blob: d51a44e0d224fbabddb483d0d8a2326677311db1 [file] [log] [blame]
// Copyright 2017-2020 The Verible Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Unit tests for net-related concrete-syntax-tree functions.
//
// Testing strategy:
// The point of these tests is to validate the structure that is assumed
// about net declaration nodes and the structure that is actually
// created by the parser, so test *should* use the parser-generated
// syntax trees, as opposed to hand-crafted/mocked syntax trees.
#include "verilog/CST/net.h"
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "common/analysis/syntax_tree_search.h"
#include "common/text/syntax_tree_context.h"
#include "common/text/text_structure.h"
#include "common/util/logging.h"
#include "verilog/CST/verilog_nonterminals.h"
#include "verilog/analysis/verilog_analyzer.h"
#undef EXPECT_OK
#define EXPECT_OK(value) EXPECT_TRUE((value).ok())
#undef ASSERT_OK
#define ASSERT_OK(value) ASSERT_TRUE((value).ok())
namespace verilog {
namespace {
// Tests that no nets are found from an empty source.
TEST(FindAllNetDeclarationsTest, EmptySource) {
VerilogAnalyzer analyzer("", "");
EXPECT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations = FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(net_declarations.empty());
}
// Tests that no nets are found from a source with only one class.
TEST(FindAllNetDeclarationsTest, NonNet) {
VerilogAnalyzer analyzer("class foo; endclass", "");
EXPECT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations = FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(net_declarations.empty());
}
// Declarations of single nets, used across multiple tests. Semicolon omitted.
static const char* kSingleDeclTestCases[] = {
"wire w", "wire [7:0] w", "wire w [0:3]",
"wire w [4]", "wire [7:0] w [0:3]",
};
// Tests that one net is found as a package item.
TEST(FindAllNetDeclarationsTest, OneWireNet) {
for (auto test : kSingleDeclTestCases) {
VerilogAnalyzer analyzer(absl::StrCat(test, ";"), "");
EXPECT_TRUE(true) << "code: " << test;
EXPECT_OK(analyzer.Analyze()) << "code: " << test;
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_EQ(net_declarations.size(), 1);
const auto& decl = net_declarations.front();
EXPECT_FALSE(decl.context.IsInside(NodeEnum::kModuleDeclaration));
}
}
// Tests that multiple package item level nets are found.
TEST(FindAllNetDeclarationsTest, MultiNets) {
VerilogAnalyzer analyzer(R"(
wire w1;
package p;
endpackage
wire w2;
class c;
endclass
)",
"");
EXPECT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations = FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_EQ(net_declarations.size(), 2);
}
// Test that one net with array dimensions is found.
TEST(FindAllNetDeclarationsTest, OneNetWithDimensions) {
VerilogAnalyzer analyzer("wire [7:0] w [0:3];", "");
EXPECT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations = FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_EQ(net_declarations.size(), 1);
}
// Tests that a port wire inside a module is not counted.
TEST(FindAllNetDeclarationsTest, OnePortInModule) {
for (auto test : kSingleDeclTestCases) {
VerilogAnalyzer analyzer(absl::StrCat("module m(", test, "); endmodule"),
"");
EXPECT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(net_declarations.empty());
}
}
// Tests that a local wire inside a module is found.
TEST(FindAllNetDeclarationsTest, OneLocalNetInModule) {
for (auto test : kSingleDeclTestCases) {
VerilogAnalyzer analyzer(absl::StrCat("module m;", test, "; endmodule"),
"");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
FindAllNetDeclarations(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 1);
const auto& decl = net_declarations.front();
EXPECT_TRUE(decl.context.IsInside(NodeEnum::kModuleDeclaration));
}
}
TEST(GetIdentifiersFromNetDeclarationTest, EmptySource) {
VerilogAnalyzer analyzer("", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(net_declarations.empty());
}
TEST(GetIdentifiersFromNetDeclarationTest, NoNet) {
VerilogAnalyzer analyzer("module foo; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(net_declarations.empty());
}
TEST(GetIdentifiersFromNetDeclarationTest, OneVariable) {
VerilogAnalyzer analyzer("module foo; wire v; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 1);
EXPECT_EQ(net_declarations[0]->text(), "v");
}
TEST(GetIdentifiersFromNetDeclarationTest, MultipleVariables) {
VerilogAnalyzer analyzer("module foo; wire x; wire y; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 2);
ASSERT_EQ(net_declarations[0]->text(), "x");
ASSERT_EQ(net_declarations[1]->text(), "y");
}
TEST(GetIdentifiersFromNetDeclarationTest, MultipleInlineVariables) {
VerilogAnalyzer analyzer("module foo; wire x, y, z; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 3);
EXPECT_EQ(net_declarations[0]->text(), "x");
EXPECT_EQ(net_declarations[1]->text(), "y");
EXPECT_EQ(net_declarations[2]->text(), "z");
}
TEST(GetIdentifiersFromNetDeclarationTest, MultipleMixedVariables) {
VerilogAnalyzer analyzer("module foo; wire x, y, z; wire a; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 4);
EXPECT_EQ(net_declarations[0]->text(), "x");
EXPECT_EQ(net_declarations[1]->text(), "y");
EXPECT_EQ(net_declarations[2]->text(), "z");
EXPECT_EQ(net_declarations[3]->text(), "a");
}
TEST(GetIdentifiersFromNetDeclarationTest, DoNotMatchArrayDeclarations) {
VerilogAnalyzer analyzer("module top; wire v[M:N]; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 1);
EXPECT_EQ(net_declarations[0]->text(), "v");
}
TEST(GetIdentifiersFromNetDeclarationTest, DoNotMatchNetArrayDeclarations) {
VerilogAnalyzer analyzer("module top; wire[X:Z] v[M:N]; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 1);
EXPECT_EQ(net_declarations[0]->text(), "v");
}
TEST(GetIdentifiersFromNetDeclarationTest, DoNotMatchNetType) {
VerilogAnalyzer analyzer("module top; wire othertype v; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 1);
EXPECT_EQ(net_declarations[0]->text(), "v");
}
TEST(GetIdentifiersFromNetDeclarationTest, DoNotMatchAssignedVariables) {
VerilogAnalyzer analyzer("module top; wire v = z; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto net_declarations =
GetIdentifiersFromNetDeclaration(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(net_declarations.size(), 1);
EXPECT_EQ(net_declarations[0]->text(), "v");
}
} // namespace
} // namespace verilog