blob: 703e39129e09672cbb08ebb53c94797ea802ff8a [file] [log] [blame]
/**CFile****************************************************************
FileName [giaNf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [Standard-cell mapper.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaNf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include <float.h>
#include "gia.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "misc/util/utilTruth.h"
#include "misc/extra/extra.h"
#include "base/main/main.h"
#include "misc/vec/vecMem.h"
#include "misc/vec/vecWec.h"
#include "opt/dau/dau.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define PF_LEAF_MAX 6
#define PF_CUT_MAX 32
#define PF_NO_LEAF 31
#define PF_NO_FUNC 0x3FFFFFF
#define PF_INFINITY FLT_MAX
typedef struct Pf_Cut_t_ Pf_Cut_t;
struct Pf_Cut_t_
{
word Sign; // signature
int Delay; // delay
float Flow; // flow
unsigned iFunc : 26; // function (PF_NO_FUNC)
unsigned Useless : 1; // function
unsigned nLeaves : 5; // leaf number (PF_NO_LEAF)
int pLeaves[PF_LEAF_MAX+1]; // leaves
};
typedef struct Pf_Mat_t_ Pf_Mat_t;
struct Pf_Mat_t_
{
unsigned fCompl : 8; // complemented
unsigned Phase : 6; // match phase
unsigned Perm : 18; // match permutation
};
typedef struct Pf_Obj_t_ Pf_Obj_t;
struct Pf_Obj_t_
{
float Area;
unsigned Gate : 7; // gate
unsigned nLeaves : 3; // fanin count
unsigned nRefs : 22; // ref count
int pLeaves[6]; // leaf literals
};
typedef struct Pf_Man_t_ Pf_Man_t;
struct Pf_Man_t_
{
// user data
Gia_Man_t * pGia; // derived manager
Jf_Par_t * pPars; // parameters
// matching
Vec_Mem_t * vTtMem; // truth tables
Vec_Wec_t * vTt2Match; // matches for truth tables
Mio_Cell_t * pCells; // library gates
int nCells; // library gate count
// cut data
Pf_Obj_t * pPfObjs; // best cuts
Vec_Ptr_t vPages; // cut memory
Vec_Int_t vCutSets; // cut offsets
Vec_Flt_t vCutFlows; // temporary cut area
Vec_Int_t vCutDelays; // temporary cut delay
int iCur; // current position
int Iter; // mapping iterations
int fUseEla; // use exact area
int nInvs; // the inverter count
float InvDelay; // inverter delay
float InvArea; // inverter area
// statistics
abctime clkStart; // starting time
double CutCount[6]; // cut counts
int nCutUseAll; // objects with useful cuts
};
static inline int Pf_Mat2Int( Pf_Mat_t Mat ) { union { int x; Pf_Mat_t y; } v; v.y = Mat; return v.x; }
static inline Pf_Mat_t Pf_Int2Mat( int Int ) { union { int x; Pf_Mat_t y; } v; v.x = Int; return v.y; }
static inline Pf_Obj_t * Pf_ManObj( Pf_Man_t * p, int i ) { return p->pPfObjs + i; }
static inline Mio_Cell_t* Pf_ManCell( Pf_Man_t * p, int i ) { return p->pCells + i; }
static inline int * Pf_ManCutSet( Pf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); }
static inline int Pf_ObjCutSetId( Pf_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); }
static inline int * Pf_ObjCutSet( Pf_Man_t * p, int i ) { return Pf_ManCutSet(p, Pf_ObjCutSetId(p, i)); }
static inline int Pf_ObjHasCuts( Pf_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); }
static inline int Pf_ObjCutUseless( Pf_Man_t * p, int TruthId ) { return (int)(TruthId >= Vec_WecSize(p->vTt2Match)); }
static inline float Pf_ObjCutFlow( Pf_Man_t * p, int i ) { return Vec_FltEntry(&p->vCutFlows, i); }
static inline int Pf_ObjCutDelay( Pf_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); }
static inline void Pf_ObjSetCutFlow( Pf_Man_t * p, int i, float a ) { Vec_FltWriteEntry(&p->vCutFlows, i, a); }
static inline void Pf_ObjSetCutDelay( Pf_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); }
static inline int Pf_CutSize( int * pCut ) { return pCut[0] & PF_NO_LEAF; }
static inline int Pf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); }
static inline int * Pf_CutLeaves( int * pCut ) { return pCut + 1; }
static inline int Pf_CutSetBoth( int n, int f ) { return n | (f << 5); }
static inline int Pf_CutIsTriv( int * pCut, int i ) { return Pf_CutSize(pCut) == 1 && pCut[1] == i; }
static inline int Pf_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; }
static inline int * Pf_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; }
static inline int Pf_CutConfLit( int Conf, int i ) { return 15 & (Conf >> (i << 2)); }
static inline int Pf_CutConfVar( int Conf, int i ) { return Abc_Lit2Var( Pf_CutConfLit(Conf, i) ); }
static inline int Pf_CutConfC( int Conf, int i ) { return Abc_LitIsCompl( Pf_CutConfLit(Conf, i) ); }
#define Pf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Pf_CutSize(pCut) + 1 )
#define Pf_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ )
#define Pf_CutForEachLit( pCut, Conf, iLit, i ) for ( i = 0; i < Pf_CutSize(pCut) && (iLit = Abc_Lit2LitV(Pf_CutLeaves(pCut), Pf_CutConfLit(Conf, i))); i++ )
#define Pf_CutForEachVar( pCut, Conf, iVar, c, i ) for ( i = 0; i < Pf_CutSize(pCut) && (iVar = Pf_CutLeaves(pCut)[Pf_CutConfVar(Conf, i)]) && ((c = Pf_CutConfC(Conf, i)), 1); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pf_StoCreateGateAdd( Pf_Man_t * pMan, word uTruth, int * pFans, int nFans, int CellId )
{
Vec_Int_t * vArray;
Pf_Mat_t Mat = Pf_Int2Mat(0);
int i, GateId, Entry, fCompl = (int)(uTruth & 1);
word uFunc = fCompl ? ~uTruth : uTruth;
int iFunc = Vec_MemHashInsert( pMan->vTtMem, &uFunc );
if ( iFunc == Vec_WecSize(pMan->vTt2Match) )
Vec_WecPushLevel( pMan->vTt2Match );
vArray = Vec_WecEntry( pMan->vTt2Match, iFunc );
Mat.fCompl = fCompl;
assert( nFans < 7 );
for ( i = 0; i < nFans; i++ )
{
Mat.Perm |= (unsigned)(Abc_Lit2Var(pFans[i]) << (3*i));
Mat.Phase |= (unsigned)(Abc_LitIsCompl(pFans[i]) << i);
}
// check if the same one exists
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( GateId == CellId && Pf_Int2Mat(Entry).Phase == Mat.Phase )
break;
if ( i == Vec_IntSize(vArray) )
{
Vec_IntPush( vArray, CellId );
Vec_IntPush( vArray, Pf_Mat2Int(Mat) );
}
}
void Pf_StoCreateGate( Pf_Man_t * pMan, Mio_Cell_t * pCell, int ** pComp, int ** pPerm, int * pnPerms )
{
int Perm[PF_LEAF_MAX], * Perm1, * Perm2;
int nPerms = pnPerms[pCell->nFanins];
int nMints = (1 << pCell->nFanins);
word tCur, tTemp1, tTemp2;
int i, p, c;
for ( i = 0; i < (int)pCell->nFanins; i++ )
Perm[i] = Abc_Var2Lit( i, 0 );
tCur = tTemp1 = pCell->uTruth;
for ( p = 0; p < nPerms; p++ )
{
tTemp2 = tCur;
for ( c = 0; c < nMints; c++ )
{
Pf_StoCreateGateAdd( pMan, tCur, Perm, pCell->nFanins, pCell->Id );
// update
tCur = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] );
Perm1 = Perm + pComp[pCell->nFanins][c];
*Perm1 = Abc_LitNot( *Perm1 );
}
assert( tTemp2 == tCur );
// update
tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[pCell->nFanins][p] );
Perm1 = Perm + pPerm[pCell->nFanins][p];
Perm2 = Perm1 + 1;
ABC_SWAP( int, *Perm1, *Perm2 );
}
assert( tTemp1 == tCur );
}
void Pf_StoDeriveMatches( Pf_Man_t * p, int fVerbose )
{
// abctime clk = Abc_Clock();
int * pComp[7];
int * pPerm[7];
int nPerms[7], i;
for ( i = 2; i <= 6; i++ )
pComp[i] = Extra_GreyCodeSchedule( i );
for ( i = 2; i <= 6; i++ )
pPerm[i] = Extra_PermSchedule( i );
for ( i = 2; i <= 6; i++ )
nPerms[i] = Extra_Factorial( i );
p->pCells = Mio_CollectRootsNewDefault( 6, &p->nCells, fVerbose );
for ( i = 4; i < p->nCells; i++ )
Pf_StoCreateGate( p, p->pCells + i, pComp, pPerm, nPerms );
for ( i = 2; i <= 6; i++ )
ABC_FREE( pComp[i] );
for ( i = 2; i <= 6; i++ )
ABC_FREE( pPerm[i] );
// Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
void Pf_StoPrintOne( Pf_Man_t * p, int Count, int t, int i, int GateId, Pf_Mat_t Mat )
{
Mio_Cell_t * pC = p->pCells + GateId;
word * pTruth = Vec_MemReadEntry(p->vTtMem, t);
int k, nSuppSize = Abc_TtSupportSize(pTruth, 6);
printf( "%6d : ", Count );
printf( "%6d : ", t );
printf( "%6d : ", i );
printf( "Gate %16s ", pC->pName );
printf( "Area =%8.2f ", pC->Area );
printf( "In = %d ", pC->nFanins );
if ( Mat.fCompl )
printf( " compl " );
else
printf( " " );
for ( k = 0; k < (int)pC->nFanins; k++ )
{
int fComplF = (Mat.Phase >> k) & 1;
int iFanin = (Mat.Perm >> (3*k)) & 7;
printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') );
}
printf( " " );
Dau_DsdPrintFromTruth( pTruth, nSuppSize );
}
void Pf_StoPrint( Pf_Man_t * p, int fVerbose )
{
int t, i, GateId, Entry, Count = 0;
for ( t = 2; t < Vec_WecSize(p->vTt2Match); t++ )
{
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, t );
Vec_IntForEachEntryDouble( vArr, GateId, Entry, i )
{
Count++;
if ( !fVerbose )
continue;
if ( t < 10 )
Pf_StoPrintOne( p, Count, t, i/2, GateId, Pf_Int2Mat(Entry) );
}
}
printf( "Gates = %d. Truths = %d. Matches = %d.\n",
p->nCells, Vec_MemEntryNum(p->vTtMem), Count );
}
/*
void Pf_ManPrepareLibraryTest()
{
int fVerbose = 0;
abctime clk = Abc_Clock();
Pf_Man_t * p;
p = Pf_StoCreate( NULL, NULL, fVerbose );
Pf_StoPrint( p, fVerbose );
Pf_StoDelete(p);
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
*/
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Pf_Man_t * Pf_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs );
Pf_Man_t * p;
Vec_Int_t * vFlowRefs;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= PF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= PF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vCellMapping );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
// create references
ABC_FREE( pGia->pRefs );
vFlowRefs = Vec_IntAlloc(0);
Mf_ManSetFlowRefs( pGia, vFlowRefs );
pGia->pRefs= Vec_IntReleaseArray(vFlowRefs);
Vec_IntFree(vFlowRefs);
// create
p = ABC_CALLOC( Pf_Man_t, 1 );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->pPfObjs = ABC_CALLOC( Pf_Obj_t, Gia_ManObjNum(pGia) );
p->iCur = 2;
// other
Vec_PtrGrow( &p->vPages, 256 ); // cut memory
Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets
Vec_FltFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area
Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay
// matching
p->vTtMem = Vec_MemAllocForTT( 6, 0 );
p->vTt2Match = Vec_WecAlloc( 1000 );
Vec_WecPushLevel( p->vTt2Match );
Vec_WecPushLevel( p->vTt2Match );
assert( Vec_WecSize(p->vTt2Match) == Vec_MemEntryNum(p->vTtMem) );
Pf_StoDeriveMatches( p, 0 );//pPars->fVerbose );
p->InvDelay = p->pCells[3].Delays[0];
p->InvArea = p->pCells[3].Area;
//Pf_ObjMatchD(p, 0, 0)->Gate = 0;
//Pf_ObjMatchD(p, 0, 1)->Gate = 1;
// prepare cuts
return p;
}
void Pf_StoDelete( Pf_Man_t * p )
{
Vec_PtrFreeData( &p->vPages );
ABC_FREE( p->vPages.pArray );
ABC_FREE( p->vCutSets.pArray );
ABC_FREE( p->vCutFlows.pArray );
ABC_FREE( p->vCutDelays.pArray );
ABC_FREE( p->pPfObjs );
// matching
Vec_WecFree( p->vTt2Match );
Vec_MemHashFree( p->vTtMem );
Vec_MemFree( p->vTtMem );
ABC_FREE( p->pCells );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Pf_CutComputeTruth6( Pf_Man_t * p, Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, int fCompl0, int fCompl1, Pf_Cut_t * pCutR, int fIsXor )
{
// extern int Pf_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
pCutR->Useless = Pf_ObjCutUseless( p, truthId );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Pf_CutComputeTruthMux6( Pf_Man_t * p, Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, Pf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Pf_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
pCutR->Useless = Pf_ObjCutUseless( p, truthId );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Pf_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline word Pf_CutGetSign( int * pLeaves, int nLeaves )
{
word Sign = 0; int i;
for ( i = 0; i < nLeaves; i++ )
Sign |= ((word)1) << (pLeaves[i] & 0x3F);
return Sign;
}
static inline int Pf_CutCreateUnit( Pf_Cut_t * p, int i )
{
p->Delay = 0;
p->Flow = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline void Pf_Cutprintf( Pf_Man_t * p, Pf_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } Useless = %d. D = %4d A = %9.4f F = %6d ",
pCut->Useless, pCut->Delay, pCut->Flow, pCut->iFunc );
if ( p->vTtMem )
Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves );
else
printf( "\n" );
}
static inline int Pf_ManPrepareCuts( Pf_Cut_t * pCuts, Pf_Man_t * p, int iObj, int fAddUnit )
{
if ( Pf_ObjHasCuts(p, iObj) )
{
Pf_Cut_t * pMfCut = pCuts;
int i, * pCut, * pList = Pf_ObjCutSet(p, iObj);
Pf_SetForEachCut( pList, pCut, i )
{
pMfCut->Delay = 0;
pMfCut->Flow = 0;
pMfCut->iFunc = Pf_CutFunc( pCut );
pMfCut->nLeaves = Pf_CutSize( pCut );
pMfCut->Sign = Pf_CutGetSign( pCut+1, Pf_CutSize(pCut) );
pMfCut->Useless = Pf_ObjCutUseless( p, Abc_Lit2Var(pMfCut->iFunc) );
memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Pf_CutSize(pCut) );
pMfCut++;
}
if ( fAddUnit && pCuts->nLeaves > 1 )
return pList[0] + Pf_CutCreateUnit( pMfCut, iObj );
return pList[0];
}
return Pf_CutCreateUnit( pCuts, iObj );
}
static inline int Pf_ManSaveCuts( Pf_Man_t * p, Pf_Cut_t ** pCuts, int nCuts, int fUseful )
{
int i, * pPlace, iCur, nInts = 1, nCutsNew = 0;
for ( i = 0; i < nCuts; i++ )
if ( !fUseful || !pCuts[i]->Useless )
nInts += pCuts[i]->nLeaves + 1, nCutsNew++;
if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF )
p->iCur = ((p->iCur >> 16) + 1) << 16;
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) )
Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) );
iCur = p->iCur; p->iCur += nInts;
pPlace = Pf_ManCutSet( p, iCur );
*pPlace++ = nCutsNew;
for ( i = 0; i < nCuts; i++ )
if ( !fUseful || !pCuts[i]->Useless )
{
*pPlace++ = Pf_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc );
memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves );
pPlace += pCuts[i]->nLeaves;
}
return iCur;
}
static inline int Pf_ManCountUseful( Pf_Cut_t ** pCuts, int nCuts )
{
int i, Count = 0;
for ( i = 0; i < nCuts; i++ )
Count += !pCuts[i]->Useless;
return Count;
}
static inline int Pf_ManCountMatches( Pf_Man_t * p, Pf_Cut_t ** pCuts, int nCuts )
{
int i, Count = 0;
for ( i = 0; i < nCuts; i++ )
if ( !pCuts[i]->Useless )
Count += Vec_IntSize(Vec_WecEntry(p->vTt2Match, Abc_Lit2Var(pCuts[i]->iFunc))) / 2;
return Count;
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Pf_CutCheck( Pf_Cut_t * pBase, Pf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Pf_SetCheckArray( Pf_Cut_t ** ppCuts, int nCuts )
{
Pf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( pCut0->nLeaves <= PF_LEAF_MAX );
assert( pCut0->Sign == Pf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Pf_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Pf_CutMergeOrder( Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, Pf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = PF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = PF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = PF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Pf_CutMergeOrderMux( Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, Pf_Cut_t * pCut2, Pf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = PF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Pf_SetCutIsContainedOrder( Pf_Cut_t * pBase, Pf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Pf_SetLastCutIsContained( Pf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Pf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
static inline int Pf_SetLastCutContainsArea( Pf_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Pf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = PF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 0; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == PF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Pf_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline int Pf_CutCompareArea( Pf_Cut_t * pCut0, Pf_Cut_t * pCut1 )
{
if ( pCut0->Useless < pCut1->Useless ) return -1;
if ( pCut0->Useless > pCut1->Useless ) return 1;
if ( pCut0->Flow < pCut1->Flow ) return -1;
if ( pCut0->Flow > pCut1->Flow ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline void Pf_SetSortByArea( Pf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 0; i-- )
{
if ( Pf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Pf_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Pf_SetAddCut( Pf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Pf_SetLastCutContainsArea(pCuts, nCuts);
Pf_SetSortByArea( pCuts, nCuts );
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline int Pf_CutArea( Pf_Man_t * p, int nLeaves )
{
if ( nLeaves < 2 )
return 0;
return nLeaves + p->pPars->nAreaTuner;
}
static inline void Pf_CutParams( Pf_Man_t * p, Pf_Cut_t * pCut, int nGiaRefs )
{
int i, nLeaves = pCut->nLeaves;
assert( nLeaves <= p->pPars->nLutSize );
pCut->Delay = 0;
pCut->Flow = 0;
for ( i = 0; i < nLeaves; i++ )
{
pCut->Delay = Abc_MaxInt( pCut->Delay, Pf_ObjCutDelay(p, pCut->pLeaves[i]) );
pCut->Flow += Pf_ObjCutFlow(p, pCut->pLeaves[i]);
}
pCut->Delay += (int)(nLeaves > 1);
pCut->Flow = (pCut->Flow + Pf_CutArea(p, nLeaves)) / (nGiaRefs ? nGiaRefs : 1);
}
void Pf_ObjMergeOrder( Pf_Man_t * p, int iObj )
{
Pf_Cut_t pCuts0[PF_CUT_MAX], pCuts1[PF_CUT_MAX], pCuts[PF_CUT_MAX], * pCutsR[PF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
int nGiaRefs = 2*Gia_ObjRefNumId(p->pGia, iObj);
int nLutSize = p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCuts0 = Pf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1);
int nCuts1 = Pf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1);
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int iSibl = Gia_ObjSibl(p->pGia, iObj);
Pf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1;
int i, nCutsUse, nCutsR = 0;
assert( !Gia_ObjIsBuf(pObj) );
for ( i = 0; i < nCutNum; i++ )
pCutsR[i] = pCuts + i;
if ( iSibl )
{
Pf_Cut_t pCuts2[PF_CUT_MAX];
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCuts2 = Pf_ManPrepareCuts(pCuts2, p, iSibl, 0);
Pf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
*pCutsR[nCutsR] = *pCut2;
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Pf_CutParams( p, pCutsR[nCutsR], nGiaRefs );
nCutsR = Pf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
Pf_Cut_t pCuts2[PF_CUT_MAX];
int nCuts2 = Pf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1);
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
Pf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
if ( Pf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Pf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Pf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( Pf_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Pf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Pf_CutParams( p, pCutsR[nCutsR], nGiaRefs );
nCutsR = Pf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Pf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Pf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Pf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( Pf_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Pf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Pf_CutParams( p, pCutsR[nCutsR], nGiaRefs );
nCutsR = Pf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
// if ( iObj % 10000 == 0 )
// if ( iObj == 1090 )
{
printf( "*** Obj = %d Useful = %d\n", iObj, Pf_ManCountUseful(pCutsR, nCutsR) );
for ( i = 0; i < nCutsR; i++ )
Pf_Cutprintf( p, pCutsR[i] );
printf( "\n" );
}
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
// assert( Pf_SetCheckArray(pCutsR, nCutsR) );
// store the cutset
Pf_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow );
Pf_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay );
*Vec_IntEntryP(&p->vCutSets, iObj) = Pf_ManSaveCuts(p, pCutsR, nCutsR, 0);
p->CutCount[3] += nCutsR;
nCutsUse = Pf_ManCountUseful(pCutsR, nCutsR);
p->CutCount[4] += nCutsUse;
p->nCutUseAll += nCutsUse == nCutsR;
p->CutCount[5] += Pf_ManCountMatches(p, pCutsR, nCutsR);
}
void Pf_ManComputeCuts( Pf_Man_t * p )
{
Gia_Obj_t * pObj; int i, iFanin;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
{
iFanin = Gia_ObjFaninId0(pObj, i);
Pf_ObjSetCutFlow( p, i, Pf_ObjCutFlow(p, iFanin) );
Pf_ObjSetCutDelay( p, i, Pf_ObjCutDelay(p, iFanin) );
}
else
Pf_ObjMergeOrder( p, i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pf_ManPrintStats( Pf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Delay =%8.2f ", p->pPars->MapDelay );
printf( "Area =%12.2f ", p->pPars->MapArea );
printf( "Gate =%6d ", (int)p->pPars->Area );
printf( "Inv =%6d ", (int)p->nInvs );
printf( "Edge =%7d ", (int)p->pPars->Edge );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Pf_ManPrintInit( Pf_Man_t * p )
{
int nChoices;
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla );
printf( "Coarse = %d ", p->pPars->fCoarsen );
printf( "Cells = %d ", p->nCells );
printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) );
printf( "Matches = %d ", Vec_WecSizeSize(p->vTt2Match)/2 );
nChoices = Gia_ManChoiceNum( p->pGia );
if ( nChoices )
printf( "Choices = %d ", nChoices );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Pf_ManPrintQuit( Pf_Man_t * p )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan =(1.0 * sizeof(Pf_Obj_t) + 3.0 * sizeof(int)) * Gia_ManObjNum(p->pGia) / (1<<20);
float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
return;
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) );
printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) );
printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) );
printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) );
printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) );
// printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Cut = %.2f MB ", MemCuts );
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt );
// printf( "\n" );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
/*
void Pf_ManSetMapRefsGate( Pf_Man_t * p, int iObj, float Required, Pf_Mat_t * pM )
{
int k, iVar, fCompl;
Mio_Cell_t * pCell = Pf_ManCell( p, pM->Gate );
int * pCut = Pf_CutFromHandle( Pf_ObjCutSet(p, iObj), pM->CutH );
Pf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k )
{
Pf_ObjMapRefInc( p, iVar, fCompl );
Pf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->Delays[k] );
}
assert( Pf_CutSize(pCut) == (int)pCell->nFanins );
// update global stats
p->pPars->MapArea += pCell->Area;
p->pPars->Edge += Pf_CutSize(pCut);
p->pPars->Area++;
// update status of the gate
assert( pM->fBest == 0 );
pM->fBest = 1;
}
int Pf_ManSetMapRefs( Pf_Man_t * p )
{
float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
float * pFlowRefs = Vec_FltArray( &p->vFlowRefs );
int * pMapRefs = Vec_IntArray( &p->vMapRefs );
float Epsilon = p->pPars->Epsilon;
int nLits = 2*Gia_ManObjNum(p->pGia);
int i, c, Id, nRefs[2];
Pf_Mat_t * pD, * pA, * pM;
Pf_Mat_t * pDs[2], * pAs[2], * pMs[2];
Gia_Obj_t * pObj;
float Required = 0, Requireds[2];
// check references
assert( !p->fUseEla );
memset( pMapRefs, 0, sizeof(int) * nLits );
Vec_FltFill( &p->vRequired, nLits, PF_INFINITY );
// for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ )
// assert( !Pf_ObjMapRefNum(p, i, 0) && !Pf_ObjMapRefNum(p, i, 1) );
// compute delay
p->pPars->MapDelay = 0;
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Pf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
if ( Required == PF_INFINITY )
{
Pf_ManCutMatchprintf( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Pf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) ) );
}
p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Required );
}
// check delay target
if ( p->pPars->MapDelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->MapDelayTarget = (int)((float)p->pPars->MapDelay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->MapDelayTarget != -1 )
{
if ( p->pPars->MapDelay < p->pPars->MapDelayTarget + Epsilon )
p->pPars->MapDelay = p->pPars->MapDelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", p->pPars->MapDelayTarget, p->pPars->MapDelay );
}
// set required times
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Pf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
Required = p->pPars->fDoAverage ? Required * (100.0 + p->pPars->nRelaxRatio) / 100.0 : p->pPars->MapDelay;
Pf_ObjUpdateRequired( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Required );
Pf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
}
// compute area and edges
p->nInvs = 0;
p->pPars->MapArea = 0;
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
if ( Pf_ObjMapRefNum(p, i, 1) )
{
Pf_ObjMapRefInc( p, i, 0 );
Pf_ObjUpdateRequired( p, i, 0, Pf_ObjRequired(p, i, 1) - p->InvDelay );
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
Pf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Pf_ObjRequired(p, i, 0) );
Pf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj));
continue;
}
// skip if this node is not used
for ( c = 0; c < 2; c++ )
{
nRefs[c] = Pf_ObjMapRefNum(p, i, c);
//if ( Pf_ObjMatchD( p, i, c )->fCompl )
// printf( "Match D of node %d has inv in phase %d.\n", i, c );
//if ( Pf_ObjMatchA( p, i, c )->fCompl )
// printf( "Match A of node %d has inv in phase %d.\n", i, c );
}
if ( !nRefs[0] && !nRefs[1] )
continue;
// consider two cases
if ( nRefs[0] && nRefs[1] )
{
// find best matches for both phases
for ( c = 0; c < 2; c++ )
{
Requireds[c] = Pf_ObjRequired( p, i, c );
//assert( Requireds[c] < PF_INFINITY );
pDs[c] = Pf_ObjMatchD( p, i, c );
pAs[c] = Pf_ObjMatchA( p, i, c );
pMs[c] = (pAs[c]->D < Requireds[c] + Epsilon) ? pAs[c] : pDs[c];
}
// swap complemented matches
if ( pMs[0]->fCompl && pMs[1]->fCompl )
{
pMs[0]->fCompl = pMs[1]->fCompl = 0;
ABC_SWAP( Pf_Mat_t *, pMs[0], pMs[1] );
}
// check if intervers are involved
if ( !pMs[0]->fCompl && !pMs[1]->fCompl )
{
// no inverters
for ( c = 0; c < 2; c++ )
Pf_ManSetMapRefsGate( p, i, Requireds[c], pMs[c] );
}
else
{
// one interver
assert( !pMs[0]->fCompl || !pMs[1]->fCompl );
c = pMs[1]->fCompl;
assert( pMs[c]->fCompl && !pMs[!c]->fCompl );
//printf( "Using inverter at node %d in phase %d\n", i, c );
// update this phase phase
pM = pMs[c];
pM->fBest = 1;
Required = Requireds[c];
// update opposite phase
Pf_ObjMapRefInc( p, i, !c );
Pf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay );
// select oppositve phase
Required = Pf_ObjRequired( p, i, !c );
//assert( Required < PF_INFINITY );
pD = Pf_ObjMatchD( p, i, !c );
pA = Pf_ObjMatchA( p, i, !c );
pM = (pA->D < Required + Epsilon) ? pA : pD;
assert( !pM->fCompl );
// account for the inverter
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
// create gate
Pf_ManSetMapRefsGate( p, i, Required, pM );
}
}
else
{
c = (int)(nRefs[1] > 0);
assert( nRefs[c] && !nRefs[!c] );
// consider this phase
Required = Pf_ObjRequired( p, i, c );
//assert( Required < PF_INFINITY );
pD = Pf_ObjMatchD( p, i, c );
pA = Pf_ObjMatchA( p, i, c );
pM = (pA->D < Required + Epsilon) ? pA : pD;
if ( pM->fCompl ) // use inverter
{
p->nInvs++;
//printf( "Using inverter at node %d in phase %d\n", i, c );
pM->fBest = 1;
// update opposite phase
Pf_ObjMapRefInc( p, i, !c );
Pf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay );
// select oppositve phase
Required = Pf_ObjRequired( p, i, !c );
//assert( Required < PF_INFINITY );
pD = Pf_ObjMatchD( p, i, !c );
pA = Pf_ObjMatchA( p, i, !c );
pM = (pA->D < Required + Epsilon) ? pA : pD;
assert( !pM->fCompl );
// account for the inverter
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
}
// create gate
Pf_ManSetMapRefsGate( p, i, Required, pM );
}
// the result of this:
// - only one phase can be implemented as inverter of the other phase
// - required times are propagated correctly
// - references are set correctly
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Pf_ObjMapRefNum(p, Id, 1) )
{
Pf_ObjMapRefInc( p, Id, 0 );
Pf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelay );
p->pPars->MapArea += p->InvArea;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
// blend references
for ( i = 0; i < nLits; i++ )
// pFlowRefs[i] = Abc_MaxFloat(1.0, pMapRefs[i]);
pFlowRefs[i] = Abc_MaxFloat(1.0, Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i]));
// pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]);
// memset( pMapRefs, 0, sizeof(int) * nLits );
return p->pPars->Area;
}
Gia_Man_t * Pf_ManDeriveMapping( Pf_Man_t * p )
{
Vec_Int_t * vMapping;
Pf_Mat_t * pM;
int i, k, c, Id, iLit, * pCut;
assert( p->pGia->vCellMapping == NULL );
vMapping = Vec_IntAlloc( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, 2*Gia_ManObjNum(p->pGia), 0 );
// create CI inverters
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Pf_ObjMapRefNum(p, Id, 1) )
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(Id, 1), -1 );
// create internal nodes
Gia_ManForEachAndId( p->pGia, i )
{
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, i);
if ( Gia_ObjIsBuf(pObj) )
{
if ( Pf_ObjMapRefNum(p, i, 1) )
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 1), -1 );
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 0), -2 );
continue;
}
for ( c = 0; c < 2; c++ )
if ( Pf_ObjMapRefNum(p, i, c) )
{
// printf( "Using %d %d\n", i, c );
pM = Pf_ObjMatchBest( p, i, c );
// remember inverter
if ( pM->fCompl )
{
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), -1 );
continue;
}
// Pf_ManCutMatchprintf( p, i, c, pM );
pCut = Pf_CutFromHandle( Pf_ObjCutSet(p, i), pM->CutH );
// create mapping
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, Pf_CutSize(pCut) );
Pf_CutForEachLit( pCut, pM->Conf, iLit, k )
Vec_IntPush( vMapping, iLit );
Vec_IntPush( vMapping, pM->Gate );
}
}
// assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vCellMapping = vMapping;
return p->pGia;
}
*/
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pf_ManComputeMapping( Pf_Man_t * p )
{
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pf_ManSetDefaultPars( Jf_Par_t * pPars )
{
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 16;
pPars->nProcNum = 0;
pPars->nRounds = 3;
pPars->nRoundsEla = 0;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 1;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 0;
pPars->fCutMin = 1;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = PF_LEAF_MAX;
pPars->nCutNumMax = PF_CUT_MAX;
pPars->MapDelayTarget = -1;
pPars->Epsilon = (float)0.01;
}
Gia_Man_t * Pf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Gia_Man_t * pNew = NULL, * pCls;
Pf_Man_t * p;
if ( Gia_ManHasChoices(pGia) )
pPars->fCoarsen = 0;
pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia;
p = Pf_StoCreate( pCls, pPars );
// if ( pPars->fVeryVerbose )
Pf_StoPrint( p, 1 );
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Pf_ManPrintInit( p );
Pf_ManComputeCuts( p );
Pf_ManPrintQuit( p );
/*
Gia_ManForEachCiId( p->pGia, Id, i )
Pf_ObjPrepareCi( p, Id );
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
{
Pf_ManComputeMapping( p );
//Pf_ManSetMapRefs( p );
Pf_ManPrintStats( p, p->Iter ? "Area " : "Delay" );
}
p->fUseEla = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
{
Pf_ManComputeMapping( p );
//Pf_ManUpdateStats( p );
Pf_ManPrintStats( p, "Ela " );
}
*/
pNew = NULL; //Pf_ManDeriveMapping( p );
// Gia_ManMappingVerify( pNew );
Pf_StoDelete( p );
if ( pCls != pGia )
Gia_ManStop( pCls );
if ( pNew == NULL )
return Gia_ManDup( pGia );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END