blob: da41adb6ae2bb504a52adac842cff132d2489b7b [file] [log] [blame]
// Copyright 2017-2020 The Verible Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "verilog/CST/tasks.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
#include "common/analysis/syntax_tree_search.h"
#include "common/analysis/syntax_tree_search_test_utils.h"
#include "common/text/concrete_syntax_leaf.h"
#include "common/text/concrete_syntax_tree.h"
#include "common/text/symbol.h"
#include "common/text/text_structure.h"
#include "common/text/token_info.h"
#include "common/util/casts.h"
#include "common/util/logging.h"
#include "verilog/CST/identifier.h"
#include "verilog/analysis/verilog_analyzer.h"
#include "verilog/parser/verilog_token_enum.h"
#undef ASSERT_OK
#define ASSERT_OK(value) ASSERT_TRUE((value).ok())
namespace verilog {
namespace {
using verible::down_cast;
using verible::SyntaxTreeSearchTestCase;
using verible::TreeSearchMatch;
TEST(FindAllTaskDeclarationsTest, EmptySource) {
VerilogAnalyzer analyzer("", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(task_declarations.empty());
}
TEST(FindAllTaskDeclarationsTest, OnlyClass) {
VerilogAnalyzer analyzer("class foo; endclass", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(task_declarations.empty());
}
TEST(FindAllTaskDeclarationsTest, OnlyModule) {
VerilogAnalyzer analyzer("module foo; endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_TRUE(task_declarations.empty());
}
TEST(FindAllTaskDeclarationsTest, OneTask) {
VerilogAnalyzer analyzer("task foo(); endtask", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
ASSERT_EQ(task_declarations.size(), 1);
}
TEST(FindAllTaskDeclarationsTest, TwoTasks) {
VerilogAnalyzer analyzer(R"(
task foo(); endtask
task foo2(); endtask
)",
"");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_EQ(task_declarations.size(), 2);
}
TEST(FindAllTaskDeclarationsTest, TaskInsideClass) {
VerilogAnalyzer analyzer("class bar; task foo(); endtask endclass", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_EQ(task_declarations.size(), 1);
}
TEST(FindAllTaskDeclarationsTest, TaskInsideModule) {
VerilogAnalyzer analyzer("module bar; task foo(); endtask endmodule", "");
ASSERT_OK(analyzer.Analyze());
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations =
FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
EXPECT_EQ(task_declarations.size(), 1);
}
// TODO(kathuriac): Add test case for task inside cross_body_item see
// (verilog.y)
TEST(GetTaskHeaderTest, Header) {
const char* kTestCases[] = {
"task foo(); endtask",
"class c; task foo(); endtask endclass",
"module m; task foo(); endtask endmodule",
};
for (const auto test : kTestCases) {
VerilogAnalyzer analyzer(test, "");
ASSERT_OK(analyzer.Analyze());
// Root node is a description list, not a task.
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations = FindAllTaskDeclarations(*root);
ASSERT_EQ(task_declarations.size(), 1);
const auto& task_node = down_cast<const verible::SyntaxTreeNode&>(
*task_declarations.front().match);
GetTaskHeader(task_node);
// Reaching here is success. Function has internal checks already.
}
}
TEST(GetTaskLifetimeTest, NoLifetimeDeclared) {
VerilogAnalyzer analyzer("task foo(); endtask", "");
ASSERT_OK(analyzer.Analyze());
// Root node is a description list, not a task.
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations = FindAllTaskDeclarations(*root);
ASSERT_EQ(task_declarations.size(), 1);
const auto& task_node = down_cast<const verible::SyntaxTreeNode&>(
*task_declarations.front().match);
const auto* lifetime = GetTaskLifetime(task_node);
EXPECT_EQ(lifetime, nullptr);
}
TEST(GetTaskLifetimeTest, StaticLifetimeDeclared) {
VerilogAnalyzer analyzer("task static foo(); endtask", "");
ASSERT_OK(analyzer.Analyze());
// Root node is a description list, not a task.
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations = FindAllTaskDeclarations(*root);
ASSERT_EQ(task_declarations.size(), 1);
const auto& task_node = down_cast<const verible::SyntaxTreeNode&>(
*task_declarations.front().match);
const auto* lifetime = GetTaskLifetime(task_node);
const auto* leaf = down_cast<const verible::SyntaxTreeLeaf*>(lifetime);
EXPECT_EQ(leaf->get().token_enum(), TK_static);
}
TEST(GetTaskLifetimeTest, AutomaticLifetimeDeclared) {
VerilogAnalyzer analyzer("task automatic foo(); endtask", "");
ASSERT_OK(analyzer.Analyze());
// Root node is a description list, not a task.
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations = FindAllTaskDeclarations(*root);
ASSERT_EQ(task_declarations.size(), 1);
const auto& task_node = down_cast<const verible::SyntaxTreeNode&>(
*task_declarations.front().match);
const auto* lifetime = GetTaskLifetime(task_node);
const auto* leaf = down_cast<const verible::SyntaxTreeLeaf*>(lifetime);
EXPECT_EQ(leaf->get().token_enum(), TK_automatic);
}
TEST(GetTaskIdTest, UnqualifiedIds) {
const std::pair<std::string, std::vector<absl::string_view>> kTestCases[] = {
{"task foo(); endtask", {"foo"}},
{"task automatic bar(); endtask", {"bar"}},
{"task static baz(); endtask", {"baz"}},
{"package p; task foo(); endtask endpackage", {"foo"}},
{"class c; task zoo(); endtask endclass", {"zoo"}},
{"task myclass::foo(); endtask", {"myclass", "foo"}},
};
for (const auto test : kTestCases) {
VerilogAnalyzer analyzer(test.first, "");
ASSERT_OK(analyzer.Analyze());
// Root node is a description list, not a task.
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations = FindAllTaskDeclarations(*root);
ASSERT_EQ(task_declarations.size(), 1);
const auto& task_node = down_cast<const verible::SyntaxTreeNode&>(
*task_declarations.front().match);
const auto* task_id = GetTaskId(task_node);
const auto ids = FindAllUnqualifiedIds(*task_id);
std::vector<absl::string_view> got_ids;
for (const auto& id : ids) {
const verible::SyntaxTreeLeaf* base = GetIdentifier(*id.match);
got_ids.push_back(ABSL_DIE_IF_NULL(base)->get().text());
}
EXPECT_EQ(got_ids, test.second);
}
}
TEST(GetTaskIdTest, QualifiedIds) {
const std::pair<std::string, int> kTestCases[] = {
{"task foo(); endtask", 0},
{"task myclass::foo(); endtask", 1},
};
for (const auto test : kTestCases) {
VerilogAnalyzer analyzer(test.first, "");
ASSERT_OK(analyzer.Analyze());
// Root node is a description list, not a task.
const auto& root = analyzer.Data().SyntaxTree();
const auto task_declarations = FindAllTaskDeclarations(*root);
ASSERT_EQ(task_declarations.size(), 1);
const auto& task_node = down_cast<const verible::SyntaxTreeNode&>(
*task_declarations.front().match);
const auto* task_id = GetTaskId(task_node);
const auto ids = FindAllQualifiedIds(*task_id);
EXPECT_EQ(ids.size(), test.second);
}
}
TEST(GetTaskHeaderTest, GetTaskName) {
constexpr int kTag = 1; // value doesn't matter
const SyntaxTreeSearchTestCase kTestCases[] = {
{""},
{"module m(); endmodule: m"},
{"task ", {kTag, "foo"}, "(int a, bit b);\nendtask"},
{"task ",
{kTag, "foo"},
"();\n endtask\n task ",
{kTag, "bar"},
"()\n; endtask"},
{"module my_module;\ntask ",
{kTag, "inner_task"},
"(int my_args);\n$display(my_arg2);\nendtask\nendmodule"},
{"class task_class;\ntask ",
{kTag, "my_task"},
"(input int a, b, output int c);\nc = a + b;\nendtask\nendclass"},
{"package my_pkg;\ntask automatic ",
{kTag, "my_task"},
"(input int a, b, output int c);\nc = a + b;\nendtask\nendpackage"},
{"class m;\n virtual task ",
{kTag, "my_task"},
"();\n endtask\n endclass"},
{"class m;\n static task ",
{kTag, "my_task"},
"();\n endtask\n endclass"},
};
for (const auto& test : kTestCases) {
const absl::string_view code(test.code);
VerilogAnalyzer analyzer(code, "test-file");
const auto code_copy = analyzer.Data().Contents();
ASSERT_OK(analyzer.Analyze()) << "failed on:\n" << code;
const auto& root = analyzer.Data().SyntaxTree();
const auto decls = FindAllTaskDeclarations(*ABSL_DIE_IF_NULL(root));
std::vector<TreeSearchMatch> types;
for (const auto& decl : decls) {
const auto* type = GetTaskName(*decl.match);
types.push_back(TreeSearchMatch{type, {/* ignored context */}});
}
std::ostringstream diffs;
EXPECT_TRUE(test.ExactMatchFindings(types, code_copy, &diffs))
<< "failed on:\n"
<< code << "\ndiffs:\n"
<< diffs.str();
}
} // namespace
} // namespace
} // namespace verilog