbours are identified |
| if (bel_candidate_cells.at(try_bel).size() > 1 || |
| (bel_candidate_cells.at(try_bel).size() == 1 && |
| *(bel_candidate_cells.at(try_bel).begin()) != prev_cell)) |
| continue; |
| } |
| // TODO: what else to check here? |
| candidate = try_bel; |
| break; |
| } |
| |
| if (candidate != BelId()) { |
| cell_neighbour_bels[cell->name].insert(candidate); |
| bel_candidate_cells[candidate].insert(cell->name); |
| // Work out if we need to delete any overlap |
| std::vector<IdString> overlap; |
| for (auto other : bel_candidate_cells[candidate]) |
| if (other != cell->name && other != prev_cell) |
| overlap.push_back(other); |
| if (overlap.size() > 0) |
| NPNR_ASSERT(allow_swap); |
| for (auto ov : overlap) { |
| bel_candidate_cells[candidate].erase(ov); |
| cell_neighbour_bels[ov].erase(candidate); |
| } |
| } |
| } |
| } |
| return found_count; |
| } |
| |
| std::vector<std::vector<PortRef *>> find_crit_paths(float crit_thresh, size_t max_count) |
| { |
| std::vector<std::vector<PortRef *>> crit_paths; |
| std::vector<std::pair<NetInfo *, int>> crit_nets; |
| std::vector<IdString> netnames; |
| std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames), |
| [](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv) { return kv.first; }); |
| ctx->sorted_shuffle(netnames); |
| for (auto net : netnames) { |
| if (crit_nets.size() >= max_count) |
| break; |
| if (!net_crit.count(net)) |
| continue; |
| auto crit_user = std::max_element(net_crit[net].criticality.begin(), net_crit[net].criticality.end()); |
| if (*crit_user > crit_thresh) |
| crit_nets.push_back( |
| std::make_pair(ctx->nets[net].get(), crit_user - net_crit[net].criticality.begin())); |
| } |
| |
| auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t { |
| NPNR_ASSERT(port.net != nullptr); |
| for (size_t i = 0; i < port.net->users.size(); i++) { |
| auto &usr = port.net->users.at(i); |
| if (usr.cell == cell && usr.port == port.name) |
| return i; |
| } |
| NPNR_ASSERT_FALSE("port user not found on net"); |
| }; |
| std::unordered_set<PortRef *> used_ports; |
| |
| for (auto crit_net : crit_nets) { |
| |
| if (used_ports.count(&(crit_net.first->users.at(crit_net.second)))) |
| continue; |
| |
| std::deque<PortRef *> crit_path; |
| |
| // FIXME: This will fail badly on combinational loops |
| |
| // Iterate backwards following greatest criticality |
| NetInfo *back_cursor = crit_net.first; |
| while (back_cursor != nullptr) { |
| float max_crit = 0; |
| std::pair<NetInfo *, size_t> crit_sink{nullptr, 0}; |
| CellInfo *cell = back_cursor->driver.cell; |
| if (cell == nullptr) |
| break; |
| for (auto port : cell->ports) { |
| if (port.second.type != PORT_IN) |
| continue; |
| NetInfo *pn = port.second.net; |
| if (pn == nullptr) |
| continue; |
| if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty()) |
| continue; |
| int ccount; |
| DelayInfo combDelay; |
| TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount); |
| if (tpclass != TMG_COMB_INPUT) |
| continue; |
| bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay); |
| if (!is_path) |
| continue; |
| size_t user_idx = port_user_index(cell, port.second); |
| float usr_crit = net_crit.at(pn->name).criticality.at(user_idx); |
| if (used_ports.count(&(pn->users.at(user_idx)))) |
| continue; |
| if (usr_crit >= max_crit) { |
| max_crit = usr_crit; |
| crit_sink = std::make_pair(pn, user_idx); |
| } |
| } |
| |
| if (crit_sink.first != nullptr) { |
| crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second))); |
| used_ports.insert(&(crit_sink.first->users.at(crit_sink.second))); |
| } |
| back_cursor = crit_sink.first; |
| } |
| // Iterate forwards following greatest criticiality |
| PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second)); |
| while (fwd_cursor != nullptr) { |
| crit_path.push_back(fwd_cursor); |
| float max_crit = 0; |
| std::pair<NetInfo *, size_t> crit_sink{nullptr, 0}; |
| CellInfo *cell = fwd_cursor->cell; |
| for (auto port : cell->ports) { |
| if (port.second.type != PORT_OUT) |
| continue; |
| NetInfo *pn = port.second.net; |
| if (pn == nullptr) |
| continue; |
| if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty()) |
| continue; |
| int ccount; |
| DelayInfo combDelay; |
| TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount); |
| if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT) |
| continue; |
| bool is_path = ctx->getCellDelay(cell, fwd_cursor->port, port.first, combDelay); |
| if (!is_path) |
| continue; |
| auto &crits = net_crit.at(pn->name).criticality; |
| for (size_t i = 0; i < crits.size(); i++) { |
| if (used_ports.count(&(pn->users.at(i)))) |
| continue; |
| if (crits.at(i) >= max_crit) { |
| max_crit = crits.at(i); |
| crit_sink = std::make_pair(pn, i); |
| } |
| } |
| } |
| if (crit_sink.first != nullptr) { |
| fwd_cursor = &(crit_sink.first->users.at(crit_sink.second)); |
| used_ports.insert(&(crit_sink.first->users.at(crit_sink.second))); |
| } else { |
| fwd_cursor = nullptr; |
| } |
| } |
| |
| std::vector<PortRef *> crit_path_vec; |
| std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec)); |
| crit_paths.push_back(crit_path_vec); |
| } |
| |
| return crit_paths; |
| } |
| |
| void optimise_path(std::vector<PortRef *> &path) |
| { |
| path_cells.clear(); |
| cell_neighbour_bels.clear(); |
| bel_candidate_cells.clear(); |
| if (ctx->debug) |
| log_info("Optimising the following path: \n"); |
| |
| auto front_port = path.front(); |
| NetInfo *front_net = front_port->cell->ports.at(front_port->port).net; |
| if (front_net != nullptr && front_net->driver.cell != nullptr) { |
| auto front_cell = front_net->driver.cell; |
| if (front_cell->belStrength <= STRENGTH_WEAK && cfg.cellTypes.count(front_cell->type) && |
| front_cell->constr_parent == nullptr && front_cell->constr_children.empty()) { |
| path_cells.push_back(front_cell->name); |
| } |
| } |
| |
| for (auto port : path) { |
| if (ctx->debug) { |
| float crit = 0; |
| NetInfo *pn = port->cell->ports.at(port->port).net; |
| if (net_crit.count(pn->name) && !net_crit.at(pn->name).criticality.empty()) |
| for (size_t i = 0; i < pn->users.size(); i++) |
| if (pn->users.at(i).cell == port->cell && pn->users.at(i).port == port->port) |
| crit = net_crit.at(pn->name).criticality.at(i); |
| log_info(" %s.%s at %s crit %0.02f\n", port->cell->name.c_str(ctx), port->port.c_str(ctx), |
| ctx->getBelName(port->cell->bel).c_str(ctx), crit); |
| } |
| if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end()) |
| continue; |
| if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type) || |
| port->cell->constr_parent != nullptr || !port->cell->constr_children.empty()) |
| continue; |
| if (ctx->debug) |
| log_info(" can move\n"); |
| path_cells.push_back(port->cell->name); |
| } |
| |
| if (path_cells.size() < 2) { |
| if (ctx->debug) { |
| log_info("Too few moveable cells; skipping path\n"); |
| log_break(); |
| } |
| |
| return; |
| } |
| |
| // Calculate original delay before touching anything |
| delay_t original_delay = 0; |
| |
| for (size_t i = 0; i < path.size(); i++) { |
| NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net; |
| for (size_t j = 0; j < pn->users.size(); j++) { |
| auto &usr = pn->users.at(j); |
| if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) { |
| original_delay += ctx->predictDelay(pn, usr); |
| break; |
| } |
| } |
| } |
| |
| IdString last_cell; |
| const int d = 2; // FIXME: how to best determine d |
| for (auto cell : path_cells) { |
| // FIXME: when should we allow swapping due to a lack of candidates |
| find_neighbours(ctx->cells[cell].get(), last_cell, d, false); |
| last_cell = cell; |
| } |
| |
| if (ctx->debug) { |
| for (auto cell : path_cells) { |
| log_info("Candidate neighbours for %s (%s):\n", cell.c_str(ctx), |
| ctx->getBelName(ctx->cells[cell]->bel).c_str(ctx)); |
| for (auto neigh : cell_neighbour_bels.at(cell)) { |
| log_info(" %s\n", ctx->getBelName(neigh).c_str(ctx)); |
| } |
| } |
| } |
| |
| // Actual BFS path optimisation algorithm |
| std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs; |
| std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>> backtrace; |
| std::queue<std::pair<int, BelId>> visit; |
| std::unordered_set<std::pair<int, BelId>> to_visit; |
| |
| for (auto startbel : cell_neighbour_bels[path_cells.front()]) { |
| // Swap for legality check |
| CellInfo *cell = ctx->cells.at(path_cells.front()).get(); |
| BelId origBel = cell_swap_bel(cell, startbel); |
| std::vector<std::pair<CellInfo *, BelId>> move{std::make_pair(cell, origBel)}; |
| if (acceptable_move(move)) { |
| auto entry = std::make_pair(0, startbel); |
| visit.push(entry); |
| cumul_costs[path_cells.front()][startbel] = 0; |
| } |
| // Swap back |
| cell_swap_bel(cell, origBel); |
| } |
| |
| while (!visit.empty()) { |
| auto entry = visit.front(); |
| visit.pop(); |
| auto cellname = path_cells.at(entry.first); |
| if (entry.first == int(path_cells.size()) - 1) |
| continue; |
| std::vector<std::pair<CellInfo *, BelId>> move; |
| // Apply the entire backtrace for accurate legality and delay checks |
| // This is probably pretty expensive (but also probably pales in comparison to the number of swaps |
| // SA will make...) |
| std::vector<std::pair<IdString, BelId>> route_to_entry; |
| auto cursor = std::make_pair(cellname, entry.second); |
| route_to_entry.push_back(cursor); |
| while (backtrace.count(cursor)) { |
| cursor = backtrace.at(cursor); |
| route_to_entry.push_back(cursor); |
| } |
| for (auto rt_entry : boost::adaptors::reverse(route_to_entry)) { |
| CellInfo *cell = ctx->cells.at(rt_entry.first).get(); |
| BelId origBel = cell_swap_bel(cell, rt_entry.second); |
| move.push_back(std::make_pair(cell, origBel)); |
| } |
| |
| // Have a look at where we can travel from here |
| for (auto neighbour : cell_neighbour_bels.at(path_cells.at(entry.first + 1))) { |
| // Edges between overlapping bels are deleted |
| if (neighbour == entry.second) |
| continue; |
| // Experimentally swap the next path cell onto the neighbour bel we are trying |
| IdString ncname = path_cells.at(entry.first + 1); |
| CellInfo *next_cell = ctx->cells.at(ncname).get(); |
| BelId origBel = cell_swap_bel(next_cell, neighbour); |
| move.push_back(std::make_pair(next_cell, origBel)); |
| |
| delay_t total_delay = 0; |
| |
| for (size_t i = 0; i < path.size(); i++) { |
| NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net; |
| for (size_t j = 0; j < pn->users.size(); j++) { |
| auto &usr = pn->users.at(j); |
| if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) { |
| total_delay += ctx->predictDelay(pn, usr); |
| break; |
| } |
| } |
| if (path.at(i)->cell == next_cell) |
| break; |
| } |
| |
| // First, check if the move is actually worthwhile from a delay point of view before the expensive |
| // legality check |
| if (!cumul_costs.count(ncname) || !cumul_costs.at(ncname).count(neighbour) || |
| cumul_costs.at(ncname).at(neighbour) > total_delay) { |
| // Now check that the swaps we have made to get here are legal and meet max delay requirements |
| if (acceptable_move(move)) { |
| cumul_costs[ncname][neighbour] = total_delay; |
| backtrace[std::make_pair(ncname, neighbour)] = std::make_pair(cellname, entry.second); |
| if (!to_visit.count(std::make_pair(entry.first + 1, neighbour))) |
| visit.push(std::make_pair(entry.first + 1, neighbour)); |
| } |
| } |
| // Revert the experimental swap |
| cell_swap_bel(move.back().first, move.back().second); |
| move.pop_back(); |
| } |
| |
| // Revert move by swapping cells back to their original order |
| // Execute swaps in reverse order to how we made them originally |
| for (auto move_entry : boost::adaptors::reverse(move)) { |
| cell_swap_bel(move_entry.first, move_entry.second); |
| } |
| } |
| |
| // Did we find a solution?? |
| if (cumul_costs.count(path_cells.back())) { |
| // Find the end position with the lowest total delay |
| auto &end_options = cumul_costs.at(path_cells.back()); |
| auto lowest = std::min_element(end_options.begin(), end_options.end(), |
| [](const std::pair<BelId, delay_t> &a, const std::pair<BelId, delay_t> &b) { |
| return a.second < b.second; |
| }); |
| NPNR_ASSERT(lowest != end_options.end()); |
| |
| std::vector<std::pair<IdString, BelId>> route_to_solution; |
| auto cursor = std::make_pair(path_cells.back(), lowest->first); |
| route_to_solution.push_back(cursor); |
| while (backtrace.count(cursor)) { |
| cursor = backtrace.at(cursor); |
| route_to_solution.push_back(cursor); |
| } |
| if (ctx->debug) |
| log_info("Found a solution with cost %.02f ns (existing path %.02f ns)\n", |
| ctx->getDelayNS(lowest->second), ctx->getDelayNS(original_delay)); |
| for (auto rt_entry : boost::adaptors::reverse(route_to_solution)) { |
| CellInfo *cell = ctx->cells.at(rt_entry.first).get(); |
| cell_swap_bel(cell, rt_entry.second); |
| if (ctx->debug) |
| log_info(" %s at %s\n", rt_entry.first.c_str(ctx), ctx->getBelName(rt_entry.second).c_str(ctx)); |
| } |
| |
| } else { |
| if (ctx->debug) |
| log_info("Solution was not found\n"); |
| } |
| if (ctx->debug) |
| log_break(); |
| } |
| |
| // Current candidate Bels for cells (linked in both direction> |
| std::vector<IdString> path_cells; |
| std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels; |
| std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells; |
| // Map cell ports to net delay limit |
| std::unordered_map<std::pair<IdString, IdString>, delay_t> max_net_delay; |
| // Criticality data from timing analysis |
| NetCriticalityMap net_crit; |
| Context *ctx; |
| TimingOptCfg cfg; |
| }; |
| |
| bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx, cfg).optimise(); } |
| |
| NEXTPNR_NAMESPACE_END |