blob: 45a22db0b41b761bdfa7e191091006a1cc8a5845 [file] [log] [blame]
/**CFile****************************************************************
FileName [giaLf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [Cut computation.]
Author [Alan Mishchenko]`
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaLf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "gia.h"
#include "misc/tim/tim.h"
#include "misc/vec/vecSet.h"
#include "misc/vec/vecMem.h"
#include "misc/util/utilTruth.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define LF_LEAF_MAX 13
#define LF_CUT_MAX 32
#define LF_LOG_PAGE 12
#define LF_NO_LEAF 255
#define LF_CUT_WORDS (4+LF_LEAF_MAX/2)
#define LF_TT_WORDS ((LF_LEAF_MAX > 6) ? 1 << (LF_LEAF_MAX-6) : 1)
#define LF_EPSILON 0.005
typedef struct Lf_Cut_t_ Lf_Cut_t;
struct Lf_Cut_t_
{
word Sign; // signature
int Delay; // delay
float Flow; // flow
int iFunc; // functionality
unsigned Cost : 22; // misc cut cost
unsigned fLate : 1; // fails timing
unsigned fMux7 : 1; // specialized cut
unsigned nLeaves : 8; // the number of leaves
int pLeaves[0]; // leaves
};
typedef struct Lf_Plc_t_ Lf_Plc_t;
struct Lf_Plc_t_
{
unsigned fUsed : 1; // the cut is used
unsigned Handle : 31; // the cut handle
};
typedef struct Lf_Bst_t_ Lf_Bst_t;
struct Lf_Bst_t_
{
int Delay[3]; // delay
float Flow[3]; // flow
Lf_Plc_t Cut[2]; // cut info
};
typedef struct Lf_Mem_t_ Lf_Mem_t;
struct Lf_Mem_t_
{
int LogPage; // log size of memory page
int MaskPage; // page mask
int nCutWords; // cut size in words
int iCur; // writing position
Vec_Ptr_t vPages; // memory pages
Vec_Ptr_t * vFree; // free pages
};
typedef struct Lf_Man_t_ Lf_Man_t;
struct Lf_Man_t_
{
// user data
Gia_Man_t * pGia; // manager
Jf_Par_t * pPars; // parameters
// cut data
int nCutWords; // cut size in words
int nSetWords; // set size in words
Lf_Bst_t * pObjBests; // best cuts
Vec_Ptr_t vMemSets; // memory for cutsets
Vec_Int_t vFreeSets; // free cutsets
Vec_Mem_t * vTtMem; // truth tables
Vec_Ptr_t vFreePages; // free memory pages
Lf_Mem_t vStoreOld; // previous cuts
Lf_Mem_t vStoreNew; // current cuts
// mapper data
Vec_Int_t vOffsets; // offsets
Vec_Int_t vRequired; // required times
Vec_Int_t vCutSets; // cutsets (pObj->Value stores cut refs)
Vec_Flt_t vFlowRefs; // flow refs
Vec_Int_t vMapRefs; // mapping refs
Vec_Flt_t vSwitches; // switching activity
Vec_Int_t vCiArrivals; // arrival times of the CIs
// statistics
abctime clkStart; // starting time
double CutCount[4]; // cut counts
double Switches; // switching activity
int nFrontMax; // frontier
int nCoDrivers; // CO drivers
int nInverters; // inverters
int nTimeFails; // timing fails
int Iter; // mapping iteration
int fUseEla; // use exact local area
int nCutMux; // non-trivial MUX cuts
int nCutEqual; // equal two cuts
int nCutCounts[LF_LEAF_MAX+1];
};
static inline void Lf_CutCopy( Lf_Cut_t * p, Lf_Cut_t * q, int n ) { memcpy(p, q, sizeof(word) * n); }
static inline Lf_Cut_t * Lf_CutNext( Lf_Cut_t * p, int n ) { return (Lf_Cut_t *)((word *)p + n); }
static inline word * Lf_CutTruth( Lf_Man_t * p, Lf_Cut_t * pCut ) { return Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)); }
static inline int Lf_ObjOff( Lf_Man_t * p, int i ) { return Vec_IntEntry(&p->vOffsets, i); }
static inline int Lf_ObjRequired( Lf_Man_t * p, int i ) { return Vec_IntEntry(&p->vRequired, i); }
static inline void Lf_ObjSetRequired( Lf_Man_t * p, int i, int t ) { Vec_IntDowndateEntry(&p->vRequired, i, t); }
static inline Lf_Bst_t * Lf_ObjReadBest( Lf_Man_t * p, int i ) { return p->pObjBests + Lf_ObjOff(p,i); }
static inline float Lf_ObjFlowRefs( Lf_Man_t * p, int i ) { return Vec_FltEntry(&p->vFlowRefs, Lf_ObjOff(p,i)); }
static inline int Lf_ObjMapRefNum( Lf_Man_t * p, int i ) { return Vec_IntEntry(&p->vMapRefs, Lf_ObjOff(p,i)); }
static inline int Lf_ObjMapRefInc( Lf_Man_t * p, int i ) { return (*Vec_IntEntryP(&p->vMapRefs, Lf_ObjOff(p,i)))++; }
static inline int Lf_ObjMapRefDec( Lf_Man_t * p, int i ) { return --(*Vec_IntEntryP(&p->vMapRefs, Lf_ObjOff(p,i))); }
static inline float Lf_ObjSwitches( Lf_Man_t * p, int i ) { return Vec_FltEntry(&p->vSwitches, i); }
static inline int Lf_BestDiffCuts( Lf_Bst_t * p ) { return p->Cut[0].Handle != p->Cut[1].Handle; }
static inline int Lf_BestIsMapped( Lf_Bst_t * p ) { return (int)(p->Cut[0].fUsed ^ p->Cut[1].fUsed); }
static inline int Lf_BestIndex( Lf_Bst_t * p ) { return p->Cut[1].fUsed; }
static inline int Lf_BestCutIndex( Lf_Bst_t * p ) { if (p->Cut[0].fUsed) return 0; if (p->Cut[1].fUsed) return 1; return 2; }
#define Lf_CutSetForEachCut( nWords, pCutSet, pCut, i, nCuts ) for ( i = 0, pCut = pCutSet; i < nCuts; pCut = Lf_CutNext(pCut, nWords), i++ )
#define Lf_CutForEachVar( pCut, Var, i ) for ( i = 0; i < (int)pCut->nLeaves && (Var = pCut->pLeaves[i]); i++ ) if ( Lf_ObjOff(p, Var) < 0 ) {} else
extern int Kit_TruthToGia( Gia_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory, Vec_Int_t * vLeaves, int fHash );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Lf_ObjSetCiArrival( Lf_Man_t * p, int iCi, int Time )
{
Vec_IntWriteEntry( &p->vCiArrivals, iCi, Time );
}
static inline int Lf_ObjCiArrival( Lf_Man_t * p, int iCi )
{
return Vec_IntEntry( &p->vCiArrivals, iCi );
}
int Lf_ObjArrival_rec( Lf_Man_t * p, Gia_Obj_t * pDriver )
{
if ( Gia_ObjIsBuf(pDriver) )
return Lf_ObjArrival_rec( p, Gia_ObjFanin0(pDriver) );
if ( Gia_ObjIsAnd(pDriver) )
return Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver))->Delay[0];
if ( Gia_ObjIsCi(pDriver) )
return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
return 0;
}
static inline int Lf_ObjCoArrival( Lf_Man_t * p, int iCo )
{
Gia_Obj_t * pObj = Gia_ManCo(p->pGia, iCo);
Gia_Obj_t * pDriver = Gia_ObjFanin0(pObj);
return Lf_ObjArrival_rec( p, pDriver );
// if ( Gia_ObjIsAnd(pDriver) )
// return Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver))->Delay[0];
// if ( Gia_ObjIsCi(pDriver) )
// return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
// return 0;
}
int Lf_ObjCoArrival2_rec( Lf_Man_t * p, Gia_Obj_t * pDriver )
{
if ( Gia_ObjIsBuf(pDriver) )
return Lf_ObjCoArrival2_rec( p, Gia_ObjFanin0(pDriver) );
if ( Gia_ObjIsAnd(pDriver) )
{
Lf_Bst_t * pBest = Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver));
int Index = Lf_BestCutIndex( pBest );
assert( Index < 2 || Gia_ObjIsMux(p->pGia, pDriver) );
return pBest->Delay[Index];
}
if ( Gia_ObjIsCi(pDriver) )
return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
return 0;
}
static inline int Lf_ObjCoArrival2( Lf_Man_t * p, int iCo )
{
Gia_Obj_t * pObj = Gia_ManCo(p->pGia, iCo);
Gia_Obj_t * pDriver = Gia_ObjFanin0(pObj);
return Lf_ObjCoArrival2_rec( p, pDriver );
// if ( Gia_ObjIsAnd(pDriver) )
// {
// Lf_Bst_t * pBest = Lf_ObjReadBest(p, Gia_ObjId(p->pGia, pDriver));
// int Index = Lf_BestCutIndex( pBest );
// assert( Index < 2 || Gia_ObjIsMux(p->pGia, pDriver) );
// return pBest->Delay[Index];
// }
// if ( Gia_ObjIsCi(pDriver) )
// return Lf_ObjCiArrival(p, Gia_ObjCioId(pDriver));
// return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Lf_ManComputeCrossCut( Gia_Man_t * p )
{
Gia_Obj_t * pObj;
int i, nCutMax = 0, nCutCur = 0;
assert( p->pMuxes == NULL );
Gia_ManForEachObj( p, pObj, i )
pObj->Value = 0;
Gia_ManForEachAnd( p, pObj, i )
{
if ( Gia_ObjIsAnd(Gia_ObjFanin0(pObj)) )
Gia_ObjFanin0(pObj)->Value++;
if ( Gia_ObjIsAnd(Gia_ObjFanin1(pObj)) )
Gia_ObjFanin1(pObj)->Value++;
}
Gia_ManForEachAnd( p, pObj, i )
{
if ( pObj->Value )
nCutCur++;
if ( nCutMax < nCutCur )
nCutMax = nCutCur;
if ( Gia_ObjIsAnd(Gia_ObjFanin0(pObj)) && --Gia_ObjFanin0(pObj)->Value == 0 )
nCutCur--;
if ( Gia_ObjIsAnd(Gia_ObjFanin1(pObj)) && --Gia_ObjFanin1(pObj)->Value == 0 )
nCutCur--;
}
assert( nCutCur == 0 );
if ( nCutCur )
printf( "Cutset is not 0\n" );
Gia_ManForEachObj( p, pObj, i )
assert( pObj->Value == 0 );
printf( "CutMax = %d\n", nCutMax );
return nCutMax;
}
/**Function*************************************************************
Synopsis [Detect MUX truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Lf_ManTtIsMux( word t )
{
static unsigned s_Muxes[24] = {
(~0xAAAAAAAA & ~0xCCCCCCCC) | ( 0xAAAAAAAA & ~0xF0F0F0F0),
(~0xAAAAAAAA & ~0xCCCCCCCC) | ( 0xAAAAAAAA & 0xF0F0F0F0),
(~0xAAAAAAAA & 0xCCCCCCCC) | ( 0xAAAAAAAA & ~0xF0F0F0F0),
(~0xAAAAAAAA & 0xCCCCCCCC) | ( 0xAAAAAAAA & 0xF0F0F0F0),
( 0xAAAAAAAA & ~0xCCCCCCCC) | (~0xAAAAAAAA & ~0xF0F0F0F0),
( 0xAAAAAAAA & ~0xCCCCCCCC) | (~0xAAAAAAAA & 0xF0F0F0F0),
( 0xAAAAAAAA & 0xCCCCCCCC) | (~0xAAAAAAAA & ~0xF0F0F0F0),
( 0xAAAAAAAA & 0xCCCCCCCC) | (~0xAAAAAAAA & 0xF0F0F0F0),
(~0xCCCCCCCC & ~0xAAAAAAAA) | ( 0xCCCCCCCC & ~0xF0F0F0F0),
(~0xCCCCCCCC & ~0xAAAAAAAA) | ( 0xCCCCCCCC & 0xF0F0F0F0),
(~0xCCCCCCCC & 0xAAAAAAAA) | ( 0xCCCCCCCC & ~0xF0F0F0F0),
(~0xCCCCCCCC & 0xAAAAAAAA) | ( 0xCCCCCCCC & 0xF0F0F0F0),
( 0xCCCCCCCC & ~0xAAAAAAAA) | (~0xCCCCCCCC & ~0xF0F0F0F0),
( 0xCCCCCCCC & ~0xAAAAAAAA) | (~0xCCCCCCCC & 0xF0F0F0F0),
( 0xCCCCCCCC & 0xAAAAAAAA) | (~0xCCCCCCCC & ~0xF0F0F0F0),
( 0xCCCCCCCC & 0xAAAAAAAA) | (~0xCCCCCCCC & 0xF0F0F0F0),
(~0xF0F0F0F0 & ~0xCCCCCCCC) | ( 0xF0F0F0F0 & ~0xAAAAAAAA),
(~0xF0F0F0F0 & ~0xCCCCCCCC) | ( 0xF0F0F0F0 & 0xAAAAAAAA),
(~0xF0F0F0F0 & 0xCCCCCCCC) | ( 0xF0F0F0F0 & ~0xAAAAAAAA),
(~0xF0F0F0F0 & 0xCCCCCCCC) | ( 0xF0F0F0F0 & 0xAAAAAAAA),
( 0xF0F0F0F0 & ~0xCCCCCCCC) | (~0xF0F0F0F0 & ~0xAAAAAAAA),
( 0xF0F0F0F0 & ~0xCCCCCCCC) | (~0xF0F0F0F0 & 0xAAAAAAAA),
( 0xF0F0F0F0 & 0xCCCCCCCC) | (~0xF0F0F0F0 & ~0xAAAAAAAA),
( 0xF0F0F0F0 & 0xCCCCCCCC) | (~0xF0F0F0F0 & 0xAAAAAAAA)
};
int i;
for ( i = 0; i < 24; i++ )
if ( ((unsigned)t) == s_Muxes[i] )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Count the number of unique drivers and invertors.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Lf_ManAnalyzeCoDrivers( Gia_Man_t * p, int * pnDrivers, int * pnInverts )
{
Gia_Obj_t * pObj;
int i, Entry, nDrivers, nInverts;
Vec_Int_t * vMarks = Vec_IntStart( Gia_ManObjNum(p) );
nDrivers = nInverts = 0;
Gia_ManForEachCo( p, pObj, i )
*Vec_IntEntryP( vMarks, Gia_ObjFaninId0p(p, pObj) ) |= Gia_ObjFaninC0(pObj) ? 2 : 1;
Vec_IntForEachEntry( vMarks, Entry, i )
nDrivers += (int)(Entry != 0), nInverts += (int)(Entry == 3);
Vec_IntFree( vMarks );
*pnDrivers = nDrivers;
*pnInverts = nInverts;
}
void Lf_ManComputeSwitching( Gia_Man_t * p, Vec_Flt_t * vSwitches )
{
// abctime clk = Abc_Clock();
Vec_Flt_t * vSwitching = (Vec_Flt_t *)Gia_ManComputeSwitchProbs( p, 48, 16, 0 );
assert( Vec_FltCap(vSwitches) == 0 );
*vSwitches = *vSwitching;
ABC_FREE( vSwitching );
// Abc_PrintTime( 1, "Computing switching activity", Abc_Clock() - clk );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutCreateUnit( Lf_Cut_t * p, int i )
{
p->fLate = 0;
p->fMux7 = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline Lf_Cut_t * Lf_ManFetchSet( Lf_Man_t * p, int i )
{
int uMaskPage = (1 << LF_LOG_PAGE) - 1;
Gia_Obj_t * pObj = Gia_ManObj( p->pGia, i );
int iOffSet = Vec_IntEntry( &p->vOffsets, i );
int Entry = Vec_IntEntry( &p->vCutSets, iOffSet );
assert( Gia_ObjIsAndNotBuf(pObj) );
assert( pObj->Value > 0 );
if ( Entry == -1 ) // first visit
{
if ( Vec_IntSize(&p->vFreeSets) == 0 ) // add new
{
Lf_Cut_t * pCut = (Lf_Cut_t *)ABC_CALLOC( word, p->nSetWords * (1 << LF_LOG_PAGE) );
int uMaskShift = Vec_PtrSize(&p->vMemSets) << LF_LOG_PAGE;
Vec_PtrPush( &p->vMemSets, pCut );
for ( Entry = uMaskPage; Entry >= 0; Entry-- )
{
Vec_IntPush( &p->vFreeSets, uMaskShift | Entry );
pCut[Entry].nLeaves = LF_NO_LEAF;
}
}
Entry = Vec_IntPop( &p->vFreeSets );
Vec_IntWriteEntry( &p->vCutSets, iOffSet, Entry );
p->nFrontMax = Abc_MaxInt( p->nFrontMax, Entry + 1 );
}
else if ( --pObj->Value == 0 )
{
Vec_IntPush( &p->vFreeSets, Entry );
Vec_IntWriteEntry( &p->vCutSets, iOffSet, -1 );
}
return (Lf_Cut_t *)((word *)Vec_PtrEntry(&p->vMemSets, Entry >> LF_LOG_PAGE) + p->nSetWords * (Entry & uMaskPage));
}
static inline int Lf_ManPrepareSet( Lf_Man_t * p, int iObj, int Index, Lf_Cut_t ** ppCutSet )
{
static word CutTemp[3][LF_CUT_WORDS];
if ( Vec_IntEntry(&p->vOffsets, iObj) == -1 )
return Lf_CutCreateUnit( (*ppCutSet = (Lf_Cut_t *)CutTemp[Index]), iObj );
{
Lf_Cut_t * pCut;
int i, nCutNum = p->pPars->nCutNum;
*ppCutSet = Lf_ManFetchSet(p, iObj);
Lf_CutSetForEachCut( p->nCutWords, *ppCutSet, pCut, i, nCutNum )
if ( pCut->nLeaves == LF_NO_LEAF )
return i;
return i;
}
}
/**Function*************************************************************
Synopsis [Cut manipulation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline word Lf_CutGetSign( Lf_Cut_t * pCut )
{
word Sign = 0; int i;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
Sign |= ((word)1) << (pCut->pLeaves[i] & 0x3F);
return Sign;
}
static inline int Lf_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline int Lf_CutEqual( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1 )
{
int i;
if ( pCut0->iFunc != pCut1->iFunc )
return 0;
if ( pCut0->nLeaves != pCut1->nLeaves )
return 0;
for ( i = 0; i < (int)pCut0->nLeaves; i++ )
if ( pCut0->pLeaves[i] != pCut1->pLeaves[i] )
return 0;
return 1;
}
static inline float Lf_CutSwitches( Lf_Man_t * p, Lf_Cut_t * pCut )
{
float Switches = 0; int i;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
Switches += Lf_ObjSwitches(p, pCut->pLeaves[i]);
//printf( "%.2f ", Switches );
return Switches;
}
static inline void Lf_CutPrint( Lf_Man_t * p, Lf_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } Late = %d D = %4d A = %9.4f F = %6d\n",
pCut->fLate, pCut->Delay, pCut->Flow, pCut->iFunc );
}
static inline float Lf_CutArea( Lf_Man_t * p, Lf_Cut_t * pCut )
{
if ( pCut->nLeaves < 2 || pCut->fMux7 )
return 0;
if ( p->pPars->fPower )
return 1.0 * pCut->nLeaves + Lf_CutSwitches( p, pCut );
if ( p->pPars->fOptEdge )
return (pCut->nLeaves + p->pPars->nAreaTuner) * (1 + (p->pPars->fCutGroup && (int)pCut->nLeaves > p->pPars->nLutSize/2));
return 1 + (p->pPars->fCutGroup && (int)pCut->nLeaves > p->pPars->nLutSize/2);
}
static inline int Lf_CutIsMux( Lf_Man_t * p, Lf_Cut_t * pCut, Gia_Obj_t * pMux )
{
int i, Id;
if ( pCut->nLeaves != 3 )
return 0;
assert( Gia_ObjIsMux(p->pGia, pMux) );
if ( Gia_ObjIsCi(Gia_ObjFanin0(pMux)) || Gia_ObjIsCi(Gia_ObjFanin1(pMux)) )
return 0;
Id = Gia_ObjFaninId0p( p->pGia, pMux );
for ( i = 0; i < 3; i++ )
if ( pCut->pLeaves[i] == Id )
break;
if ( i == 3 )
return 0;
Id = Gia_ObjFaninId1p( p->pGia, pMux );
for ( i = 0; i < 3; i++ )
if ( pCut->pLeaves[i] == Id )
break;
if ( i == 3 )
return 0;
Id = Gia_ObjFaninId2p( p->pGia, pMux );
for ( i = 0; i < 3; i++ )
if ( pCut->pLeaves[i] == Id )
break;
if ( i == 3 )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Cut packing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Lf_MemAlloc( Lf_Mem_t * p, int LogPage, Vec_Ptr_t * vFree, int nCutWords )
{
memset( p, 0, sizeof(Lf_Mem_t) );
p->LogPage = LogPage;
p->MaskPage = (1 << LogPage) - 1;
p->nCutWords = nCutWords;
p->vFree = vFree;
}
static inline int Lf_MemSaveCut( Lf_Mem_t * p, Lf_Cut_t * pCut, int iObj )
{
unsigned char * pPlace;
int i, iPlace, Prev = iObj, iCur = p->iCur;
assert( !pCut->fMux7 );
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> p->LogPage) )
Vec_PtrPush( &p->vPages, Vec_PtrSize(p->vFree) ? Vec_PtrPop(p->vFree) : ABC_ALLOC(char,p->MaskPage+1) );
assert( p->MaskPage - (p->iCur & p->MaskPage) >= 4 * (LF_LEAF_MAX + 2) );
iPlace = iCur & p->MaskPage;
pPlace = (unsigned char *)Vec_PtrEntry(&p->vPages, p->iCur >> p->LogPage);
iPlace = Gia_AigerWriteUnsignedBuffer( pPlace, iPlace, pCut->nLeaves );
for ( i = pCut->nLeaves - 1; i >= 0; i-- )
iPlace = Gia_AigerWriteUnsignedBuffer( pPlace, iPlace, Prev - pCut->pLeaves[i] ), Prev = pCut->pLeaves[i];
assert( pCut->nLeaves >= 2 || pCut->iFunc <= 3 );
if ( pCut->iFunc >= 0 )
iPlace = Gia_AigerWriteUnsignedBuffer( pPlace, iPlace, pCut->iFunc );
if ( p->MaskPage - (iPlace & p->MaskPage) < 4 * (LF_LEAF_MAX + 2) )
p->iCur = ((p->iCur >> p->LogPage) + 1) << p->LogPage;
else
p->iCur = (p->iCur & ~p->MaskPage) | iPlace;
return iCur;
}
static inline Lf_Cut_t * Lf_MemLoadCut( Lf_Mem_t * p, int iCur, int iObj, Lf_Cut_t * pCut, int fTruth, int fRecycle )
{
unsigned char * pPlace;
int i, Prev = iObj, Page = iCur >> p->LogPage;
assert( Page < Vec_PtrSize(&p->vPages) );
pPlace = (unsigned char *)Vec_PtrEntry(&p->vPages, Page) + (iCur & p->MaskPage);
pCut->nLeaves = Gia_AigerReadUnsigned(&pPlace);
assert( pCut->nLeaves <= LF_LEAF_MAX );
for ( i = pCut->nLeaves - 1; i >= 0; i-- )
pCut->pLeaves[i] = Prev - Gia_AigerReadUnsigned(&pPlace), Prev = pCut->pLeaves[i];
pCut->iFunc = fTruth ? Gia_AigerReadUnsigned(&pPlace) : -1;
assert( pCut->nLeaves >= 2 || pCut->iFunc <= 3 );
if ( fRecycle && Page && Vec_PtrEntry(&p->vPages, Page-1) )
{
Vec_PtrPush( p->vFree, Vec_PtrEntry(&p->vPages, Page-1) );
Vec_PtrWriteEntry( &p->vPages, Page-1, NULL );
}
pCut->Sign = fRecycle ? Lf_CutGetSign(pCut) : 0;
pCut->fMux7 = 0;
return pCut;
}
static inline void Lf_MemRecycle( Lf_Mem_t * p )
{
void * pPlace; int i;
Vec_PtrForEachEntry( void *, &p->vPages, pPlace, i )
if ( pPlace )
Vec_PtrPush( p->vFree, pPlace );
Vec_PtrClear( &p->vPages );
p->iCur = 0;
}
static inline Lf_Cut_t * Lf_MemLoadMuxCut( Lf_Man_t * p, int iObj, Lf_Cut_t * pCut )
{
Gia_Obj_t * pMux = Gia_ManObj( p->pGia, iObj );
assert( Gia_ObjIsMux(p->pGia, pMux) );
pCut->iFunc = p->pPars->fCutMin ? 4 : -1;
pCut->pLeaves[0] = Gia_ObjFaninId0( pMux, iObj );
pCut->pLeaves[1] = Gia_ObjFaninId1( pMux, iObj );
pCut->pLeaves[2] = Gia_ObjFaninId2( p->pGia, iObj );
pCut->nLeaves = 3;
pCut->fMux7 = 1;
return pCut;
}
static inline Lf_Cut_t * Lf_ObjCutMux( Lf_Man_t * p, int i )
{
static word CutSet[LF_CUT_WORDS];
return Lf_MemLoadMuxCut( p, i, (Lf_Cut_t *)CutSet );
}
static inline Lf_Cut_t * Lf_ObjCutBest( Lf_Man_t * p, int i )
{
static word CutSet[LF_CUT_WORDS];
Lf_Bst_t * pBest = Lf_ObjReadBest( p, i );
Lf_Cut_t * pCut = (Lf_Cut_t *)CutSet;
int Index = Lf_BestCutIndex( pBest );
pCut->Delay = pBest->Delay[Index];
pCut->Flow = pBest->Flow[Index];
if ( Index == 2 )
return Lf_MemLoadMuxCut( p, i, pCut );
return Lf_MemLoadCut( &p->vStoreOld, pBest->Cut[Index].Handle, i, pCut, p->pPars->fCutMin, 0 );
}
static inline Lf_Cut_t * Lf_ObjCutBestNew( Lf_Man_t * p, int i, Lf_Cut_t * pCut )
{
Lf_Bst_t * pBest = Lf_ObjReadBest( p, i );
int Index = Lf_BestCutIndex( pBest );
pCut->Delay = pBest->Delay[Index];
pCut->Flow = pBest->Flow[Index];
if ( Index == 2 )
return Lf_MemLoadMuxCut( p, i, pCut );
return Lf_MemLoadCut( &p->vStoreNew, pBest->Cut[Index].Handle, i, pCut, 0, 0 );
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutCheck( Lf_Cut_t * pBase, Lf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Lf_SetCheckArray( Lf_Cut_t ** ppCuts, int nCuts )
{
Lf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( !pCut0->fMux7 );
assert( pCut0->nLeaves < LF_LEAF_MAX );
assert( pCut0->Sign == Lf_CutGetSign(pCut0) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Lf_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutMergeOrder( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = -1;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Lf_CutMergeOrder2( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
xMin = Abc_MinInt(x0, x1);
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
}
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Lf_CutMergeOrderMux( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCut2, Lf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = -1;
pCut->fMux7 = 0;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Lf_SetCutIsContainedOrder( Lf_Cut_t * pBase, Lf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Lf_SetLastCutIsContained( Lf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Lf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutCompareDelay( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1 )
{
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
if ( pCut0->Flow < pCut1->Flow - LF_EPSILON ) return -1;
if ( pCut0->Flow > pCut1->Flow + LF_EPSILON ) return 1;
return 0;
}
static inline int Lf_CutCompareArea( Lf_Cut_t * pCut0, Lf_Cut_t * pCut1 )
{
if ( pCut0->fLate < pCut1->fLate ) return -1;
if ( pCut0->fLate > pCut1->fLate ) return 1;
if ( pCut0->Flow < pCut1->Flow - LF_EPSILON ) return -1;
if ( pCut0->Flow > pCut1->Flow + LF_EPSILON ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline int Lf_SetLastCutContainsArea( Lf_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 1; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Lf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = LF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 1; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == LF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Lf_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline void Lf_SetSortByArea( Lf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 1; i-- )
{
if ( Lf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Lf_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Lf_SetAddCut( Lf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Lf_SetLastCutContainsArea(pCuts, nCuts);
assert( nCuts >= 1 );
if ( Lf_CutCompareDelay(pCuts[0], pCuts[nCuts]) == 1 ) // new cut is better for delay
{
ABC_SWAP( Lf_Cut_t *, pCuts[0], pCuts[nCuts] );
// if old cut (now cut number nCuts) is contained - remove it
if ( pCuts[0]->nLeaves < pCuts[nCuts]->nLeaves && (pCuts[0]->Sign & pCuts[nCuts]->Sign) == pCuts[0]->Sign && Lf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[0]) )
return nCuts;
}
// sort area cuts by area
Lf_SetSortByArea( pCuts, nCuts );
// add new cut if there is room
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline void Lf_SetSortBySize( Lf_Cut_t ** pCutsR, int nCutsR )
{
int i, j, best_i;
for ( i = 1; i < nCutsR-1; i++ )
{
best_i = i;
for ( j = i+1; j < nCutsR; j++ )
if ( pCutsR[j]->nLeaves > pCutsR[best_i]->nLeaves )
best_i = j;
ABC_SWAP( Lf_Cut_t *, pCutsR[i], pCutsR[best_i] );
}
}
/**Function*************************************************************
Synopsis [Check if truth table has non-const-cof cofactoring variable.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_ManFindCofVar( word * pTruth, int nWords, int nVars )
{
word uTruthCof[LF_TT_WORDS]; int iVar;
for ( iVar = 0; iVar < nVars; iVar++ )
{
Abc_TtCofactor0p( uTruthCof, pTruth, nWords, iVar );
if ( Abc_TtSupportSize(uTruthCof, nVars) < 2 )
continue;
Abc_TtCofactor1p( uTruthCof, pTruth, nWords, iVar );
if ( Abc_TtSupportSize(uTruthCof, nVars) < 2 )
continue;
return iVar;
}
return -1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutComputeTruth6( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, int fCompl0, int fCompl1, Lf_Cut_t * pCutR, int fIsXor )
{
// extern int Mf_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Lf_CutTruth(p, pCut0);
word t1 = *Lf_CutTruth(p, pCut1);
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
// p->nCutMux += Lf_ManTtIsMux( t );
assert( (int)pCutR->nLeaves <= nOldSupp );
// Mf_ManTruthCanonicize( &t, pCutR->nLeaves );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Lf_CutComputeTruth( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, int fCompl0, int fCompl1, Lf_Cut_t * pCutR, int fIsXor )
{
if ( p->pPars->nLutSize <= 6 )
return Lf_CutComputeTruth6( p, pCut0, pCut1, fCompl0, fCompl1, pCutR, fIsXor );
{
word uTruth[LF_TT_WORDS], uTruth0[LF_TT_WORDS], uTruth1[LF_TT_WORDS];
int nOldSupp = pCutR->nLeaves, truthId;
int LutSize = p->pPars->nLutSize, fCompl;
int nWords = Abc_Truth6WordNum(LutSize);
word * pTruth0 = Lf_CutTruth(p, pCut0);
word * pTruth1 = Lf_CutTruth(p, pCut1);
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 );
Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
if ( fIsXor )
Abc_TtXor( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] ^ uTruth1[0]) & 1)) );
else
Abc_TtAnd( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] & uTruth1[0]) & 1)) );
pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize );
assert( (uTruth[0] & 1) == 0 );
//Kit_DsdPrintFromTruth( uTruth, pCutR->nLeaves ), printf("\n" ), printf("\n" );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
}
static inline int Lf_CutComputeTruthMux6( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Lf_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Lf_CutTruth(p, pCut0);
word t1 = *Lf_CutTruth(p, pCut1);
word tC = *Lf_CutTruth(p, pCutC);
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Lf_CutComputeTruthMux( Lf_Man_t * p, Lf_Cut_t * pCut0, Lf_Cut_t * pCut1, Lf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Lf_Cut_t * pCutR )
{
if ( p->pPars->nLutSize <= 6 )
return Lf_CutComputeTruthMux6( p, pCut0, pCut1, pCutC, fCompl0, fCompl1, fComplC, pCutR );
{
word uTruth[LF_TT_WORDS], uTruth0[LF_TT_WORDS], uTruth1[LF_TT_WORDS], uTruthC[LF_TT_WORDS];
int nOldSupp = pCutR->nLeaves, truthId;
int LutSize = p->pPars->nLutSize, fCompl;
int nWords = Abc_Truth6WordNum(LutSize);
word * pTruth0 = Lf_CutTruth(p, pCut0);
word * pTruth1 = Lf_CutTruth(p, pCut1);
word * pTruthC = Lf_CutTruth(p, pCutC);
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 );
Abc_TtCopy( uTruthC, pTruthC, nWords, Abc_LitIsCompl(pCutC->iFunc) ^ fComplC );
Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruthC, LutSize, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtMux( uTruth, uTruthC, uTruth1, uTruth0, nWords );
fCompl = (int)(uTruth[0] & 1);
if ( fCompl ) Abc_TtNot( uTruth, nWords );
pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize );
assert( (uTruth[0] & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
}
/**Function*************************************************************
Synopsis [Exact local area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Lf_CutRef_rec( Lf_Man_t * p, Lf_Cut_t * pCut )
{
word CutTemp[LF_CUT_WORDS] = {0};
float Count = Lf_CutArea(p, pCut);
int i, Var;
Lf_CutForEachVar( pCut, Var, i )
if ( !Lf_ObjMapRefInc(p, Var) )
Count += Lf_CutRef_rec( p, Lf_ObjCutBestNew(p, Var, (Lf_Cut_t *)CutTemp) );
return Count;
}
float Lf_CutDeref_rec( Lf_Man_t * p, Lf_Cut_t * pCut )
{
word CutTemp[LF_CUT_WORDS] = {0};
float Count = Lf_CutArea(p, pCut);
int i, Var;
Lf_CutForEachVar( pCut, Var, i )
if ( !Lf_ObjMapRefDec(p, Var) )
Count += Lf_CutDeref_rec( p, Lf_ObjCutBestNew(p, Var, (Lf_Cut_t *)CutTemp) );
return Count;
}
static inline float Lf_CutAreaDerefed( Lf_Man_t * p, Lf_Cut_t * pCut )
{
float Ela1 = Lf_CutRef_rec( p, pCut );
Lf_CutDeref_rec( p, pCut );
// float Ela2 = Lf_CutDeref_rec( p, pCut );
// assert( Ela1 == Ela2 );
return Ela1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Lf_CutRequired( Lf_Man_t * p, Lf_Cut_t * pCut )
{
int i, Arr, Req, Arrival = 0, Required = 0;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
{
if ( Lf_ObjOff(p, pCut->pLeaves[i]) < 0 )
// Arr = Lf_ObjCiArrival( p, Gia_ObjCioId(Gia_ManObj(p->pGia, pCut->pLeaves[i])) );
Arr = Lf_ObjArrival_rec( p, Gia_ManObj(p->pGia, pCut->pLeaves[i]) );
else
Arr = Lf_ObjReadBest(p, pCut->pLeaves[i])->Delay[0];
Arrival = Abc_MaxInt( Arrival, Arr );
Req = Lf_ObjRequired(p, pCut->pLeaves[i]);
if ( Req < ABC_INFINITY )
Required = Abc_MaxInt( Required, Req );
}
return Abc_MaxInt( Required + 2, Arrival + 1 );
}
static inline void Lf_CutParams( Lf_Man_t * p, Lf_Cut_t * pCut, int Required, float FlowRefs, Gia_Obj_t * pMux )
{
Lf_Bst_t * pBest;
int i, Index, Delay;
assert( !pCut->fMux7 || Gia_ObjIsMux(p->pGia, pMux) );
pCut->fLate = 0;
pCut->Delay = 0;
pCut->Flow = 0;
assert( pCut->nLeaves < LF_NO_LEAF );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
{
if ( Lf_ObjOff(p, pCut->pLeaves[i]) < 0 )
// Delay = Lf_ObjCiArrival( p, Gia_ObjCioId(Gia_ManObj(p->pGia, pCut->pLeaves[i])) );
Delay = Lf_ObjArrival_rec( p, Gia_ManObj(p->pGia, pCut->pLeaves[i]) );
else
{
pBest = Lf_ObjReadBest(p, pCut->pLeaves[i]);
assert( pBest->Delay[0] <= pBest->Delay[1] );
assert( pBest->Flow[0] >= pBest->Flow[1] );
if ( p->fUseEla )
Index = Lf_BestIndex(pBest);
else
{
Index = (int)(pBest->Delay[1] + 1 <= Required && Required != ABC_INFINITY);
//pCut->Flow += pBest->Flow[Index];
if ( pCut->Flow >= (float)1e32 || pBest->Flow[Index] >= (float)1e32 )
pCut->Flow = (float)1e32;
else
pCut->Flow += pBest->Flow[Index];
}
Delay = pBest->Delay[Index];
}
// if ( pCut->fMux7 && pCut->pLeaves[i] == Gia_ObjFaninId2p(p->pGia, pMux) )
// Delay += 1;
pCut->Delay = Abc_MaxInt( pCut->Delay, Delay );
}
pCut->Delay += (int)(pCut->nLeaves > 1);// && !pCut->fMux7;
if ( pCut->Delay > Required )
pCut->fLate = 1;
if ( p->fUseEla )
pCut->Flow = Lf_CutAreaDerefed(p, pCut) / FlowRefs;
else
pCut->Flow = (pCut->Flow + Lf_CutArea(p, pCut)) / FlowRefs;
}
void Lf_ObjMergeOrder( Lf_Man_t * p, int iObj )
{
word CutSet[LF_CUT_MAX][LF_CUT_WORDS] = {{0}};
Lf_Cut_t * pCutSet0, * pCutSet1, * pCutSet2, * pCut0, * pCut1, * pCut2;
Lf_Cut_t * pCutSet = (Lf_Cut_t *)CutSet, * pCutsR[LF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
Lf_Bst_t * pBest = Lf_ObjReadBest(p, iObj);
float FlowRefs = Lf_ObjFlowRefs(p, iObj);
int Required = Lf_ObjRequired(p, iObj);
int nLutSize = p->pPars->fCutGroup ? p->pPars->nLutSize/2 : p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCutWords = p->nCutWords;
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int nCuts0 = Lf_ManPrepareSet( p, Gia_ObjFaninId0(pObj, iObj), 0, &pCutSet0 );
int nCuts1 = Lf_ManPrepareSet( p, Gia_ObjFaninId1(pObj, iObj), 1, &pCutSet1 );
int iSibl = Gia_ObjSibl(p->pGia, iObj);
int i, k, n, iCutUsed, nCutsR = 0;
float Value1 = -1, Value2 = -1;
assert( !Gia_ObjIsBuf(pObj) );
Lf_CutSetForEachCut( nCutWords, pCutSet, pCut0, i, nCutNum )
pCutsR[i] = pCut0;
if ( p->Iter )
{
assert( nCutsR == 0 );
// load cuts
Lf_MemLoadCut( &p->vStoreOld, pBest->Cut[0].Handle, iObj, pCutsR[0], p->pPars->fCutMin, 1 );
if ( Lf_BestDiffCuts(pBest) )
Lf_MemLoadCut( &p->vStoreOld, pBest->Cut[1].Handle, iObj, pCutsR[1], p->pPars->fCutMin, 1 );
// deref the cut
if ( p->fUseEla && Lf_ObjMapRefNum(p, iObj) > 0 )
Value1 = Lf_CutDeref_rec( p, pCutsR[Lf_BestIndex(pBest)] );
// update required times
if ( Required == ABC_INFINITY )//&& !p->fUseEla )
Required = Lf_CutRequired( p, pCutsR[0] );
// compute parameters
Lf_CutParams( p, pCutsR[nCutsR++], Required, FlowRefs, pObj );
if ( Lf_BestDiffCuts(pBest) )
{
assert( nCutsR == 1 );
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
if ( pCutsR[0]->fLate )
p->nTimeFails++;
}
if ( iSibl )
{
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCutsE = Lf_ManPrepareSet( p, iSibl, 2, &pCutSet2 );
Lf_CutSetForEachCut( nCutWords, pCutSet2, pCut2, n, nCutsE )
{
if ( pCut2->pLeaves[0] == iSibl )
continue;
Lf_CutCopy( pCutsR[nCutsR], pCut2, nCutWords );
if ( pCutsR[nCutsR]->iFunc >= 0 )
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
Lf_Cut_t * pCutSave = NULL;
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
int nCuts2 = Lf_ManPrepareSet( p, Gia_ObjFaninId2(p->pGia, iObj), 2, &pCutSet2 );
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
Lf_CutSetForEachCut( nCutWords, pCutSet0, pCut0, i, nCuts0 ) if ( (int)pCut0->nLeaves <= nLutSize )
Lf_CutSetForEachCut( nCutWords, pCutSet1, pCut1, k, nCuts1 ) if ( (int)pCut1->nLeaves <= nLutSize )
Lf_CutSetForEachCut( nCutWords, pCutSet2, pCut2, n, nCuts2 ) if ( (int)pCut2->nLeaves <= nLutSize )
{
pCutSave = pCut2;
if ( Lf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Lf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Lf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Lf_CutComputeTruthMux(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Lf_CutGetSign(pCutsR[nCutsR]);
if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCutsR[nCutsR]->nLeaves &&
Lf_ManFindCofVar(Lf_CutTruth(p,pCutsR[nCutsR]), Abc_Truth6WordNum(nLutSize), pCutsR[nCutsR]->nLeaves) == -1 )
continue;
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
if ( p->pPars->fCutGroup )
{
assert( pCutSave->nLeaves == 1 );
assert( pCutSave->pLeaves[0] == Gia_ObjFaninId2(p->pGia, iObj) );
Lf_CutSetForEachCut( nCutWords, pCutSet0, pCut0, i, nCuts0 ) if ( (int)pCut0->nLeaves <= nLutSize )
Lf_CutSetForEachCut( nCutWords, pCutSet1, pCut1, k, nCuts1 ) if ( (int)pCut1->nLeaves <= nLutSize )
{
assert( (int)pCut0->nLeaves + (int)pCut1->nLeaves + 1 <= p->pPars->nLutSize );
// if ( Lf_CutCountBits(pCut0->Sign | pCut1->Sign | pCutSave->Sign) > p->pPars->nLutSize )
// continue;
p->CutCount[1]++;
if ( !Lf_CutMergeOrderMux(pCut0, pCut1, pCutSave, pCutsR[nCutsR], p->pPars->nLutSize) )
continue;
if ( Lf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Lf_CutComputeTruthMux(p, pCut0, pCut1, pCutSave, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Lf_CutGetSign(pCutsR[nCutsR]);
// if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCutsR[nCutsR]->nLeaves &&
// Lf_ManFindCofVar(Lf_CutTruth(p,pCutsR[nCutsR]), Abc_Truth6WordNum(nLutSize), pCutsR[nCutsR]->nLeaves) == -1 )
// continue;
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
Lf_CutSetForEachCut( nCutWords, pCutSet0, pCut0, i, nCuts0 ) if ( (int)pCut0->nLeaves <= nLutSize )
Lf_CutSetForEachCut( nCutWords, pCutSet1, pCut1, k, nCuts1 ) if ( (int)pCut1->nLeaves <= nLutSize )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Lf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Lf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Lf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Lf_CutComputeTruth(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Lf_CutGetSign(pCutsR[nCutsR]);
if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCutsR[nCutsR]->nLeaves &&
Lf_ManFindCofVar(Lf_CutTruth(p,pCutsR[nCutsR]), Abc_Truth6WordNum(nLutSize), pCutsR[nCutsR]->nLeaves) == -1 )
continue;
Lf_CutParams( p, pCutsR[nCutsR], Required, FlowRefs, pObj );
nCutsR = Lf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
{
printf( "*** Obj = %d FlowRefs = %.2f MapRefs = %2d Required = %2d\n", iObj, FlowRefs, Lf_ObjMapRefNum(p, iObj), Required );
for ( i = 0; i < nCutsR; i++ )
Lf_CutPrint( p, pCutsR[i] );
printf( "\n" );
}
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
// assert( Lf_SetCheckArray(pCutsR, nCutsR) );
// delay cut
assert( nCutsR == 1 || pCutsR[0]->Delay <= pCutsR[1]->Delay );
pBest->Cut[0].fUsed = pBest->Cut[1].fUsed = 0;
pBest->Cut[0].Handle = pBest->Cut[1].Handle = Lf_MemSaveCut(&p->vStoreNew, pCutsR[0], iObj);
pBest->Delay[0] = pBest->Delay[1] = pCutsR[0]->Delay;
pBest->Flow[0] = pBest->Flow[1] = pCutsR[0]->Flow;
p->nCutCounts[pCutsR[0]->nLeaves]++;
p->CutCount[3] += nCutsR;
p->nCutEqual++;
// area cut
iCutUsed = 0;
if ( nCutsR > 1 && pCutsR[0]->Flow > pCutsR[1]->Flow + LF_EPSILON )//&& !pCutsR[1]->fLate ) // can remove !fLate
{
pBest->Cut[1].Handle = Lf_MemSaveCut(&p->vStoreNew, pCutsR[1], iObj);
pBest->Delay[1] = pCutsR[1]->Delay;
pBest->Flow[1] = pCutsR[1]->Flow;
p->nCutCounts[pCutsR[1]->nLeaves]++;
p->nCutEqual--;
if ( !pCutsR[1]->fLate )
iCutUsed = 1;
}
// mux cut
if ( p->pPars->fUseMux7 && Gia_ObjIsMuxId(p->pGia, iObj) )
{
pCut2 = Lf_ObjCutMux( p, iObj );
Lf_CutParams( p, pCut2, Required, FlowRefs, pObj );
pBest->Delay[2] = pCut2->Delay;
pBest->Flow[2] = pCut2->Flow;
// update area value of the best area cut
// if ( !pCut2->fLate )
// pBest->Flow[1] = Abc_MinFloat( pBest->Flow[1], pBest->Flow[2] );
}
// reference resulting cut
if ( p->fUseEla )
{
pBest->Cut[iCutUsed].fUsed = 1;
if ( Lf_ObjMapRefNum(p, iObj) > 0 )
Value2 = Lf_CutRef_rec( p, pCutsR[iCutUsed] );
// if ( Value1 < Value2 )
// printf( "ELA degradated cost at node %d from %d to %d.\n", iObj, Value1, Value2 ), fflush(stdout);
// assert( Value1 >= Value2 );
// if ( Value1 != -1 )
// printf( "%.2f -> %.2f ", Value1, Value2 );
}
if ( pObj->Value == 0 )
return;
// store the cutset
pCutSet = Lf_ManFetchSet(p, iObj);
Lf_CutSetForEachCut( nCutWords, pCutSet, pCut0, i, nCutNum )
{
assert( !pCut0->fMux7 );
if ( i < nCutsR )
Lf_CutCopy( pCut0, pCutsR[i], nCutWords );
else if ( i == nCutsR && pCutsR[0]->nLeaves > 1 && (nCutsR == 1 || pCutsR[1]->nLeaves > 1) )
Lf_CutCreateUnit( pCut0, iObj );
else
pCut0->nLeaves = LF_NO_LEAF;
}
}
/**Function*************************************************************
Synopsis [Computing delay/area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Lf_ManSetFlowRefInc( Gia_Man_t * p, Vec_Flt_t * vRefs, Vec_Int_t * vOffsets, int i )
{
if ( Gia_ObjIsAndNotBuf(Gia_ManObj(p, i)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, i), 1 );
}
void Lf_ManSetFlowRefs( Gia_Man_t * p, Vec_Flt_t * vRefs, Vec_Int_t * vOffsets )
{
int fDiscount = 1;
Gia_Obj_t * pObj, * pCtrl, * pData0, * pData1;
int i, Id;
Vec_FltFill( vRefs, Gia_ManAndNotBufNum(p), 0 );
Gia_ManForEachAnd( p, pObj, i )
{
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjFaninId0(pObj, i)), 1 );
if ( Gia_ObjIsBuf(pObj) )
continue;
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin1(pObj)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjFaninId1(pObj, i)), 1 );
if ( p->pMuxes )
{
if ( Gia_ObjIsMuxId(p, i) && Gia_ObjIsAndNotBuf(Gia_ObjFanin2(p, pObj)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjFaninId2(p, i)), 1 );
}
else if ( fDiscount && Gia_ObjIsMuxType(pObj) ) // discount XOR/MUX
{
pCtrl = Gia_Regular(Gia_ObjRecognizeMux(pObj, &pData1, &pData0));
pData0 = Gia_Regular(pData0);
pData1 = Gia_Regular(pData1);
if ( Gia_ObjIsAndNotBuf(pCtrl) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjId(p, pCtrl)), -1 );
if ( pData0 == pData1 && Gia_ObjIsAndNotBuf(pData0) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Gia_ObjId(p, pData0)), -1 );
}
}
Gia_ManForEachCoDriverId( p, Id, i )
if ( Gia_ObjIsAndNotBuf(Gia_ManObj(p, Id)) )
Vec_FltAddToEntry( vRefs, Vec_IntEntry(vOffsets, Id), 1 );
for ( i = 0; i < Vec_FltSize(vRefs); i++ )
Vec_FltUpdateEntry( vRefs, i, 1 );
}
void Lf_ManSetCutRefs( Lf_Man_t * p )
{
Gia_Obj_t * pObj; int i;
if ( Vec_PtrSize(&p->vMemSets) * (1 << LF_LOG_PAGE) != Vec_IntSize(&p->vFreeSets) )
printf( "The number of used cutsets = %d.\n", Vec_PtrSize(&p->vMemSets) * (1 << LF_LOG_PAGE) - Vec_IntSize(&p->vFreeSets) );
Gia_ManForEachAnd( p->pGia, pObj, i )
{
assert( pObj->Value == 0 );
if ( Gia_ObjIsBuf(pObj) )
continue;
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Gia_ObjFanin0(pObj)->Value++;
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin1(pObj)) )
Gia_ObjFanin1(pObj)->Value++;
if ( Gia_ObjIsMuxId(p->pGia, i) && Gia_ObjIsAndNotBuf(Gia_ObjFanin2(p->pGia, pObj)) )
Gia_ObjFanin2(p->pGia, pObj)->Value++;
if ( Gia_ObjSibl(p->pGia, i) && Gia_ObjIsAndNotBuf(Gia_ObjSiblObj(p->pGia, i)) )
Gia_ObjSiblObj(p->pGia, i)->Value++;
}
}
static inline int Lf_ManSetMuxCut( Lf_Man_t * p, Lf_Bst_t * pBest, int iObj, int Required )
{
Gia_Obj_t * pMux;
if ( !Gia_ObjIsMuxId(p->pGia, iObj) )
return 0;
if ( pBest->Delay[2] > Required )
return 0;
if ( pBest->Flow[2] > 1.1 * pBest->Flow[1] )
return 0;
pMux = Gia_ManObj(p->pGia, iObj);
if ( pMux->fMark0 || Gia_ObjFanin0(pMux)->fMark0 || Gia_ObjFanin1(pMux)->fMark0 )
return 0;
Gia_ObjFanin0(pMux)->fMark0 = 1;
Gia_ObjFanin1(pMux)->fMark0 = 1;
return 1;
}
void Lf_ManSetMapRefsOne( Lf_Man_t * p, int iObj )
{
Lf_Cut_t * pCut;
Lf_Bst_t * pBest = Lf_ObjReadBest( p, iObj );
int k, Index, Required = Lf_ObjRequired( p, iObj );
assert( Lf_ObjMapRefNum(p, iObj) > 0 );
assert( !pBest->Cut[0].fUsed && !pBest->Cut[1].fUsed );
if ( !p->pPars->fUseMux7 || !Lf_ManSetMuxCut(p, pBest, iObj, Required) )
{
Index = (int)(Lf_BestDiffCuts(pBest) && pBest->Delay[1] <= Required);
pBest->Cut[Index].fUsed = 1;
}
pCut = Lf_ObjCutBest( p, iObj );
assert( !pCut->fMux7 || pCut->nLeaves == 3 );
// assert( pCut->Delay <= Required );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
{
// if ( pCut->fMux7 && pCut->pLeaves[k] != Gia_ObjFaninId2(p->pGia, iObj) )
// Lf_ObjSetRequired( p, pCut->pLeaves[k], Required );
// else
Lf_ObjSetRequired( p, pCut->pLeaves[k], Required - 1 );
if ( Gia_ObjIsAndNotBuf(Gia_ManObj(p->pGia, pCut->pLeaves[k])) )
Lf_ObjMapRefInc( p, pCut->pLeaves[k] );
}
if ( pCut->fMux7 )
{
p->pPars->Mux7++;
p->pPars->Edge++;
return;
}
if ( Vec_FltSize(&p->vSwitches) )
p->Switches += Lf_CutSwitches(p, pCut);
p->pPars->Edge += pCut->nLeaves;
p->pPars->Area++;
}
int Lf_ManSetMapRefs( Lf_Man_t * p )
{
float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
float * pFlowRefs;
int * pMapRefs, i;
Gia_Obj_t * pObj;
// compute delay
int Delay = 0;
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Delay = Abc_MaxInt( Delay, Lf_ObjCoArrival(p, i) );
// check delay target
if ( p->pPars->DelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->DelayTarget = (int)((float)Delay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->DelayTarget != -1 )
{
if ( Delay < p->pPars->DelayTarget + 0.01 )
Delay = p->pPars->DelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %d to %d.\n", p->pPars->DelayTarget, Delay );
}
p->pPars->Delay = Delay;
// compute area/edges/required
p->pPars->Mux7 = p->pPars->Area = p->pPars->Edge = p->Switches = 0;
Vec_IntFill( &p->vMapRefs, Gia_ManAndNotBufNum(p->pGia), 0 );
Vec_IntFill( &p->vRequired, Gia_ManObjNum(p->pGia), ABC_INFINITY );
if ( p->pPars->fUseMux7 )
{
Gia_ManCleanMark0(p->pGia);
Gia_ManForEachCi( p->pGia, pObj, i )
pObj->fMark0 = 1;
}
if ( p->pGia->pManTime != NULL )
{
assert( Gia_ManBufNum(p->pGia) );
Tim_ManIncrementTravId( (Tim_Man_t*)p->pGia->pManTime );
if ( p->pPars->fDoAverage )
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Tim_ManSetCoRequired( (Tim_Man_t*)p->pGia->pManTime, i, (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) );
else
Tim_ManInitPoRequiredAll( (Tim_Man_t*)p->pGia->pManTime, Delay );
Gia_ManForEachObjReverse1( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsAnd(pObj) )
{
if ( Lf_ObjMapRefNum(p, i) )
Lf_ManSetMapRefsOne( p, i );
}
else if ( Gia_ObjIsCi(pObj) )
Tim_ManSetCiRequired( (Tim_Man_t*)p->pGia->pManTime, Gia_ObjCioId(pObj), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsCo(pObj) )
{
int iDriverId = Gia_ObjFaninId0(pObj, i);
int reqTime = Tim_ManGetCoRequired( (Tim_Man_t*)p->pGia->pManTime, Gia_ObjCioId(pObj) );
Lf_ObjSetRequired( p, iDriverId, reqTime );
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Lf_ObjMapRefInc( p, iDriverId );
}
else assert( 0 );
}
}
else
{
Gia_ManForEachCo( p->pGia, pObj, i )
{
int iDriverId = Gia_ObjFaninId0p(p->pGia, pObj);
int reqTime = p->pPars->fDoAverage ? (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) : Delay;
Lf_ObjSetRequired( p, iDriverId, reqTime );
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Lf_ObjMapRefInc( p, iDriverId );
}
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
if ( Gia_ObjIsAndNotBuf(Gia_ObjFanin0(pObj)) )
Lf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i) );
}
else if ( Lf_ObjMapRefNum(p, i) )
Lf_ManSetMapRefsOne( p, i );
}
}
if ( p->pPars->fUseMux7 )
Gia_ManCleanMark0(p->pGia);
// blend references
assert( Vec_IntSize(&p->vMapRefs) == Gia_ManAndNotBufNum(p->pGia) );
assert( Vec_FltSize(&p->vFlowRefs) == Gia_ManAndNotBufNum(p->pGia) );
pMapRefs = Vec_IntArray(&p->vMapRefs);
pFlowRefs = Vec_FltArray(&p->vFlowRefs);
for ( i = 0; i < Vec_IntSize(&p->vMapRefs); i++ )
pFlowRefs[i] = Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i]);
// pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]);
return p->pPars->Area;
}
void Lf_ManCountMapRefsOne( Lf_Man_t * p, int iObj )
{
Lf_Bst_t * pBest = Lf_ObjReadBest( p, iObj );
Lf_Cut_t * pCut = Lf_ObjCutBest( p, iObj );
int k ,Required = Lf_ObjRequired( p, iObj );
assert( Lf_ObjMapRefNum(p, iObj) > 0 );
assert( Lf_BestIsMapped(pBest) );
assert( !pCut->fMux7 );
// assert( pCut->Delay <= Required );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Lf_ObjSetRequired( p, pCut->pLeaves[k], Required - 1 );
if ( Vec_FltSize(&p->vSwitches) )
p->Switches += Lf_CutSwitches(p, pCut);
p->pPars->Edge += pCut->nLeaves;
p->pPars->Area++;
}
void Lf_ManCountMapRefs( Lf_Man_t * p )
{
// compute delay
Gia_Obj_t * pObj;
int i, Id, Delay = 0;
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Delay = Abc_MaxInt( Delay, Lf_ObjCoArrival2(p, i) );
// check delay target
if ( p->pPars->DelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->DelayTarget = (int)((float)Delay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->DelayTarget != -1 )
{
if ( Delay < p->pPars->DelayTarget + 0.01 )
Delay = p->pPars->DelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %d to %d.\n", p->pPars->DelayTarget, Delay );
}
p->pPars->Delay = Delay;
// compute area/edges/required
p->pPars->Mux7 = p->pPars->Area = p->pPars->Edge = p->Switches = 0;
Vec_IntFill( &p->vRequired, Gia_ManObjNum(p->pGia), ABC_INFINITY );
if ( p->pPars->fUseMux7 )
Gia_ManCleanMark0(p->pGia);
if ( p->pGia->pManTime != NULL )
{
Tim_ManIncrementTravId( (Tim_Man_t*)p->pGia->pManTime );
if ( p->pPars->fDoAverage )
for ( i = 0; i < Gia_ManCoNum(p->pGia); i++ )
Tim_ManSetCoRequired( (Tim_Man_t*)p->pGia->pManTime, i, (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) );
else
Tim_ManInitPoRequiredAll( (Tim_Man_t*)p->pGia->pManTime, Delay );
Gia_ManForEachObjReverse1( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsAnd(pObj) )
{
if ( Lf_ObjMapRefNum(p, i) )
Lf_ManCountMapRefsOne( p, i );
}
else if ( Gia_ObjIsCi(pObj) )
Tim_ManSetCiRequired( (Tim_Man_t*)p->pGia->pManTime, Gia_ObjCioId(pObj), Lf_ObjRequired(p, i) );
else if ( Gia_ObjIsCo(pObj) )
{
int reqTime = Tim_ManGetCoRequired( (Tim_Man_t*)p->pGia->pManTime, Gia_ObjCioId(pObj) );
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), reqTime );
}
else assert( 0 );
}
}
else
{
Gia_ManForEachCoDriverId( p->pGia, Id, i )
Lf_ObjSetRequired( p, Id, p->pPars->fDoAverage ? (int)(Lf_ObjCoArrival(p, i) * (100.0 + p->pPars->nRelaxRatio) / 100.0) : Delay );
Gia_ManForEachAndReverse( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
Lf_ObjSetRequired( p, Gia_ObjFaninId0(pObj, i), Lf_ObjRequired(p, i) );
else if ( Lf_ObjMapRefNum(p, i) )
Lf_ManCountMapRefsOne( p, i );
}
if ( p->pPars->fUseMux7 )
Gia_ManCleanMark0(p->pGia);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Lf_ManDeriveMapping( Lf_Man_t * p )
{
Vec_Int_t * vMapping;
Lf_Cut_t * pCut;
int i, k;
assert( !p->pPars->fCutMin && p->pGia->vMapping == NULL );
vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 );
Gia_ManForEachAndId( p->pGia, i )
{
if ( !Lf_ObjMapRefNum(p, i) )
continue;
assert( !Gia_ObjIsBuf(Gia_ManObj(p->pGia,i)) );
pCut = Lf_ObjCutBest( p, i );
assert( !pCut->fMux7 );
Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, pCut->nLeaves );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Vec_IntPush( vMapping, pCut->pLeaves[k] );
Vec_IntPush( vMapping, i );
}
assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vMapping = vMapping;
return p->pGia;
}
Gia_Man_t * Lf_ManDeriveMappingCoarse( Lf_Man_t * p )
{
Gia_Man_t * pNew, * pGia = p->pGia;
Gia_Obj_t * pObj;
Lf_Cut_t * pCut;
int i, k;
assert( !p->pPars->fCutMin && pGia->pMuxes );
// create new manager
pNew = Gia_ManStart( Gia_ManObjNum(pGia) );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
// start mapping
pNew->vMapping = Vec_IntAlloc( Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia) + (int)p->pPars->Edge + 2*(int)p->pPars->Area + 4*(int)p->pPars->Mux7 );
Vec_IntFill( pNew->vMapping, Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia), 0 );
// process objects
Gia_ManConst0(pGia)->Value = 0;
Gia_ManForEachObj1( pGia, pObj, i )
{
if ( Gia_ObjIsCi(pObj) )
{ pObj->Value = Gia_ManAppendCi( pNew ); continue; }
if ( Gia_ObjIsCo(pObj) )
{ pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); continue; }
if ( Gia_ObjIsBuf(pObj) )
{ pObj->Value = Gia_ManAppendBuf( pNew, Gia_ObjFanin0Copy(pObj) ); continue; }
if ( Gia_ObjIsMuxId(pGia, i) )
pObj->Value = Gia_ManAppendMux( pNew, Gia_ObjFanin2Copy(pGia, pObj), Gia_ObjFanin1Copy(pObj), Gia_ObjFanin0Copy(pObj) );
else if ( Gia_ObjIsXor(pObj) )
pObj->Value = Gia_ManAppendXor( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
else
pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
if ( !Lf_ObjMapRefNum(p, i) )
continue;
pCut = Lf_ObjCutBest( p, i );
Vec_IntWriteEntry( pNew->vMapping, Abc_Lit2Var(pObj->Value), Vec_IntSize(pNew->vMapping) );
Vec_IntPush( pNew->vMapping, pCut->nLeaves );
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Vec_IntPush( pNew->vMapping, Abc_Lit2Var(Gia_ManObj(pGia, pCut->pLeaves[k])->Value) );
Vec_IntPush( pNew->vMapping, pCut->fMux7 ? -Abc_Lit2Var(pObj->Value) : Abc_Lit2Var(pObj->Value) );
}
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
assert( Vec_IntCap(pNew->vMapping) == 16 || Vec_IntSize(pNew->vMapping) == Vec_IntCap(pNew->vMapping) );
return pNew;
}
static inline int Lf_ManDerivePart( Lf_Man_t * p, Gia_Man_t * pNew, Vec_Int_t * vMapping, Vec_Int_t * vMapping2, Vec_Int_t * vCopies, Lf_Cut_t * pCut, Vec_Int_t * vLeaves, Vec_Int_t * vCover, Gia_Obj_t * pObj )
{
word * pTruth;
int k, iLit, iTemp;
if ( p->pPars->nLutSizeMux && p->pPars->nLutSizeMux == (int)pCut->nLeaves )
{
word pTruthCof[LF_TT_WORDS], * pTruth = Lf_CutTruth( p, pCut );
int pVarsNew[LF_LEAF_MAX], nVarsNew, iLitCofs[2];
int LutSize = p->pPars->nLutSize;
int nWords = Abc_Truth6WordNum(LutSize);
int c, iVar = Lf_ManFindCofVar( pTruth, nWords, pCut->nLeaves );
assert( iVar >= 0 && iVar < (int)pCut->nLeaves );
for ( c = 0; c < 2; c++ )
{
for ( k = 0; k < (int)pCut->nLeaves; k++ )
pVarsNew[k] = k;
if ( c )
Abc_TtCofactor1p( pTruthCof, pTruth, nWords, iVar );
else
Abc_TtCofactor0p( pTruthCof, pTruth, nWords, iVar );
nVarsNew = Abc_TtMinBase( pTruthCof, pVarsNew, pCut->nLeaves, LutSize );
assert( nVarsNew > 0 );
// derive LUT
Vec_IntClear( vLeaves );
for ( k = 0; k < nVarsNew; k++ )
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut->pLeaves[pVarsNew[k]]) );
iLitCofs[c] = Kit_TruthToGia( pNew, (unsigned *)pTruthCof, nVarsNew, vCover, vLeaves, 0 );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLitCofs[c]), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iTemp, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iTemp) );
Vec_IntPush( vMapping2, Abc_Lit2Var(iLitCofs[c]) );
}
// derive MUX
pTruthCof[0] = ABC_CONST(0xCACACACACACACACA);
Vec_IntClear( vLeaves );
Vec_IntPush( vLeaves, iLitCofs[0] );
Vec_IntPush( vLeaves, iLitCofs[1] );
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut->pLeaves[iVar]) );
iLit = Kit_TruthToGia( pNew, (unsigned *)pTruthCof, Vec_IntSize(vLeaves), vCover, vLeaves, 0 );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLit), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iTemp, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iTemp) );
Vec_IntPush( vMapping2, -Abc_Lit2Var(iLit) );
return iLit;
}
Vec_IntClear( vLeaves );
if ( pCut->fMux7 )
{
assert( pCut->nLeaves == 3 );
Vec_IntPush( vLeaves, Abc_LitNotCond(Vec_IntEntry(vCopies, pCut->pLeaves[0]), Gia_ObjFaninC0(pObj)) );
Vec_IntPush( vLeaves, Abc_LitNotCond(Vec_IntEntry(vCopies, pCut->pLeaves[1]), Gia_ObjFaninC1(pObj)) );
Vec_IntPush( vLeaves, Abc_LitNotCond(Vec_IntEntry(vCopies, pCut->pLeaves[2]), Gia_ObjFaninC2(p->pGia,pObj)) );
}
else
{
for ( k = 0; k < (int)pCut->nLeaves; k++ )
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut->pLeaves[k]) );
}
pTruth = Lf_CutTruth( p, pCut );
iLit = Kit_TruthToGia( pNew, (unsigned *)pTruth, Vec_IntSize(vLeaves), vCover, vLeaves, 0 );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLit), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iTemp, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iTemp) );
Vec_IntPush( vMapping2, pCut->fMux7 ? -Abc_Lit2Var(iLit) : Abc_Lit2Var(iLit) );
return iLit;
}
Gia_Man_t * Lf_ManDeriveMappingGia( Lf_Man_t * p )
{
Gia_Man_t * pNew;
Gia_Obj_t * pObj;
Vec_Int_t * vCopies = Vec_IntStartFull( Gia_ManObjNum(p->pGia) );
Vec_Int_t * vMapping = Vec_IntStart( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + 2*(int)p->pPars->Area + 4*(int)p->pPars->Mux7 );
Vec_Int_t * vMapping2 = Vec_IntStart( (int)p->pPars->Edge + 2*(int)p->pPars->Area + 1000 );
Vec_Int_t * vCover = Vec_IntAlloc( 1 << 16 );
Vec_Int_t * vLeaves = Vec_IntAlloc( 16 );
Lf_Cut_t * pCut;
int i, iLit;
assert( p->pPars->fCutMin );
// create new manager
pNew = Gia_ManStart( Gia_ManObjNum(p->pGia) );
pNew->pName = Abc_UtilStrsav( p->pGia->pName );
pNew->pSpec = Abc_UtilStrsav( p->pGia->pSpec );
Vec_IntWriteEntry( vCopies, 0, 0 );
Gia_ManForEachObj1( p->pGia, pObj, i )
{
if ( Gia_ObjIsCi(pObj) )
{
Vec_IntWriteEntry( vCopies, i, Gia_ManAppendCi(pNew) );
continue;
}
if ( Gia_ObjIsCo(pObj) )
{
iLit = Vec_IntEntry( vCopies, Gia_ObjFaninId0p(p->pGia, pObj) );
iLit = Gia_ManAppendCo( pNew, Abc_LitNotCond(iLit, Gia_ObjFaninC0(pObj)) );
continue;
}
if ( Gia_ObjIsBuf(pObj) )
{
iLit = Vec_IntEntry( vCopies, Gia_ObjFaninId0p(p->pGia, pObj) );
iLit = Gia_ManAppendBuf( pNew, Abc_LitNotCond(iLit, Gia_ObjFaninC0(pObj)) );
Vec_IntWriteEntry( vCopies, i, iLit );
continue;
}
if ( !Lf_ObjMapRefNum(p, i) )
continue;
pCut = Lf_ObjCutBest( p, i );
assert( pCut->iFunc >= 0 );
if ( pCut->nLeaves == 0 )
{
assert( Abc_Lit2Var(pCut->iFunc) == 0 );
Vec_IntWriteEntry( vCopies, i, pCut->iFunc );
continue;
}
if ( pCut->nLeaves == 1 )
{
assert( Abc_Lit2Var(pCut->iFunc) == 1 );
iLit = Vec_IntEntry( vCopies, pCut->pLeaves[0] );
Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(pCut->iFunc)) );
continue;
}
iLit = Lf_ManDerivePart( p, pNew, vMapping, vMapping2, vCopies, pCut, vLeaves, vCover, pObj );
Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(pCut->iFunc)) );
}
Vec_IntFree( vCopies );
Vec_IntFree( vCover );
Vec_IntFree( vLeaves );
// finish mapping
if ( Vec_IntSize(vMapping) > Gia_ManObjNum(pNew) )
Vec_IntShrink( vMapping, Gia_ManObjNum(pNew) );
else
Vec_IntFillExtra( vMapping, Gia_ManObjNum(pNew), 0 );
assert( Vec_IntSize(vMapping) == Gia_ManObjNum(pNew) );
Vec_IntForEachEntry( vMapping, iLit, i )
if ( iLit > 0 )
Vec_IntAddToEntry( vMapping, i, Gia_ManObjNum(pNew) );
Vec_IntAppend( vMapping, vMapping2 );
Vec_IntFree( vMapping2 );
// attach mapping and packing
assert( pNew->vMapping == NULL );
pNew->vMapping = vMapping;
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p->pGia) );
return pNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Lf_Man_t * Lf_ManAlloc( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Lf_Man_t * p; int i, k = 0;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= LF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= LF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vMapping );
Gia_ManCleanValue( pGia );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
p = ABC_CALLOC( Lf_Man_t, 1 );
Lf_ManAnalyzeCoDrivers( pGia, &p->nCoDrivers, &p->nInverters );
if ( pPars->fPower )
Lf_ManComputeSwitching( pGia, &p->vSwitches );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->nCutWords = (sizeof(Lf_Cut_t)/sizeof(int) + pPars->nLutSize + 1) >> 1;
p->nSetWords = p->nCutWords * pPars->nCutNum;
p->vTtMem = pPars->fCutMin ? Vec_MemAllocForTT( pPars->nLutSize, 0 ) : NULL;
if ( pPars->fCutMin && pPars->fUseMux7 )
Vec_MemAddMuxTT( p->vTtMem, pPars->nLutSize );
p->pObjBests = ABC_CALLOC( Lf_Bst_t, Gia_ManAndNotBufNum(pGia) );
Vec_IntGrow( &p->vFreeSets, (1<<14) );
Vec_PtrGrow( &p->vFreePages, 256 );
Lf_MemAlloc( &p->vStoreOld, 16, &p->vFreePages, p->nCutWords );
Lf_MemAlloc( &p->vStoreNew, 16, &p->vFreePages, p->nCutWords );
Vec_IntFill( &p->vOffsets, Gia_ManObjNum(pGia), -1 );
Vec_IntFill( &p->vRequired, Gia_ManObjNum(pGia), ABC_INFINITY );
Vec_IntFill( &p->vCutSets, Gia_ManAndNotBufNum(pGia), -1 );
Vec_FltFill( &p->vFlowRefs, Gia_ManAndNotBufNum(pGia), 0 );
Vec_IntFill( &p->vMapRefs, Gia_ManAndNotBufNum(pGia), 0 );
Vec_IntFill( &p->vCiArrivals, Gia_ManCiNum(pGia), 0 );
Gia_ManForEachAndId( pGia, i )
if ( !Gia_ObjIsBuf(Gia_ManObj(pGia, i)) )
Vec_IntWriteEntry( &p->vOffsets, i, k++ );
assert( k == Gia_ManAndNotBufNum(pGia) );
Lf_ManSetFlowRefs( pGia, &p->vFlowRefs, &p->vOffsets );
if ( pPars->pTimesArr )
for ( i = 0; i < Gia_ManPiNum(pGia); i++ )
Vec_IntWriteEntry( &p->vCiArrivals, i, pPars->pTimesArr[i] );
return p;
}
void Lf_ManFree( Lf_Man_t * p )
{
ABC_FREE( p->pPars->pTimesArr );
ABC_FREE( p->pPars->pTimesReq );
if ( p->pPars->fCutMin )
Vec_MemHashFree( p->vTtMem );
if ( p->pPars->fCutMin )
Vec_MemFree( p->vTtMem );
Vec_PtrFreeData( &p->vMemSets );
Vec_PtrFreeData( &p->vFreePages );
Vec_PtrFreeData( &p->vStoreOld.vPages );
Vec_PtrFreeData( &p->vStoreNew.vPages );
ABC_FREE( p->vMemSets.pArray );
ABC_FREE( p->vFreePages.pArray );
ABC_FREE( p->vStoreOld.vPages.pArray );
ABC_FREE( p->vStoreNew.vPages.pArray );
ABC_FREE( p->vFreePages.pArray );
ABC_FREE( p->vFreeSets.pArray );
ABC_FREE( p->vOffsets.pArray );
ABC_FREE( p->vRequired.pArray );
ABC_FREE( p->vCutSets.pArray );
ABC_FREE( p->vFlowRefs.pArray );
ABC_FREE( p->vMapRefs.pArray );
ABC_FREE( p->vSwitches.pArray );
ABC_FREE( p->vCiArrivals.pArray );
ABC_FREE( p->pObjBests );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Lf_ManSetDefaultPars( Jf_Par_t * pPars )
{
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 8;
pPars->nProcNum = 0;
pPars->nRounds = 4;
pPars->nRoundsEla = 1;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 1;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fUseMux7 = 0;
pPars->fPower = 0;
pPars->fCoarsen = 1;
pPars->fCutMin = 0;
pPars->fFuncDsd = 0;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fCutHashing = 0;
pPars->fCutSimple = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = LF_LEAF_MAX;
pPars->nCutNumMax = LF_CUT_MAX;
}
void Lf_ManPrintStats( Lf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Level =%6lu ", (long)p->pPars->Delay );
printf( "Area =%9lu ", (long)p->pPars->Area );
printf( "Edge =%9lu ", (long)p->pPars->Edge );
printf( "LUT =%9lu ", (long)p->pPars->Area+p->nInverters );
if ( Vec_FltSize(&p->vSwitches) )
printf( "Swt =%8.1f ", p->Switches );
if ( p->pPars->fUseMux7 )
printf( "Mux7 =%7lu ", (long)p->pPars->Mux7 );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Lf_ManPrintInit( Lf_Man_t * p )
{
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla );
if ( p->pPars->nRelaxRatio )
printf( "Ratio = %d ", p->pPars->nRelaxRatio );
printf( "Edge = %d ", p->pPars->fOptEdge );
if ( p->pPars->DelayTarget != -1 )
printf( "Delay = %d ", p->pPars->DelayTarget );
printf( "CutMin = %d ", p->pPars->fCutMin );
printf( "Coarse = %d ", p->pPars->fCoarsen );
printf( "Cut/Set = %d/%d Bytes", 8*p->nCutWords, 8*p->nSetWords );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Lf_ManPrintQuit( Lf_Man_t * p, Gia_Man_t * pNew )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan = 1.0 * sizeof(int) * (2 * Gia_ManObjNum(p->pGia) + 3 * Gia_ManAndNotBufNum(p->pGia)) / (1<<20); // offset, required, cutsets, maprefs, flowrefs
float MemCutsB = 1.0 * (p->vStoreOld.MaskPage + 1) * (Vec_PtrSize(&p->vFreePages) + Vec_PtrSize(&p->vStoreOld.vPages)) / (1<<20) + 1.0 * sizeof(Lf_Bst_t) * Gia_ManAndNotBufNum(p->pGia) / (1<<20);
float MemCutsF = 1.0 * sizeof(word) * p->nSetWords * (1<<LF_LOG_PAGE) * Vec_PtrSize(&p->vMemSets) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
float MemMap = Vec_IntMemory(pNew->vMapping) / (1<<20);
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
{
int i, CountOver[2] = {0};
int nLutSize = p->pPars->fCutGroup ? p->pPars->nLutSize/2 : p->pPars->nLutSize;
Gia_ManForEachLut( pNew, i )
CountOver[Gia_ObjLutSize(pNew, i) > nLutSize]++;
if ( p->pPars->fCutGroup )
printf( "Created %d regular %d-LUTs and %d dual %d-LUTs. The total of %d %d-LUTs.\n",
CountOver[0], nLutSize, CountOver[1], nLutSize, CountOver[0] + 2*CountOver[1], nLutSize );
return;
}
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] );
printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] );
printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Best = %.2f MB ", MemCutsB );
printf( "Front = %.2f MB ", MemCutsF );
printf( "Map = %.2f MB ", MemMap );
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB", MemGia + MemMan + MemCutsB + MemCutsF + MemMap + MemTt );
printf( "\n" );
if ( 1 )
{
int i;
for ( i = 0; i <= p->pPars->nLutSize; i++ )
printf( "%d:%d ", i, p->nCutCounts[i] );
printf( "Equal = %d (%.0f %%) ", p->nCutEqual, 100.0 * p->nCutEqual / p->Iter / Gia_ManAndNotBufNum(p->pGia) );
if ( p->vTtMem )
printf( "TT = %d (%.2f %%) ", Vec_MemEntryNum(p->vTtMem), 100.0 * Vec_MemEntryNum(p->vTtMem) / p->CutCount[2] );
if ( p->pGia->pMuxes && p->nCutMux )
printf( "MuxTT = %d (%.0f %%) ", p->nCutMux, 100.0 * p->nCutMux / p->Iter / Gia_ManMuxNum(p->pGia) );
printf( "\n" );
}
printf( "CoDrvs = %d (%.2f %%) ", p->nCoDrivers, 100.0*p->nCoDrivers/Gia_ManCoNum(p->pGia) );
printf( "CoInvs = %d (%.2f %%) ", p->nInverters, 100.0*p->nInverters/Gia_ManCoNum(p->pGia) );
printf( "Front = %d (%.2f %%) ", p->nFrontMax, 100.0*p->nFrontMax/Gia_ManAndNum(p->pGia) );
printf( "TimeFails = %d ", p->nTimeFails );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Lf_ManComputeMapping( Lf_Man_t * p )
{
Gia_Obj_t * pObj;
int i, arrTime;
assert( p->vStoreNew.iCur == 0 );
Lf_ManSetCutRefs( p );
if ( p->pGia->pManTime != NULL )
{
assert( !Gia_ManBufNum(p->pGia) );
Tim_ManIncrementTravId( (Tim_Man_t*)p->pGia->pManTime );
Gia_ManForEachObj1( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
continue;
if ( Gia_ObjIsAnd(pObj) )
Lf_ObjMergeOrder( p, i );
else if ( Gia_ObjIsCi(pObj) )
{
arrTime = Tim_ManGetCiArrival( (Tim_Man_t*)p->pGia->pManTime, Gia_ObjCioId(pObj) );
Lf_ObjSetCiArrival( p, Gia_ObjCioId(pObj), arrTime );
}
else if ( Gia_ObjIsCo(pObj) )
{
arrTime = Lf_ObjCoArrival( p, Gia_ObjCioId(pObj) );
Tim_ManSetCoArrival( (Tim_Man_t*)p->pGia->pManTime, Gia_ObjCioId(pObj), arrTime );
}
else assert( 0 );
}
// Tim_ManPrint( p->pGia->pManTime );
}
else
{
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( !Gia_ObjIsBuf(pObj) )
Lf_ObjMergeOrder( p, i );
}
Lf_MemRecycle( &p->vStoreOld );
ABC_SWAP( Lf_Mem_t, p->vStoreOld, p->vStoreNew );
if ( p->fUseEla )
Lf_ManCountMapRefs( p );
else
Lf_ManSetMapRefs( p );
Lf_ManPrintStats( p, (char *)(p->fUseEla ? "Ela " : (p->Iter ? "Area " : "Delay")) );
}
Gia_Man_t * Lf_ManPerformMappingInt( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
int fUsePowerMode = 0;
Lf_Man_t * p;
Gia_Man_t * pNew, * pCls;
if ( pPars->fUseMux7 )
pPars->fCoarsen = 1, pPars->nRoundsEla = 0;
if ( Gia_ManHasChoices(pGia) || pPars->nLutSizeMux )
pPars->fCutMin = 1;
if ( pPars->fCoarsen )
{
pCls = Gia_ManDupMuxes(pGia, pPars->nCoarseLimit);
pCls->pManTime = pGia->pManTime; pGia->pManTime = NULL;
}
else pCls = pGia;
p = Lf_ManAlloc( pCls, pPars );
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Lf_ManPrintInit( p );
// power mode
if ( fUsePowerMode && Vec_FltSize(&p->vSwitches) )
pPars->fPower = 0;
// perform mapping
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
Lf_ManComputeMapping( p );
p->fUseEla = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
Lf_ManComputeMapping( p );
// power mode
if ( fUsePowerMode && Vec_FltSize(&p->vSwitches) )
{
pPars->fPower = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla + 2; p->Iter++ )
Lf_ManComputeMapping( p );
}
if ( pPars->fVeryVerbose && pPars->fCutMin )
Vec_MemDumpTruthTables( p->vTtMem, Gia_ManName(p->pGia), pPars->nLutSize );
if ( pPars->fCutMin )
pNew = Lf_ManDeriveMappingGia( p );
else if ( pPars->fCoarsen )
pNew = Lf_ManDeriveMappingCoarse( p );
else
pNew = Lf_ManDeriveMapping( p );
Gia_ManMappingVerify( pNew );
Lf_ManPrintQuit( p, pNew );
Lf_ManFree( p );
if ( pCls != pGia )
{
pGia->pManTime = pCls->pManTime; pCls->pManTime = NULL;
Gia_ManStop( pCls );
}
return pNew;
}
Gia_Man_t * Lf_ManPerformMapping( Gia_Man_t * p, Jf_Par_t * pPars )
{
Gia_Man_t * pNew;
if ( p->pManTime && Tim_ManBoxNum((Tim_Man_t*)p->pManTime) && Gia_ManIsNormalized(p) )
{
Tim_Man_t * pTimOld = (Tim_Man_t *)p->pManTime;
p->pManTime = Tim_ManDup( pTimOld, 1 );
pNew = Gia_ManDupUnnormalize( p );
if ( pNew == NULL )
return NULL;
Gia_ManTransferTiming( pNew, p );
p = pNew;
// mapping
pNew = Lf_ManPerformMappingInt( p, pPars );
if ( pNew != p )
{
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
}
// normalize
pNew = Gia_ManDupNormalize( p = pNew, 0 );
Gia_ManTransferMapping( pNew, p );
// Gia_ManTransferPacking( pNew, p );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p ); // do not delete if the original one!
// cleanup
Tim_ManStop( (Tim_Man_t *)pNew->pManTime );
pNew->pManTime = pTimOld;
assert( Gia_ManIsNormalized(pNew) );
}
else
{
// mapping
pNew = Lf_ManPerformMappingInt( p, pPars );
Gia_ManTransferTiming( pNew, p );
}
return pNew;
}
/**Function*************************************************************
Synopsis [Interface of LUT mapping package.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Gia_ManPerformLfMapping( Gia_Man_t * p, Jf_Par_t * pPars, int fNormalized )
{
Gia_Man_t * pNew;
assert( !pPars->fCutGroup || pPars->nLutSize == 9 || pPars->nLutSize == 11 || pPars->nLutSize == 13 );
// reconstruct GIA according to the hierarchy manager
assert( pPars->pTimesArr == NULL );
assert( pPars->pTimesReq == NULL );
if ( p->pManTime )
{
if ( fNormalized )
{
pNew = Gia_ManDupUnnormalize( p );
if ( pNew == NULL )
return NULL;
Gia_ManTransferTiming( pNew, p );
p = pNew;
// set arrival and required times
pPars->pTimesArr = Tim_ManGetArrTimes( (Tim_Man_t *)p->pManTime );
pPars->pTimesReq = Tim_ManGetReqTimes( (Tim_Man_t *)p->pManTime );
}
else
p = Gia_ManDup( p );
}
else
p = Gia_ManDup( p );
// perform mapping
pNew = Lf_ManPerformMappingInt( p, pPars );
if ( pNew != p )
{
// transfer name
ABC_FREE( pNew->pName );
ABC_FREE( pNew->pSpec );
pNew->pName = Abc_UtilStrsav( p->pName );
pNew->pSpec = Abc_UtilStrsav( p->pSpec );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p) );
// return the original (unmodified by the mapper) timing manager
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
}
// normalize and transfer mapping
pNew = Gia_ManDupNormalize( p = pNew, 0 );
Gia_ManTransferMapping( pNew, p );
// Gia_ManTransferPacking( pNew, p );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END