blob: 06769830227ac64ff71b970530970d2b187fdcc8 [file] [log] [blame]
/**CFile****************************************************************
FileName [miniaig.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Minimalistic AIG package.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - September 29, 2012.]
Revision [$Id: miniaig.h,v 1.00 2012/09/29 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef MINI_AIG__mini_aig_h
#define MINI_AIG__mini_aig_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
ABC_NAMESPACE_HEADER_START
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
#define MINI_AIG_NULL (0x7FFFFFFF)
#define MINI_AIG_START_SIZE (0x000000FF)
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
typedef struct Mini_Aig_t_ Mini_Aig_t;
struct Mini_Aig_t_
{
int nCap;
int nSize;
int nRegs;
int * pArray;
};
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
// memory management
#define MINI_AIG_ALLOC(type, num) ((type *) malloc(sizeof(type) * (num)))
#define MINI_AIG_CALLOC(type, num) ((type *) calloc((num), sizeof(type)))
#define MINI_AIG_FALLOC(type, num) ((type *) memset(malloc(sizeof(type) * (num)), 0xff, sizeof(type) * (num)))
#define MINI_AIG_FREE(obj) ((obj) ? (free((char *) (obj)), (obj) = 0) : 0)
#define MINI_AIG_REALLOC(type, obj, num) \
((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \
((type *) malloc(sizeof(type) * (num))))
// internal procedures
static void Mini_AigGrow( Mini_Aig_t * p, int nCapMin )
{
if ( p->nCap >= nCapMin )
return;
p->pArray = MINI_AIG_REALLOC( int, p->pArray, nCapMin );
assert( p->pArray );
p->nCap = nCapMin;
}
static void Mini_AigPush( Mini_Aig_t * p, int Lit0, int Lit1 )
{
if ( p->nSize + 2 > p->nCap )
{
assert( p->nSize < MINI_AIG_NULL/4 );
if ( p->nCap < MINI_AIG_START_SIZE )
Mini_AigGrow( p, MINI_AIG_START_SIZE );
else
Mini_AigGrow( p, 2 * p->nCap );
}
p->pArray[p->nSize++] = Lit0;
p->pArray[p->nSize++] = Lit1;
}
// accessing fanins
static int Mini_AigNodeFanin0( Mini_Aig_t * p, int Id )
{
assert( Id >= 0 && 2*Id < p->nSize );
assert( p->pArray[2*Id] == 0x7FFFFFFF || p->pArray[2*Id] < 2*Id );
return p->pArray[2*Id];
}
static int Mini_AigNodeFanin1( Mini_Aig_t * p, int Id )
{
assert( Id >= 0 && 2*Id < p->nSize );
assert( p->pArray[2*Id+1] == 0x7FFFFFFF || p->pArray[2*Id+1] < 2*Id );
return p->pArray[2*Id+1];
}
// working with variables and literals
static int Mini_AigVar2Lit( int Var, int fCompl ) { return Var + Var + fCompl; }
static int Mini_AigLit2Var( int Lit ) { return Lit >> 1; }
static int Mini_AigLitIsCompl( int Lit ) { return Lit & 1; }
static int Mini_AigLitNot( int Lit ) { return Lit ^ 1; }
static int Mini_AigLitNotCond( int Lit, int c ) { return Lit ^ (int)(c > 0); }
static int Mini_AigLitRegular( int Lit ) { return Lit & ~01; }
static int Mini_AigLitConst0() { return 0; }
static int Mini_AigLitConst1() { return 1; }
static int Mini_AigLitIsConst0( int Lit ) { return Lit == 0; }
static int Mini_AigLitIsConst1( int Lit ) { return Lit == 1; }
static int Mini_AigLitIsConst( int Lit ) { return Lit == 0 || Lit == 1; }
static int Mini_AigNodeNum( Mini_Aig_t * p ) { return p->nSize/2; }
static int Mini_AigNodeIsConst( Mini_Aig_t * p, int Id ) { assert( Id >= 0 ); return Id == 0; }
static int Mini_AigNodeIsPi( Mini_Aig_t * p, int Id ) { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) == MINI_AIG_NULL; }
static int Mini_AigNodeIsPo( Mini_Aig_t * p, int Id ) { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) != MINI_AIG_NULL && Mini_AigNodeFanin1( p, Id ) == MINI_AIG_NULL; }
static int Mini_AigNodeIsAnd( Mini_Aig_t * p, int Id ) { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) != MINI_AIG_NULL && Mini_AigNodeFanin1( p, Id ) != MINI_AIG_NULL; }
// working with sequential AIGs
static int Mini_AigRegNum( Mini_Aig_t * p ) { return p->nRegs; }
static void Mini_AigSetRegNum( Mini_Aig_t * p, int n ) { p->nRegs = n; }
// iterators through objects
#define Mini_AigForEachPi( p, i ) for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsPi(p, i) ) {} else
#define Mini_AigForEachPo( p, i ) for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsPo(p, i) ) {} else
#define Mini_AigForEachAnd( p, i ) for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsAnd(p, i) ) {} else
// constructor/destructor
static Mini_Aig_t * Mini_AigStart()
{
Mini_Aig_t * p;
p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
p->nCap = MINI_AIG_START_SIZE;
p->pArray = MINI_AIG_ALLOC( int, p->nCap );
Mini_AigPush( p, MINI_AIG_NULL, MINI_AIG_NULL );
return p;
}
static void Mini_AigStop( Mini_Aig_t * p )
{
MINI_AIG_FREE( p->pArray );
MINI_AIG_FREE( p );
}
static int Mini_AigPiNum( Mini_Aig_t * p )
{
int i, nPis = 0;
Mini_AigForEachPi( p, i )
nPis++;
return nPis;
}
static int Mini_AigPoNum( Mini_Aig_t * p )
{
int i, nPos = 0;
Mini_AigForEachPo( p, i )
nPos++;
return nPos;
}
static int Mini_AigAndNum( Mini_Aig_t * p )
{
int i, nNodes = 0;
Mini_AigForEachAnd( p, i )
nNodes++;
return nNodes;
}
static void Mini_AigPrintStats( Mini_Aig_t * p )
{
printf( "PI = %d. PO = %d. Node = %d.\n", Mini_AigPiNum(p), Mini_AigPoNum(p), Mini_AigAndNum(p) );
}
// serialization
static void Mini_AigDump( Mini_Aig_t * p, char * pFileName )
{
FILE * pFile;
int RetValue;
pFile = fopen( pFileName, "wb" );
if ( pFile == NULL )
{
printf( "Cannot open file for writing \"%s\".\n", pFileName );
return;
}
RetValue = (int)fwrite( &p->nSize, sizeof(int), 1, pFile );
RetValue = (int)fwrite( &p->nRegs, sizeof(int), 1, pFile );
RetValue = (int)fwrite( p->pArray, sizeof(int), p->nSize, pFile );
fclose( pFile );
}
static Mini_Aig_t * Mini_AigLoad( char * pFileName )
{
Mini_Aig_t * p;
FILE * pFile;
int RetValue, nSize;
pFile = fopen( pFileName, "rb" );
if ( pFile == NULL )
{
printf( "Cannot open file for reading \"%s\".\n", pFileName );
return NULL;
}
RetValue = (int)fread( &nSize, sizeof(int), 1, pFile );
p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
p->nSize = p->nCap = nSize;
p->pArray = MINI_AIG_ALLOC( int, p->nCap );
RetValue = (int)fread( &p->nRegs, sizeof(int), 1, pFile );
RetValue = (int)fread( p->pArray, sizeof(int), p->nSize, pFile );
fclose( pFile );
return p;
}
// creating nodes
// (constant node is created when AIG manager is created)
static int Mini_AigCreatePi( Mini_Aig_t * p )
{
int Lit = p->nSize;
Mini_AigPush( p, MINI_AIG_NULL, MINI_AIG_NULL );
return Lit;
}
static int Mini_AigCreatePo( Mini_Aig_t * p, int Lit0 )
{
int Lit = p->nSize;
assert( Lit0 >= 0 && Lit0 < Lit );
Mini_AigPush( p, Lit0, MINI_AIG_NULL );
return Lit;
}
// boolean operations
static int Mini_AigAnd( Mini_Aig_t * p, int Lit0, int Lit1 )
{
int Lit = p->nSize;
assert( Lit0 >= 0 && Lit0 < Lit );
assert( Lit1 >= 0 && Lit1 < Lit );
Mini_AigPush( p, Lit0, Lit1 );
return Lit;
}
static int Mini_AigOr( Mini_Aig_t * p, int Lit0, int Lit1 )
{
return Mini_AigLitNot( Mini_AigAnd( p, Mini_AigLitNot(Lit0), Mini_AigLitNot(Lit1) ) );
}
static int Mini_AigMux( Mini_Aig_t * p, int LitC, int Lit1, int Lit0 )
{
int Res0 = Mini_AigAnd( p, LitC, Lit1 );
int Res1 = Mini_AigAnd( p, Mini_AigLitNot(LitC), Lit0 );
return Mini_AigOr( p, Res0, Res1 );
}
static int Mini_AigXor( Mini_Aig_t * p, int Lit0, int Lit1 )
{
return Mini_AigMux( p, Lit0, Mini_AigLitNot(Lit1), Lit1 );
}
// procedure to check the topological order during AIG construction
static int Mini_AigCheck( Mini_Aig_t * p )
{
int status = 1;
int i, iFaninLit0, iFaninLit1;
Mini_AigForEachAnd( p, i )
{
// get the fanin literals of this AND node
iFaninLit0 = Mini_AigNodeFanin0( p, i );
iFaninLit1 = Mini_AigNodeFanin1( p, i );
// compare the fanin literals with the literal of the current node (2 * i)
if ( iFaninLit0 >= 2 * i )
printf( "Fanin0 of AND node %d is not in a topological order.\n", i ), status = 0;
if ( iFaninLit1 >= 2 * i )
printf( "Fanin0 of AND node %d is not in a topological order.\n", i ), status = 0;
}
Mini_AigForEachPo( p, i )
{
// get the fanin literal of this PO node
iFaninLit0 = Mini_AigNodeFanin0( p, i );
// compare the fanin literal with the literal of the current node (2 * i)
if ( iFaninLit0 >= 2 * i )
printf( "Fanin0 of PO node %d is not in a topological order.\n", i ), status = 0;
}
return status;
}
// procedure to dump MiniAIG into a Verilog file
static void Mini_AigDumpVerilog( char * pFileName, char * pModuleName, Mini_Aig_t * p )
{
int i, k, iFaninLit0, iFaninLit1, Length = strlen(pModuleName), nPos = Mini_AigPoNum(p);
Vec_Bit_t * vObjIsPi = Vec_BitStart( Mini_AigNodeNum(p) );
FILE * pFile = fopen( pFileName, "wb" );
if ( pFile == NULL ) { printf( "Cannot open output file %s\n", pFileName ); return; }
// write interface
fprintf( pFile, "// This MiniAIG dump was produced by ABC on %s\n\n", Extra_TimeStamp() );
fprintf( pFile, "module %s (\n", pModuleName );
if ( Mini_AigPiNum(p) > 0 )
{
fprintf( pFile, "%*sinput wire", Length+10, "" );
k = 0;
Mini_AigForEachPi( p, i )
{
if ( k++ % 12 == 0 ) fprintf( pFile, "\n%*s", Length+10, "" );
fprintf( pFile, "i%d, ", i );
Vec_BitWriteEntry( vObjIsPi, i, 1 );
}
}
fprintf( pFile, "\n%*soutput wire", Length+10, "" );
k = 0;
Mini_AigForEachPo( p, i )
{
if ( k++ % 12 == 0 ) fprintf( pFile, "\n%*s", Length+10, "" );
fprintf( pFile, "o%d%s", i, k==nPos ? "":", " );
}
fprintf( pFile, "\n%*s);\n\n", Length+8, "" );
// write LUTs
Mini_AigForEachAnd( p, i )
{
iFaninLit0 = Mini_AigNodeFanin0( p, i );
iFaninLit1 = Mini_AigNodeFanin1( p, i );
fprintf( pFile, " assign n%d = ", i );
fprintf( pFile, "%s%c%d", (iFaninLit0 & 1) ? "~":"", Vec_BitEntry(vObjIsPi, iFaninLit0 >> 1) ? 'i':'n', iFaninLit0 >> 1 );
fprintf( pFile, " & " );
fprintf( pFile, "%s%c%d", (iFaninLit1 & 1) ? "~":"", Vec_BitEntry(vObjIsPi, iFaninLit1 >> 1) ? 'i':'n', iFaninLit1 >> 1 );
fprintf( pFile, ";\n" );
}
// write assigns
fprintf( pFile, "\n" );
Mini_AigForEachPo( p, i )
{
iFaninLit0 = Mini_AigNodeFanin0( p, i );
fprintf( pFile, " assign o%d = ", i );
fprintf( pFile, "%s%c%d", (iFaninLit0 & 1) ? "~":"", Vec_BitEntry(vObjIsPi, iFaninLit0 >> 1) ? 'i':'n', iFaninLit0 >> 1 );
fprintf( pFile, ";\n" );
}
fprintf( pFile, "\nendmodule // %s \n\n\n", pModuleName );
Vec_BitFree( vObjIsPi );
fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////