blob: dca13ae6a260a0601e95269ebc1a5e673a204722 [file] [log] [blame]
/**CFile****************************************************************
FileName [giaOf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [LUT structure mapper.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaOf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "gia.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "misc/util/utilTruth.h"
#include "misc/extra/extra.h"
#include "base/main/main.h"
#include "misc/vec/vecMem.h"
#include "misc/vec/vecWec.h"
#include "opt/dau/dau.h"
#include "sat/bsat/satStore.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define OF_LEAF_MAX 6
#define OF_CUT_MAX 32
#define OF_NO_LEAF 31
#define OF_NO_FUNC 0x7FFFFFF
#define OF_CUT_EXTRA 4 // size; delay1, delay2; area
typedef struct Of_Cut_t_ Of_Cut_t;
struct Of_Cut_t_
{
word Sign; // signature
int Delay; // delay
int Flow; // flow
unsigned iFunc : 27; // function (OF_NO_FUNC)
unsigned nLeaves : 5; // leaf number (OF_NO_LEAF)
int pLeaves[OF_LEAF_MAX+1]; // leaves
};
typedef struct Of_Obj_t_ Of_Obj_t;
struct Of_Obj_t_
{
int iCutH; // best cut
int iCutH2; // best cut
int Delay1; // arrival time
int Delay2; // arrival time
int Required; // required
int nRefs; // references
int Flow; // area flow
int Temp; // unused
};
typedef struct Of_Man_t_ Of_Man_t;
struct Of_Man_t_
{
// user data
Gia_Man_t * pGia; // derived manager
Jf_Par_t * pPars; // parameters
// cut data
Vec_Mem_t * vTtMem; // truth tables
Vec_Ptr_t vPages; // cut memory
Vec_Int_t vCutSets; // cut offsets
Vec_Int_t vCutFlows; // temporary cut area
Vec_Int_t vCutDelays; // temporary cut delay
Vec_Int_t vCutRefs; // temporary cut referebces
int iCur; // current position
int Iter; // mapping iterations
// object data
Of_Obj_t * pObjs;
// statistics
abctime clkStart; // starting time
double CutCount[6]; // cut counts
};
#define OF_NUM 10
#define OF_NUMINV 0.1
static inline int Of_Flt2Int( float f ) { return (int)(OF_NUM*f); }
static inline float Of_Int2Flt( int i ) { return OF_NUMINV*i; }
static inline int * Of_ManCutSet( Of_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); }
static inline int Of_ObjCutSetId( Of_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); }
static inline int * Of_ObjCutSet( Of_Man_t * p, int i ) { return Of_ManCutSet(p, Of_ObjCutSetId(p, i)); }
static inline int Of_ObjHasCuts( Of_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); }
static inline int Of_ObjCutFlow( Of_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutFlows, i); }
static inline int Of_ObjCutDelay( Of_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); }
static inline void Of_ObjSetCutFlow( Of_Man_t * p, int i, int a ) { Vec_IntWriteEntry(&p->vCutFlows, i, a); }
static inline void Of_ObjSetCutDelay( Of_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); }
static inline int Of_CutSize( int * pCut ) { return pCut[0] & OF_NO_LEAF; }
static inline int Of_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); }
static inline int * Of_CutLeaves( int * pCut ) { return pCut + 1; }
static inline int Of_CutSetBoth( int n, int f ) { return n | (f << 5); }
static inline int Of_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; }
static inline int * Of_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; }
static inline int Of_CutDelay1( int * pCut ) { return pCut[1 + Of_CutSize(pCut)]; }
static inline int Of_CutDelay2( int * pCut ) { return pCut[2 + Of_CutSize(pCut)]; }
static inline int Of_CutAreaFlow( int * pCut ) { return pCut[3 + Of_CutSize(pCut)]; }
static inline void Of_CutSetDelay1( int * pCut, int d ) { pCut[1 + Of_CutSize(pCut)] = d; }
static inline void Of_CutSetDelay2( int * pCut, int d ) { pCut[2 + Of_CutSize(pCut)] = d; }
static inline void Of_CutSetAreaFlow( int * pCut, int d ) { pCut[3 + Of_CutSize(pCut)] = d; }
static inline int Of_CutVar( int * pCut, int v ) { return Abc_Lit2Var(Of_CutLeaves(pCut)[v]); }
static inline int Of_CutFlag( int * pCut, int v ) { return Abc_LitIsCompl(Of_CutLeaves(pCut)[v]); }
static inline void Of_CutCleanFlag( int * pCut, int v ) { Of_CutLeaves(pCut)[v] = Abc_LitRegular(Of_CutLeaves(pCut)[v]); }
static inline void Of_CutSetFlag( int * pCut, int v, int x ) { Of_CutLeaves(pCut)[v] = Abc_Var2Lit(Of_CutVar(pCut, v), x); }
static inline Of_Obj_t * Of_ObjData( Of_Man_t * p, int i ) { return p->pObjs + i; }
static inline int Of_ObjCutBest( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->iCutH; }
static inline int Of_ObjCutBest2( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->iCutH2; }
static inline int Of_ObjDelay1( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Delay1; }
static inline int Of_ObjDelay2( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Delay2; }
static inline int Of_ObjRequired( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Required; }
static inline int Of_ObjRefNum( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->nRefs; }
static inline int Of_ObjFlow( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->Flow; }
static inline void Of_ObjSetCutBest( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->iCutH = x; }
static inline void Of_ObjSetCutBest2( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->iCutH2 = x; }
static inline void Of_ObjSetDelay1( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Delay1 = x; }
static inline void Of_ObjSetDelay2( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Delay2 = x; }
static inline void Of_ObjSetRequired( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Required = x; }
static inline void Of_ObjSetRefNum( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->nRefs = x; }
static inline void Of_ObjSetFlow( Of_Man_t * p, int i, int x ) { Of_ObjData(p, i)->Flow = x; }
static inline void Of_ObjUpdateRequired( Of_Man_t * p,int i, int x ) { if ( Of_ObjRequired(p, i) > x ) Of_ObjSetRequired(p, i, x); }
static inline int Of_ObjRefInc( Of_Man_t * p, int i ) { return Of_ObjData(p, i)->nRefs++; }
static inline int Of_ObjRefDec( Of_Man_t * p, int i ) { return --Of_ObjData(p, i)->nRefs; }
static inline int * Of_ObjCutBestP( Of_Man_t * p, int iObj ) { assert(iObj>0 && iObj<Gia_ManObjNum(p->pGia));return Of_ManCutSet( p, Of_ObjCutBest(p, iObj) ); }
static inline void Of_ObjSetCutBestP( Of_Man_t * p, int * pCutSet, int iObj, int * pCut ) { Of_ObjSetCutBest( p, iObj, Of_ObjCutSetId(p, iObj) + Of_CutHandle(pCutSet, pCut) ); }
static inline int * Of_ObjCutBestP2( Of_Man_t * p, int iObj ) { assert(iObj>0 && iObj<Gia_ManObjNum(p->pGia));return Of_ManCutSet( p, Of_ObjCutBest2(p, iObj) ); }
static inline void Of_ObjSetCutBestP2( Of_Man_t * p, int * pCutSet, int iObj, int * pCut ) { Of_ObjSetCutBest2( p, iObj, Of_ObjCutSetId(p, iObj) + Of_CutHandle(pCutSet, pCut) ); }
#define Of_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Of_CutSize(pCut) + OF_CUT_EXTRA )
#define Of_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ )
#define Of_CutForEachVar( pCut, iVar, i ) for ( i = 0; i < Of_CutSize(pCut) && (iVar = Of_CutVar(pCut,i)); i++ )
#define Of_CutForEachVarFlag( pCut, iVar, Flag, i ) for ( i = 0; i < Of_CutSize(pCut) && (iVar = Of_CutVar(pCut,i)) && ((Flag = Of_CutFlag(pCut,i)), 1); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Area flow.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Of_ManAreaFlow( Of_Man_t * p )
{
int AreaUnit = 1000;
int i, Id, Total = 0;
Gia_Obj_t * pObj;
assert( p->pGia->pRefs == NULL );
Gia_ManCreateRefs( p->pGia );
Of_ObjSetFlow( p, 0, 0 );
Gia_ManForEachCiId( p->pGia, Id, i )
Of_ObjSetFlow( p, Id, 0 );
Gia_ManForEachAnd( p->pGia, pObj, Id )
Of_ObjSetFlow( p, Id, (Gia_ObjFanin0(pObj)->Value + Gia_ObjFanin1(pObj)->Value + AreaUnit) / Gia_ObjRefNum(p->pGia, pObj) );
Gia_ManForEachCo( p->pGia, pObj, i )
Total += Gia_ObjFanin0(pObj)->Value;
ABC_FREE( p->pGia->pRefs );
if ( 1 )
return;
printf( "CI = %5d. ", Gia_ManCiNum(p->pGia) );
printf( "CO = %5d. ", Gia_ManCoNum(p->pGia) );
printf( "And = %8d. ", Gia_ManAndNum(p->pGia) );
printf( "Area = %8d. ", Total/AreaUnit );
printf( "\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Of_Man_t * Of_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs );
Of_Man_t * p;
Vec_Int_t * vFlowRefs;
int * pRefs = NULL;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= OF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= OF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vCellMapping );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
// create references
ABC_FREE( pGia->pRefs );
vFlowRefs = Vec_IntAlloc(0);
Mf_ManSetFlowRefs( pGia, vFlowRefs );
pGia->pRefs= Vec_IntReleaseArray(vFlowRefs);
Vec_IntFree(vFlowRefs);
// create
p = ABC_CALLOC( Of_Man_t, 1 );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->pObjs = ABC_CALLOC( Of_Obj_t, Gia_ManObjNum(pGia) );
p->iCur = 2;
// other
Vec_PtrGrow( &p->vPages, 256 ); // cut memory
Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets
Vec_IntFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area
Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay
Vec_IntGrow( &p->vCutRefs, 1000 ); // cut references
if ( pPars->fCutMin )
p->vTtMem = Vec_MemAllocForTT( 6, 0 );
// compute area flow
pRefs = pGia->pRefs; pGia->pRefs = NULL;
Of_ManAreaFlow( p );
pGia->pRefs = pRefs;
return p;
}
void Of_StoDelete( Of_Man_t * p )
{
Vec_PtrFreeData( &p->vPages );
Vec_PtrErase( &p->vPages );
Vec_IntErase( &p->vCutSets );
Vec_IntErase( &p->vCutFlows );
Vec_IntErase( &p->vCutDelays );
Vec_IntErase( &p->vCutRefs );
ABC_FREE( p->pObjs );
// matching
if ( p->pPars->fCutMin )
Vec_MemHashFree( p->vTtMem );
if ( p->pPars->fCutMin )
Vec_MemFree( p->vTtMem );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Of_CutComputeTruth6( Of_Man_t * p, Of_Cut_t * pCut0, Of_Cut_t * pCut1, int fCompl0, int fCompl1, Of_Cut_t * pCutR, int fIsXor )
{
// extern int Of_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Of_CutComputeTruthMux6( Of_Man_t * p, Of_Cut_t * pCut0, Of_Cut_t * pCut1, Of_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Of_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Of_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline word Of_CutGetSign( int * pLeaves, int nLeaves )
{
word Sign = 0; int i;
for ( i = 0; i < nLeaves; i++ )
Sign |= ((word)1) << (pLeaves[i] & 0x3F);
return Sign;
}
static inline int Of_CutCreateUnit( Of_Cut_t * p, int i )
{
p->Delay = 0;
p->Flow = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline void Of_Cutprintf( Of_Man_t * p, Of_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } D = %4d A = %9d F = %6d ",
pCut->Delay, pCut->Flow, pCut->iFunc );
if ( p->vTtMem )
Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves );
else
printf( "\n" );
}
static inline int Of_ManPrepareCuts( Of_Cut_t * pCuts, Of_Man_t * p, int iObj, int fAddUnit )
{
if ( Of_ObjHasCuts(p, iObj) )
{
Of_Cut_t * pMfCut = pCuts;
int i, * pCut, * pList = Of_ObjCutSet(p, iObj);
Of_SetForEachCut( pList, pCut, i )
{
pMfCut->Delay = 0;
pMfCut->Flow = 0;
pMfCut->iFunc = Of_CutFunc( pCut );
pMfCut->nLeaves = Of_CutSize( pCut );
pMfCut->Sign = Of_CutGetSign( pCut+1, Of_CutSize(pCut) );
memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Of_CutSize(pCut) );
pMfCut++;
}
if ( fAddUnit && pCuts->nLeaves > 1 )
return pList[0] + Of_CutCreateUnit( pMfCut, iObj );
return pList[0];
}
return Of_CutCreateUnit( pCuts, iObj );
}
static inline int Of_ManSaveCuts( Of_Man_t * p, Of_Cut_t ** pCuts, int nCuts )
{
int i, * pPlace, iCur, nInts = 1, nCutsNew = 0;
for ( i = 0; i < nCuts; i++ )
nInts += pCuts[i]->nLeaves + OF_CUT_EXTRA, nCutsNew++;
if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF )
p->iCur = ((p->iCur >> 16) + 1) << 16;
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) )
Vec_PtrPush( &p->vPages, ABC_CALLOC(int, (1<<16)) );
iCur = p->iCur; p->iCur += nInts;
pPlace = Of_ManCutSet( p, iCur );
*pPlace++ = nCutsNew;
for ( i = 0; i < nCuts; i++ )
{
*pPlace++ = Of_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc );
memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves );
pPlace += pCuts[i]->nLeaves;
memset( pPlace, 0xFF, sizeof(int) * (OF_CUT_EXTRA - 1) );
pPlace += OF_CUT_EXTRA - 1;
}
return iCur;
}
static inline void Of_ManLiftCuts( Of_Man_t * p, int iObj )
{
int i, k, * pCut, * pList = Of_ObjCutSet(p, iObj);
assert( Of_ObjHasCuts(p, iObj) );
Of_SetForEachCut( pList, pCut, i )
{
for ( k = 1; k <= Of_CutSize(pCut); k++ )
pCut[k] = Abc_Var2Lit(pCut[k], 0);
}
}
static inline void Of_CutPrint( int * pCut )
{
int k, iVar;
printf( "Cut with %d inputs and function %3d : { ", Of_CutSize(pCut), Of_CutFunc(pCut) == OF_NO_FUNC ? 0 : Of_CutFunc(pCut) );
Of_CutForEachVar( pCut, iVar, k )
printf( "%d ", iVar );
printf( "}\n" );
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Of_CutCheck( Of_Cut_t * pBase, Of_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Of_SetCheckArray( Of_Cut_t ** ppCuts, int nCuts )
{
Of_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( pCut0->nLeaves <= OF_LEAF_MAX );
assert( pCut0->Sign == Of_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Of_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Of_CutMergeOrder( Of_Cut_t * pCut0, Of_Cut_t * pCut1, Of_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = OF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = OF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = OF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Of_CutMergeOrderMux( Of_Cut_t * pCut0, Of_Cut_t * pCut1, Of_Cut_t * pCut2, Of_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = OF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Of_SetCutIsContainedOrder( Of_Cut_t * pBase, Of_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Of_SetLastCutIsContained( Of_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Of_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
static inline int Of_SetLastCutContainsArea( Of_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Of_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = OF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 0; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == OF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Of_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline int Of_CutCompareArea( Of_Cut_t * pCut0, Of_Cut_t * pCut1 )
{
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->Flow < pCut1->Flow ) return -1;
if ( pCut0->Flow > pCut1->Flow ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline void Of_SetSortByArea( Of_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 0; i-- )
{
if ( Of_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Of_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Of_SetAddCut( Of_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Of_SetLastCutContainsArea(pCuts, nCuts);
Of_SetSortByArea( pCuts, nCuts );
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline int Of_CutArea( Of_Man_t * p, int nLeaves )
{
if ( nLeaves < 2 )
return 0;
return nLeaves + p->pPars->nAreaTuner;
}
static inline void Of_CutParams( Of_Man_t * p, Of_Cut_t * pCut, int nGiaRefs )
{
int i, nLeaves = pCut->nLeaves;
assert( nLeaves <= p->pPars->nLutSize );
pCut->Delay = 0;
pCut->Flow = 0;
for ( i = 0; i < nLeaves; i++ )
{
pCut->Delay = Abc_MaxInt( pCut->Delay, Of_ObjCutDelay(p, pCut->pLeaves[i]) );
pCut->Flow += Of_ObjCutFlow(p, pCut->pLeaves[i]);
}
pCut->Delay += (int)(nLeaves > 1);
pCut->Flow = (pCut->Flow + 100 * Of_CutArea(p, nLeaves)) / (nGiaRefs ? nGiaRefs : 1);
}
void Of_ObjMergeOrder( Of_Man_t * p, int iObj )
{
Of_Cut_t pCuts0[OF_CUT_MAX], pCuts1[OF_CUT_MAX], pCuts[OF_CUT_MAX], * pCutsR[OF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
int nGiaRefs = 2*Gia_ObjRefNumId(p->pGia, iObj);
int nLutSize = p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCuts0 = Of_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1);
int nCuts1 = Of_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1);
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int iSibl = Gia_ObjSibl(p->pGia, iObj);
Of_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1;
int i, nCutsR = 0;
assert( !Gia_ObjIsBuf(pObj) );
for ( i = 0; i < nCutNum; i++ )
pCutsR[i] = pCuts + i;
if ( iSibl )
{
Of_Cut_t pCuts2[OF_CUT_MAX];
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCuts2 = Of_ManPrepareCuts(pCuts2, p, iSibl, 0);
Of_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
*pCutsR[nCutsR] = *pCut2;
if ( p->pPars->fCutMin )
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Of_CutParams( p, pCutsR[nCutsR], nGiaRefs );
nCutsR = Of_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
Of_Cut_t pCuts2[OF_CUT_MAX];
int nCuts2 = Of_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1);
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
Of_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
if ( Of_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Of_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Of_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Of_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Of_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Of_CutParams( p, pCutsR[nCutsR], nGiaRefs );
nCutsR = Of_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Of_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Of_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Of_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Of_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Of_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Of_CutParams( p, pCutsR[nCutsR], nGiaRefs );
nCutsR = Of_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
{
printf( "*** Obj = %d\n", iObj );
for ( i = 0; i < nCutsR; i++ )
Of_Cutprintf( p, pCutsR[i] );
printf( "\n" );
}
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
//assert( Of_SetCheckArray(pCutsR, nCutsR) );
// store the cutset
Of_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow );
Of_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay );
*Vec_IntEntryP(&p->vCutSets, iObj) = Of_ManSaveCuts(p, pCutsR, nCutsR);
p->CutCount[3] += nCutsR;
}
void Of_ManComputeCuts( Of_Man_t * p )
{
Gia_Obj_t * pObj; int i, iFanin;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
{
iFanin = Gia_ObjFaninId0(pObj, i);
Of_ObjSetCutFlow( p, i, Of_ObjCutFlow(p, iFanin) );
Of_ObjSetCutDelay( p, i, Of_ObjCutDelay(p, iFanin) );
}
else
Of_ObjMergeOrder( p, i );
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( !Gia_ObjIsBuf(pObj) )
Of_ManLiftCuts( p, i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Of_ManPrintStats( Of_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Delay =%8.2f ", Of_Int2Flt((int)p->pPars->Delay) );
printf( "Area =%8d ", (int)p->pPars->Area );
printf( "Edge =%9d ", (int)p->pPars->Edge );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Of_ManPrintInit( Of_Man_t * p )
{
int nChoices;
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla );
printf( "Coarse = %d ", p->pPars->fCoarsen );
if ( p->pPars->fCutMin )
printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) );
nChoices = Gia_ManChoiceNum( p->pGia );
if ( nChoices )
printf( "Choices = %d ", nChoices );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Of_ManPrintQuit( Of_Man_t * p )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan = 1.0 * sizeof(Of_Obj_t) * Gia_ManObjNum(p->pGia) / (1<<20);
float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
return;
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) );
printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) );
printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) );
// printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) );
// printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) );
// printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Cut = %.2f MB ", MemCuts );
if ( p->pPars->fCutMin )
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt );
// printf( "\n" );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
/*
static inline int Of_ManComputeForwardCut( Of_Man_t * p, int iObj, int * pCut )
{
int k, iVar, Delay = 0, Area = Of_CutArea(p, Of_CutSize(pCut));
int DelayLut1 = p->pPars->nDelayLut1;
Of_CutForEachVar( pCut, iVar, k )
{
Delay = Abc_MaxInt( Delay, Of_ObjDelay1(p, iVar) + DelayLut1 );
if ( p->Iter )
Area += Of_ObjRefNum(p, iVar) ? 0 : Of_ObjFlow(p, iVar);
}
Of_CutSetDelay1( pCut, Delay );
if ( p->Iter )
Of_CutSetAreaFlow( pCut, Area );
return Delay;
}
static inline void Of_ManComputeForwardObj( Of_Man_t * p, int iObj )
{
int Delay1 = ABC_INFINITY, Area1 = ABC_INFINITY;
int * pList = Of_ObjCutSet(p, iObj);
int i, * pCut, * pCutMin = NULL, * pCutMin2 = NULL;
// compute cut arrivals
Of_SetForEachCut( pList, pCut, i )
{
int Delay1This = Of_ManComputeForwardCut(p, iObj, pCut);
if ( Delay1 > Delay1This )
{
Delay1 = Delay1This;
pCutMin = pCut;
}
if ( p->Iter && Area1 > Of_CutAreaFlow(pCut) )
{
Area1 = Of_CutAreaFlow(pCut);
pCutMin2 = pCut;
}
}
// if mapping is present, set object arrival equal to cut arrival
if ( Of_ObjRefNum(p, iObj) )
{
pCutMin = Of_ObjCutBestP(p, iObj);
Delay1 = Of_CutDelay1( pCutMin );
Of_ObjSetDelay1( p, iObj, Delay1 );
if ( p->Iter )
Of_ObjSetFlow( p, iObj, Of_CutAreaFlow(pCutMin) );
}
else
{
if ( p->Iter == 0 )
{
Of_ObjSetCutBestP( p, pList, iObj, pCutMin );
Of_ObjSetDelay1( p, iObj, Delay1 );
}
else
{
Of_ObjSetCutBestP( p, pList, iObj, pCutMin2 );
Of_ObjSetDelay1( p, iObj, Of_CutDelay1(pCutMin2) );
Of_ObjSetFlow( p, iObj, Of_CutAreaFlow(pCutMin2) );
}
}
}
*/
/*
int * Of_CutReferChooseCut( Of_Man_t * p, int Var, int Required, int fSetBest )
{
int i, CostMin = ABC_INFINITY;
int * pCutMin = NULL, * pList = Of_ObjCutSet(p, Var);
int * pCut = Of_ObjCutBestP(p, Var);
assert( Of_CutDelay1(pCut) <= Required );
// return pCut;
// choose cut with smaller area
Of_SetForEachCut( pList, pCut, i )
{
if ( Of_CutDelay1(pCut) > Required )
continue;
if ( CostMin > Of_CutAreaFlow(pCut) )
{
CostMin = Of_CutAreaFlow(pCut);
pCutMin = pCut;
}
}
assert( pCutMin != NULL );
assert( Of_CutDelay1(pCutMin) <= Required );
if ( fSetBest )
Of_ObjSetCutBestP( p, pList, Var, pCutMin );
return pCutMin;
}
int Of_CutRef2_rec( Of_Man_t * p, int * pCut, int Required, int fSetBest )
{
int i, Var, Count = Of_CutArea(p, Of_CutSize(pCut));
assert( Of_CutDelay1(pCut) <= Required );
Required -= p->pPars->nDelayLut1;
Of_CutForEachVar( pCut, Var, i )
{
if ( !Of_ObjCutBest(p, Var) )
continue;
if ( !fSetBest )
Vec_IntPush( &p->vCutRefs, Var );
if ( Of_ObjRefInc(p, Var) )
continue;
Count += Of_CutRef2_rec( p, Of_CutReferChooseCut(p, Var, Required, fSetBest), Required, fSetBest );
}
return Count;
}
static inline int Of_CutAreaDerefed2( Of_Man_t * p, int * pCut, int Required )
{
int Ela1, i, iObj;
assert( Vec_IntSize(&p->vCutRefs) == 0 );
Ela1 = Of_CutRef2_rec( p, pCut, Required, 0 );
Vec_IntForEachEntry( &p->vCutRefs, iObj, i )
Of_ObjRefDec(p, iObj);
Vec_IntClear( &p->vCutRefs );
return Ela1;
}
*/
static inline int Of_ManComputeForwardCut( Of_Man_t * p, int iObj, int * pCut )
{
int k, iVar, Delay = 0;
int DelayLut1 = p->pPars->nDelayLut1;
Of_CutForEachVar( pCut, iVar, k )
Delay = Abc_MaxInt( Delay, Of_ObjDelay1(p, iVar) + DelayLut1 );
Of_CutSetDelay1( pCut, Delay );
return Delay;
}
static inline int Of_ManComputeForwardCutArea( Of_Man_t * p, int iObj, int * pCut )
{
int k, iVar, Area = 100 * Of_CutArea(p, Of_CutSize(pCut));
Of_CutForEachVar( pCut, iVar, k )
Area += Of_ObjFlow(p, iVar);
return Area / Abc_MaxInt(1, Of_ObjRefNum(p, iObj));
}
static inline void Of_ManComputeForwardObj( Of_Man_t * p, int iObj )
{
int Delay1 = ABC_INFINITY;
int i, * pCut, * pCutMin = NULL, * pList = Of_ObjCutSet(p, iObj);
// compute cut arrivals
Of_SetForEachCut( pList, pCut, i )
{
int Delay1This = Of_ManComputeForwardCut(p, iObj, pCut);
if ( Delay1 > Delay1This )
{
Delay1 = Delay1This;
pCutMin = pCut;
}
}
// if mapping is present, set object arrival equal to cut arrival
if ( Of_ObjRefNum(p, iObj) )
pCutMin = Of_ObjCutBestP(p, iObj);
Of_ObjSetCutBestP( p, pList, iObj, pCutMin );
Of_ObjSetDelay1( p, iObj, Of_CutDelay1(pCutMin) );
if ( p->Iter )
Of_ObjSetFlow( p, iObj, Of_ManComputeForwardCutArea(p, iObj, pCutMin) );
}
void Of_ManComputeForward1( Of_Man_t * p )
{
Gia_Obj_t * pObj; int i;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
Of_ObjSetDelay1( p, i, Of_ObjDelay1(p, Gia_ObjFaninId0(pObj, i)) );
else
Of_ManComputeForwardObj( p, i );
}
int Of_CutRef_rec( Of_Man_t * p, int * pCut )
{
int i, Var, Count = (p->Iter & 1) ? 1 : Of_CutArea(p, Of_CutSize(pCut));
Of_CutForEachVar( pCut, Var, i )
if ( Of_ObjCutBest(p, Var) && !Of_ObjRefInc(p, Var) )
Count += Of_CutRef_rec( p, Of_ObjCutBestP(p, Var) );
return Count;
}
int Of_CutDeref_rec( Of_Man_t * p, int * pCut )
{
int i, Var, Count = (p->Iter & 1) ? 1 : Of_CutArea(p, Of_CutSize(pCut));
Of_CutForEachVar( pCut, Var, i )
if ( Of_ObjCutBest(p, Var) && !Of_ObjRefDec(p, Var) )
Count += Of_CutDeref_rec( p, Of_ObjCutBestP(p, Var) );
return Count;
}
static inline int Of_CutAreaDerefed( Of_Man_t * p, int * pCut )
{
int Ela1 = Of_CutRef_rec( p, pCut );
int Ela2 = Of_CutDeref_rec( p, pCut );
assert( Ela1 == Ela2 );
return Ela1;
}
int Of_CutRef2_rec( Of_Man_t * p, int * pCut )
{
int i, Var, Count = (p->Iter & 1) ? 1 : Of_CutArea(p, Of_CutSize(pCut));
Of_CutForEachVar( pCut, Var, i )
{
if ( !Of_ObjCutBest(p, Var) )
continue;
Vec_IntPush( &p->vCutRefs, Var );
if ( Of_ObjRefInc(p, Var) )
continue;
Count += Of_CutRef2_rec( p, Of_ObjCutBestP(p, Var) );
}
return Count;
}
static inline int Of_CutAreaDerefed2( Of_Man_t * p, int * pCut )
{
int Ela1, i, iObj;
assert( Vec_IntSize(&p->vCutRefs) == 0 );
Ela1 = Of_CutRef2_rec( p, pCut );
Vec_IntForEachEntry( &p->vCutRefs, iObj, i )
Of_ObjRefDec(p, iObj);
Vec_IntClear( &p->vCutRefs );
return Ela1;
}
static inline void Of_ManComputeForwardObj2( Of_Man_t * p, int iObj )
{
int Delay, Required = Of_ObjRequired(p, iObj);
int AreaBef = 0, AreaAft = 0, Area, AreaMin = ABC_INFINITY;
int k, * pCut, * pCutMin = NULL, * pList = Of_ObjCutSet(p, iObj);
if ( Of_ObjRefNum(p, iObj) )
AreaBef = Of_CutDeref_rec( p, Of_ObjCutBestP(p, iObj) );
Of_SetForEachCut( pList, pCut, k )
{
Delay = Of_ManComputeForwardCut(p, iObj, pCut);
if ( Delay > Required )
continue;
Area = Of_CutAreaDerefed2( p, pCut );
if ( AreaMin > Area )
{
AreaMin = Area;
pCutMin = pCut;
}
}
assert( pCutMin != NULL );
Of_ObjSetCutBestP( p, pList, iObj, pCutMin );
if ( Of_ObjRefNum(p, iObj) )
AreaAft = Of_CutRef_rec( p, pCutMin );
assert( AreaAft <= AreaBef );
Delay = Of_CutDelay1(pCutMin);
assert( Delay <= Required );
Of_ObjSetDelay1( p, iObj, Delay );
}
void Of_ManComputeForward2( Of_Man_t * p )
{
Gia_Obj_t * pObj; int i;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
Of_ObjSetDelay1( p, i, Of_ObjDelay1(p, Gia_ObjFaninId0(pObj, i)) );
else
Of_ManComputeForwardObj2( p, i );
}
static inline int Of_ManComputeOutputRequired( Of_Man_t * p, int fCleanRefs )
{
int i, Id, Delay = 0;
for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ )
{
Of_ObjSetRequired( p, i, ABC_INFINITY );
if ( fCleanRefs )
Of_ObjSetRefNum( p, i, 0 );
}
Gia_ManForEachCoDriverId( p->pGia, Id, i )
Delay = Abc_MaxInt( Delay, Of_ObjDelay1(p, Id) );
Gia_ManForEachCoDriverId( p->pGia, Id, i )
{
Of_ObjUpdateRequired( p, Id, Delay );
if ( fCleanRefs )
Of_ObjRefInc( p, Id );
}
if ( p->pPars->Delay && p->pPars->Delay < Delay )
printf( "Error: Delay violation.\n" );
p->pPars->Delay = Delay;
return Delay;
}
static inline int Of_ManComputeBackwardCut( Of_Man_t * p, int * pCut )
{
int k, iVar, Cost = 0;
Of_CutForEachVar( pCut, iVar, k )
if ( !Of_ObjRefNum(p, iVar) )
Cost += Of_ObjFlow( p, iVar );
return Cost;
}
void Of_ManComputeBackward1( Of_Man_t * p )
{
Gia_Obj_t * pObj;
int DelayLut1 = p->pPars->nDelayLut1;
int i, k, iVar, * pList, * pCut, * pCutMin;
Of_ManComputeOutputRequired( p, 1 );
// compute area and edges
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
int CostMin, Cost, Required = Of_ObjRequired(p, i);
if ( Gia_ObjIsBuf(pObj) )
{
int FaninId = Gia_ObjFaninId0(pObj, i);
Of_ObjUpdateRequired( p, FaninId, Required );
Of_ObjRefInc( p, FaninId );
continue;
}
if ( !Of_ObjRefNum(p, i) )
continue;
// select the best cut
pCutMin = NULL;
CostMin = ABC_INFINITY;
pList = Of_ObjCutSet( p, i );
Of_SetForEachCut( pList, pCut, k )
{
if ( Of_CutDelay1(pCut) > Required )
continue;
Cost = Of_ManComputeBackwardCut( p, pCut );
if ( CostMin > Cost )
{
CostMin = Cost;
pCutMin = pCut;
}
}
// the cut is selected
assert( pCutMin != NULL );
Of_ObjSetCutBestP( p, pList, i, pCutMin );
Of_CutForEachVar( pCutMin, iVar, k )
{
Of_ObjUpdateRequired( p, iVar, Required - DelayLut1 );
Of_ObjRefInc( p, iVar );
}
// update parameters
p->pPars->Edge += Of_CutSize(pCutMin);
p->pPars->Area++;
}
}
void Of_ManComputeBackward2( Of_Man_t * p )
{
Gia_Obj_t * pObj;
int DelayLut1 = p->pPars->nDelayLut1;
int i, k, iVar, * pCutMin;
Of_ManComputeOutputRequired( p, 0 );
// compute area and edges
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
int Required = Of_ObjRequired(p, i);
if ( Gia_ObjIsBuf(pObj) )
{
int FaninId = Gia_ObjFaninId0(pObj, i);
Of_ObjUpdateRequired( p, FaninId, Required );
continue;
}
if ( !Of_ObjRefNum(p, i) )
continue;
// lookup for the cut
pCutMin = Of_ObjCutBestP( p, i );
Of_CutForEachVar( pCutMin, iVar, k )
Of_ObjUpdateRequired( p, iVar, Required - DelayLut1 );
// update parameters
p->pPars->Edge += Of_CutSize(pCutMin);
p->pPars->Area++;
}
}
void Of_ManComputeBackward3( Of_Man_t * p )
{
Gia_Obj_t * pObj;
int DelayLut1 = p->pPars->nDelayLut1;
int i, k, iVar, * pList, * pCut, * pCutMin;
int AreaBef = 0, AreaAft = 0;
Of_ManComputeOutputRequired( p, 0 );
// compute area and edges
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
int CostMin, Cost, Required = Of_ObjRequired(p, i);
if ( Gia_ObjIsBuf(pObj) )
{
int FaninId = Gia_ObjFaninId0(pObj, i);
Of_ObjUpdateRequired( p, FaninId, Required );
continue;
}
if ( !Of_ObjRefNum(p, i) )
continue;
// deref best cut
AreaBef = Of_CutDeref_rec( p, Of_ObjCutBestP(p, i) );
// select the best cut
pCutMin = NULL;
CostMin = ABC_INFINITY;
pList = Of_ObjCutSet( p, i );
Of_SetForEachCut( pList, pCut, k )
{
if ( Of_CutDelay1(pCut) > Required )
continue;
Cost = Of_CutAreaDerefed2( p, pCut );
if ( CostMin > Cost )
{
CostMin = Cost;
pCutMin = pCut;
}
}
// the cut is selected
assert( pCutMin != NULL );
Of_ObjSetCutBestP( p, pList, i, pCutMin );
Of_CutForEachVar( pCutMin, iVar, k )
Of_ObjUpdateRequired( p, iVar, Required - DelayLut1 );
// ref best cut
AreaAft = Of_CutRef_rec( p, pCutMin );
assert( AreaAft <= AreaBef );
// update parameters
p->pPars->Edge += Of_CutSize(pCutMin);
p->pPars->Area++;
}
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Of_ManComputeForwardDirconCut( Of_Man_t * p, int iObj, int * pCut, int * pDelay1, int * pDelay2 )
{
// Delay1 - main delay; Delay2 - precomputed LUT delay in terms of Delay1 for the fanins
int Delays[6], Perm[6] = {0, 1, 2, 3, 4, 5};
int DelayLut1 = p->pPars->nDelayLut1;
int DelayLut2 = p->pPars->nDelayLut2;
int nSize = Of_CutSize(pCut);
int k, iVar, Flag, SlowCon, Delay, DelayAfter, fDirConWorks;
Of_CutForEachVar( pCut, iVar, k )
{
Delays[k] = Of_ObjDelay1(p, iVar) + DelayLut1;
// printf( "%3d%s ", iVar, Flag ? "*" : " " );
}
for ( ; k < p->pPars->nLutSize; k++ )
{
Delays[k] = -ABC_INFINITY;
// printf( " " );
}
Vec_IntSelectSortCost2Reverse( Perm, nSize, Delays );
assert( nSize < 2 || Delays[0] >= Delays[nSize-1] );
assert( Delays[0] >= 0 && Delays[nSize-1] >= 0 );
// consider speedup due to dircons
fDirConWorks = 1;
*pDelay1 = *pDelay2 = 0;
SlowCon = p->pPars->nFastEdges < nSize ? Delays[p->pPars->nFastEdges] : 0;
for ( k = 0; k < nSize; k++ )
{
// use dircon if the following is true
// - the input is eligible for dircon (does not exceed the limit)
// - there is an expected gain in delay, compared the largest delay without dircon
// - the dircon delay is indeed lower than the largest delay without dircon
// - all previous dircons worked out well
// - the node is an AND-gate
iVar = Of_CutVar( pCut, Perm[k] );
assert( Delays[k] == Of_ObjDelay1(p, iVar) + DelayLut1 );
DelayAfter = Of_ObjDelay2(p, iVar) + DelayLut2;
if ( k < p->pPars->nFastEdges && Delays[k] > SlowCon && DelayAfter < Delays[k] && fDirConWorks && Gia_ObjIsAndNotBuf(Gia_ManObj(p->pGia, iVar)) )
{
Delay = DelayAfter;
Of_CutSetFlag( pCut, Perm[k], 1 );
}
else
{
Delay = Delays[k];// + DelayLut2;
Of_CutSetFlag( pCut, Perm[k], 0 );
fDirConWorks = 0;
}
*pDelay1 = Abc_MaxInt( *pDelay1, Delay );
*pDelay2 = Abc_MaxInt( *pDelay2, Delays[k] );
}
// printf( " %5.2f", Of_Int2Flt(*pDelay1) );
// printf( " %5.2f\n", Of_Int2Flt(*pDelay2) );
// do not use the structure if simple LUT is better
if ( *pDelay1 > *pDelay2 )
{
for ( k = 0; k < nSize; k++ )
Of_CutSetFlag( pCut, k, 0 );
*pDelay1 = *pDelay2;
}
assert( *pDelay1 <= *pDelay2 );
Of_CutSetDelay1( pCut, *pDelay1 );
Of_CutSetDelay2( pCut, *pDelay2 );
// verify
Of_CutForEachVarFlag( pCut, iVar, Flag, k )
{
if ( Flag )
assert( Of_ObjDelay2(p, iVar) + DelayLut2 <= *pDelay1 );
else
assert( Of_ObjDelay1(p, iVar) + DelayLut1 <= *pDelay1 );
assert( Of_ObjDelay1(p, iVar) + DelayLut1 <= *pDelay2 );
}
}
int Of_ManComputeForwardDirconObj( Of_Man_t * p, int iObj )
{
int Delay1 = ABC_INFINITY, Delay2 = ABC_INFINITY;
int i, * pCut, * pCutMin = NULL, * pCutMin2 = NULL, * pList = Of_ObjCutSet(p, iObj);
Of_SetForEachCut( pList, pCut, i )
{
int Delay1This, Delay2This;
Of_ManComputeForwardDirconCut( p, iObj, pCut, &Delay1This, &Delay2This );
if ( Delay1 > Delay1This )
pCutMin = pCut;
if ( Delay2 > Delay2This )
pCutMin2 = pCut;
Delay1 = Abc_MinInt( Delay1, Delay1This );
Delay2 = Abc_MinInt( Delay2, Delay2This );
}
Of_ObjSetDelay1( p, iObj, Delay1 );
Of_ObjSetDelay2( p, iObj, Delay2 );
Of_ObjSetCutBestP( p, pList, iObj, pCutMin );
Of_ObjSetCutBestP2( p, pList, iObj, pCutMin2 );
return Delay1;
}
void Of_ManComputeForwardDircon1( Of_Man_t * p )
{
Gia_Obj_t * pObj; int i;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
{
Of_ObjSetDelay1( p, i, Of_ObjDelay1(p, Gia_ObjFaninId0(pObj, i)) );
Of_ObjSetDelay2( p, i, Of_ObjDelay2(p, Gia_ObjFaninId0(pObj, i)) );
}
else
Of_ManComputeForwardDirconObj( p, i );
}
void Of_ManComputeBackwardDircon1( Of_Man_t * p )
{
Gia_Obj_t * pObj;
Vec_Bit_t * vPointed;
int DelayLut1 = p->pPars->nDelayLut1;
int DelayLut2 = p->pPars->nDelayLut2;
int i, k, iVar, Flag, * pList, * pCutMin;
int CountNodes = 0, CountEdges = 0;
Of_ManComputeOutputRequired( p, 1 );
printf( "Global delay =%8.2f\n", Of_Int2Flt((int)p->pPars->Delay) );
//return;
// compute area and edges
vPointed = Vec_BitStart( Gia_ManObjNum(p->pGia) );
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
int CostMin, fPointed, Required = Of_ObjRequired(p, i);
if ( Gia_ObjIsBuf(pObj) )
{
int FaninId = Gia_ObjFaninId0(pObj, i);
Of_ObjUpdateRequired( p, FaninId, Required );
Of_ObjRefInc( p, FaninId );
continue;
}
if ( !Of_ObjRefNum(p, i) )
continue;
// check if the LUT is has an outgoing dircon edge
fPointed = Vec_BitEntry(vPointed, i);
CountNodes += fPointed;
/*
// select the best cut
{
int * pCut;
pCutMin = NULL;
CostMin = ABC_INFINITY;
pList = Of_ObjCutSet( p, i );
Of_SetForEachCut( pList, pCut, k )
{
int Cost;
if ( (fPointed ? Of_CutDelay2(pCut) : Of_CutDelay1(pCut)) > Required )
continue;
Cost = Of_ManComputeBackwardCut( p, pCut );
if ( CostMin > Cost )
{
CostMin = Cost;
pCutMin = pCut;
}
}
}
*/
if ( fPointed )
{
pCutMin = Of_ObjCutBestP2( p, i );
CostMin = Of_CutDelay2(pCutMin);
//assert( Of_CutDelay2(pCutMin) <= Required );
}
else
{
pCutMin = Of_ObjCutBestP( p, i );
CostMin = Of_CutDelay1(pCutMin);
//assert( Of_CutDelay1(pCutMin) <= Required );
}
// remove dircon markers
//if ( fPointed )
// Of_CutForEachVarFlag( pCutMin, iVar, Flag, k )
// Of_CutSetFlag( pCutMin, k, 0 );
// the cut is selected
assert( pCutMin != NULL );
pList = Of_ObjCutSet( p, i );
Of_ObjSetCutBestP( p, pList, i, pCutMin ); ///// SET THE BEST CUT
Of_CutForEachVarFlag( pCutMin, iVar, Flag, k )
{
Of_ObjUpdateRequired( p, iVar, Required - ((Flag && !fPointed) ? DelayLut2 : DelayLut1) );
Of_ObjRefInc( p, iVar );
if ( Flag && !fPointed )
{
Vec_BitWriteEntry( vPointed, iVar, 1 );
CountEdges++;
}
}
// update parameters
p->pPars->Edge += Of_CutSize(pCutMin);
p->pPars->Area++;
}
Vec_BitFree( vPointed );
//printf( "Dircon nodes = %d. Dircon edges = %d.\n", CountNodes, CountEdges );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Of_ManCreateSat( Of_Man_t * p, int nCutsAll, Vec_Int_t * vFirst, Vec_Int_t * vCutNum, Vec_Int_t * vBestNode, Vec_Int_t * vBestCut )
{
extern void Cnf_AddCardinConstrPairWise( sat_solver * p, Vec_Int_t * vVars, int K, int fStrict );
Gia_Obj_t * pObj, * pVar;
int * pCutSet, * pCut;
int i, k, v, c, Var, Lit, pLits[2], status, RetValue, nCutCount, nClauses;
Vec_Int_t * vLits = Vec_IntAlloc( 100 );
abctime clk = Abc_Clock();
// start solver
sat_solver * pSat = sat_solver_new();
sat_solver_setnvars( pSat, Gia_ManAndNum(p->pGia) + nCutsAll );
// set polarity
Vec_IntAppend( vBestNode, vBestCut );
//Vec_IntPrint( vBestNode );
sat_solver_set_polarity( pSat, Vec_IntArray(vBestNode), Vec_IntSize(vBestNode) );
Vec_IntShrink( vBestNode, Vec_IntSize(vBestNode) - Vec_IntSize(vBestCut) );
// add clauses for nodes
Gia_ManForEachAnd( p->pGia, pObj, i )
{
int iFirst = Vec_IntEntry(vFirst, i);
int nCuts = Vec_IntEntry(vCutNum, i);
Vec_IntClear( vLits );
Vec_IntPush( vLits, Abc_Var2Lit(pObj->Value, 1) );
for ( c = 0; c < nCuts; c++ )
Vec_IntPush( vLits, Abc_Var2Lit(iFirst + c, 0) );
RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) );
assert( RetValue );
}
// add clauses for cuts
nCutCount = 0;
Gia_ManForEachAnd( p->pGia, pObj, i )
{
pCutSet = Of_ObjCutSet(p, i);
Of_SetForEachCut( pCutSet, pCut, k )
{
pLits[0] = Abc_Var2Lit( Gia_ManAndNum(p->pGia) + nCutCount, 1 );
pLits[1] = Abc_Var2Lit( pObj->Value, 0 );
RetValue = sat_solver_addclause( pSat, pLits, pLits+2 );
assert( RetValue );
Of_CutForEachVar( pCut, Var, v )
{
pVar = Gia_ManObj(p->pGia, Var);
if ( !Gia_ObjIsAnd(pVar) )
continue;
pLits[1] = Abc_Var2Lit( pVar->Value, 0 );
RetValue = sat_solver_addclause( pSat, pLits, pLits+2 );
assert( RetValue );
}
nCutCount++;
}
}
assert( nCutCount == nCutsAll );
// mark CO drivers
Gia_ManForEachCo( p->pGia, pObj, i )
Gia_ObjFanin0(pObj)->fMark0 = 1;
// set used nodes to 1
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( pObj->fMark0 )
{
Lit = Abc_Var2Lit( pObj->Value, 0 );
RetValue = sat_solver_addclause( pSat, &Lit, &Lit + 1 );
assert( RetValue );
}
// unmark CO drivers
Gia_ManForEachCo( p->pGia, pObj, i )
Gia_ObjFanin0(pObj)->fMark0 = 0;
// Sat_SolverWriteDimacs( pSat, "temp.cnf", NULL, NULL, 0 );
// add cardinality constraint
nClauses = pSat->stats.clauses;
Vec_IntClear( vLits );
Vec_IntFillNatural( vLits, Gia_ManAndNum(p->pGia) );
Cnf_AddCardinConstrPairWise( pSat, vLits, Vec_IntSize(vBestNode)-2, 0 );
printf( "Problem clauses = %d. Cardinality clauses = %d.\n", nClauses, pSat->stats.clauses - nClauses );
// solve the problem
status = sat_solver_solve( pSat, NULL, NULL, 1000000, 0, 0, 0 );
if ( status == l_Undef )
printf( "Undecided. " );
if ( status == l_True )
printf( "Satisfiable. " );
if ( status == l_False )
printf( "Unsatisfiable. " );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
Sat_SolverPrintStats( stdout, pSat );
if ( status == l_True )
{
int nOnes = 0;
for ( v = 0; v < Gia_ManAndNum(p->pGia); v++ )
{
printf( "%d", sat_solver_var_value(pSat, v) );
nOnes += sat_solver_var_value(pSat, v);
}
printf( " Nodes = %d\n", nOnes );
nOnes = 0;
for ( ; v < Gia_ManAndNum(p->pGia) + nCutsAll; v++ )
{
printf( "%d", sat_solver_var_value(pSat, v) );
nOnes += sat_solver_var_value(pSat, v);
}
printf( " LUTs = %d\n", nOnes );
}
// cleanup
sat_solver_delete( pSat );
Vec_IntFree( vLits );
}
void Of_ManPrintCuts( Of_Man_t * p )
{
int fVerbose = 0;
Gia_Obj_t * pObj;
int * pCutSet, * pCut, * pCutBest;
int i, k, v, Var, nCuts;
Vec_Int_t * vFirst = Vec_IntStartFull( Gia_ManObjNum(p->pGia) );
Vec_Int_t * vCutNum = Vec_IntStartFull( Gia_ManObjNum(p->pGia) );
Vec_Int_t * vBestNode = Vec_IntAlloc( 100 );
Vec_Int_t * vBestCut = Vec_IntAlloc( 100 );
int nAndsAll = 0, nCutsAll = 0, Shift = Gia_ManAndNum(p->pGia);
Gia_ManFillValue( p->pGia );
Gia_ManForEachAnd( p->pGia, pObj, i )
{
// get the best cut
pCutBest = NULL;
if ( Of_ObjRefNum(p, i) )
{
Vec_IntPush( vBestNode, nAndsAll );
pCutBest = Of_ObjCutBestP( p, i );
}
pObj->Value = nAndsAll++;
// get the cutset
pCutSet = Of_ObjCutSet(p, i);
// count cuts
nCuts = 0;
Of_SetForEachCut( pCutSet, pCut, k )
nCuts++;
// save
Vec_IntWriteEntry( vFirst, i, Shift + nCutsAll );
Vec_IntWriteEntry( vCutNum, i, nCuts );
// print cuts
if ( fVerbose )
printf( "Node %d. Cuts %d.\n", i, nCuts );
Of_SetForEachCut( pCutSet, pCut, k )
{
if ( fVerbose )
{
printf( "{ " );
Of_CutForEachVar( pCut, Var, v )
printf( "%d ", Var );
printf( "} %s\n", pCutBest == pCut ? "best" :"" );
}
if ( pCutBest == pCut )
Vec_IntPush( vBestCut, Shift + nCutsAll );
nCutsAll++;
}
}
assert( nAndsAll == Shift );
printf( "Total: Ands = %d. Luts = %d. Cuts = %d.\n", nAndsAll, Vec_IntSize(vBestNode), nCutsAll );
// create SAT problem
Of_ManCreateSat( p, nCutsAll, vFirst, vCutNum, vBestNode, vBestCut );
Vec_IntFree( vFirst );
Vec_IntFree( vCutNum );
Vec_IntFree( vBestNode );
Vec_IntFree( vBestCut );
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Of_ManSetDefaultPars( Jf_Par_t * pPars )
{
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 4;
pPars->nCutNum = 16;
pPars->nProcNum = 0;
pPars->nRounds = 3;
pPars->nRoundsEla = 4;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 10;
pPars->DelayTarget = -1;
pPars->nDelayLut1 = 10;
pPars->nDelayLut2 = 2;
pPars->nFastEdges = 0; //
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 0;
pPars->fCutMin = 0;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = OF_LEAF_MAX;
pPars->nCutNumMax = OF_CUT_MAX;
pPars->MapDelayTarget = -1;
}
Gia_Man_t * Of_ManDeriveMapping( Of_Man_t * p )
{
Vec_Int_t * vMapping, * vPacking = NULL;
Vec_Bit_t * vPointed;
int i, k, iVar, * pCut, Place, Flag;
assert( !p->pPars->fCutMin && p->pGia->vMapping == NULL );
vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 );
if ( p->pPars->nFastEdges )
{
vPacking = Vec_IntAlloc( 1000 );
Vec_IntPush( vPacking, 0 );
}
vPointed = Vec_BitStart( Gia_ManObjNum(p->pGia) );
Gia_ManForEachAndId( p->pGia, i )
{
if ( !Of_ObjRefNum(p, i) )
continue;
assert( !Gia_ObjIsBuf(Gia_ManObj(p->pGia,i)) );
pCut = Of_ObjCutBestP( p, i );
Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, Of_CutSize(pCut) );
Of_CutForEachVar( pCut, iVar, k )
Vec_IntPush( vMapping, iVar );
Vec_IntPush( vMapping, i );
if ( vPacking == NULL || Vec_BitEntry(vPointed, i) )
continue;
Place = Vec_IntSize( vPacking );
Vec_IntPush( vPacking, 0 );
Vec_IntPush( vPacking, i );
Of_CutForEachVarFlag( pCut, iVar, Flag, k )
if ( Flag )
{
Vec_IntPush( vPacking, iVar );
Vec_BitWriteEntry( vPointed, iVar, 1 );
}
Vec_IntAddToEntry( vPacking, Place, Vec_IntSize(vPacking)-Place-1 );
Vec_IntAddToEntry( vPacking, 0, 1 );
}
assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vMapping = vMapping;
p->pGia->vPacking = vPacking;
Vec_BitFree( vPointed );
return p->pGia;
}
Gia_Man_t * Of_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Gia_Man_t * pNew = NULL, * pCls;
Of_Man_t * p; int i, Id;
if ( Gia_ManHasChoices(pGia) )
pPars->fCoarsen = 0, pPars->fCutMin = 1;
pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia;
p = Of_StoCreate( pCls, pPars );
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Of_ManPrintInit( p );
Of_ManComputeCuts( p );
Of_ManPrintQuit( p );
Gia_ManForEachCiId( p->pGia, Id, i )
{
int Time = Of_Flt2Int(p->pGia->vInArrs ? Abc_MaxFloat(0.0, Vec_FltEntry(p->pGia->vInArrs, i)) : 0.0);
Of_ObjSetDelay1( p, Id, Time );
Of_ObjSetDelay2( p, Id, Time );
}
if ( p->pPars->nFastEdges )
{
p->pPars->nRounds = 1;
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
{
if ( p->Iter == 0 )
{
Of_ManComputeForwardDircon1( p );
Of_ManComputeBackwardDircon1( p );
Of_ManPrintStats( p, "Delay" );
}
else
{
Of_ManComputeForwardDircon1( p );
Of_ManComputeBackwardDircon1( p );
Of_ManPrintStats( p, "Flow " );
}
}
}
else
{
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
{
if ( p->Iter == 0 )
{
Of_ManComputeForward1( p );
Of_ManComputeBackward1( p );
Of_ManPrintStats( p, "Delay" );
}
else
{
Of_ManComputeForward1( p );
Of_ManComputeBackward1( p );
Of_ManPrintStats( p, "Flow " );
}
}
for ( ; p->Iter < p->pPars->nRounds + p->pPars->nRoundsEla; p->Iter++ )
{
if ( p->Iter < p->pPars->nRounds + p->pPars->nRoundsEla - 1 )
{
Of_ManComputeForward2( p );
Of_ManComputeBackward3( p );
Of_ManPrintStats( p, "Area " );
}
else
{
Of_ManComputeForward1( p );
Of_ManComputeBackward3( p );
Of_ManPrintStats( p, "Area " );
}
}
}
pNew = Of_ManDeriveMapping( p );
Gia_ManMappingVerify( pNew );
if ( pNew->vPacking )
Gia_ManConvertPackingToEdges( pNew );
//Of_ManPrintCuts( p );
Of_StoDelete( p );
if ( pCls != pGia )
Gia_ManStop( pCls );
if ( pNew == NULL )
return Gia_ManDup( pGia );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END