| /**CFile**************************************************************** |
| |
| FileName [utilTruth.h] |
| |
| SystemName [ABC: Logic synthesis and verification system.] |
| |
| PackageName [Truth table manipulation.] |
| |
| Synopsis [Truth table manipulation.] |
| |
| Author [Alan Mishchenko] |
| |
| Affiliation [UC Berkeley] |
| |
| Date [Ver. 1.0. Started - October 28, 2012.] |
| |
| Revision [$Id: utilTruth.h,v 1.00 2012/10/28 00:00:00 alanmi Exp $] |
| |
| ***********************************************************************/ |
| |
| #ifndef ABC__misc__util__utilTruth_h |
| #define ABC__misc__util__utilTruth_h |
| |
| //////////////////////////////////////////////////////////////////////// |
| /// INCLUDES /// |
| //////////////////////////////////////////////////////////////////////// |
| |
| //////////////////////////////////////////////////////////////////////// |
| /// PARAMETERS /// |
| //////////////////////////////////////////////////////////////////////// |
| |
| ABC_NAMESPACE_HEADER_START |
| |
| //////////////////////////////////////////////////////////////////////// |
| /// BASIC TYPES /// |
| //////////////////////////////////////////////////////////////////////// |
| |
| static word s_Truths6[6] = { |
| ABC_CONST(0xAAAAAAAAAAAAAAAA), |
| ABC_CONST(0xCCCCCCCCCCCCCCCC), |
| ABC_CONST(0xF0F0F0F0F0F0F0F0), |
| ABC_CONST(0xFF00FF00FF00FF00), |
| ABC_CONST(0xFFFF0000FFFF0000), |
| ABC_CONST(0xFFFFFFFF00000000) |
| }; |
| |
| static word s_Truths6Neg[6] = { |
| ABC_CONST(0x5555555555555555), |
| ABC_CONST(0x3333333333333333), |
| ABC_CONST(0x0F0F0F0F0F0F0F0F), |
| ABC_CONST(0x00FF00FF00FF00FF), |
| ABC_CONST(0x0000FFFF0000FFFF), |
| ABC_CONST(0x00000000FFFFFFFF) |
| }; |
| |
| static word s_TruthXors[6] = { |
| ABC_CONST(0x0000000000000000), |
| ABC_CONST(0x6666666666666666), |
| ABC_CONST(0x6969696969696969), |
| ABC_CONST(0x6996699669966996), |
| ABC_CONST(0x6996966969969669), |
| ABC_CONST(0x6996966996696996) |
| }; |
| |
| static word s_PMasks[5][3] = { |
| { ABC_CONST(0x9999999999999999), ABC_CONST(0x2222222222222222), ABC_CONST(0x4444444444444444) }, |
| { ABC_CONST(0xC3C3C3C3C3C3C3C3), ABC_CONST(0x0C0C0C0C0C0C0C0C), ABC_CONST(0x3030303030303030) }, |
| { ABC_CONST(0xF00FF00FF00FF00F), ABC_CONST(0x00F000F000F000F0), ABC_CONST(0x0F000F000F000F00) }, |
| { ABC_CONST(0xFF0000FFFF0000FF), ABC_CONST(0x0000FF000000FF00), ABC_CONST(0x00FF000000FF0000) }, |
| { ABC_CONST(0xFFFF00000000FFFF), ABC_CONST(0x00000000FFFF0000), ABC_CONST(0x0000FFFF00000000) } |
| }; |
| |
| static word s_PPMasks[5][6][3] = { |
| { |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 0 0 |
| { ABC_CONST(0x9999999999999999), ABC_CONST(0x2222222222222222), ABC_CONST(0x4444444444444444) }, // 0 1 |
| { ABC_CONST(0xA5A5A5A5A5A5A5A5), ABC_CONST(0x0A0A0A0A0A0A0A0A), ABC_CONST(0x5050505050505050) }, // 0 2 |
| { ABC_CONST(0xAA55AA55AA55AA55), ABC_CONST(0x00AA00AA00AA00AA), ABC_CONST(0x5500550055005500) }, // 0 3 |
| { ABC_CONST(0xAAAA5555AAAA5555), ABC_CONST(0x0000AAAA0000AAAA), ABC_CONST(0x5555000055550000) }, // 0 4 |
| { ABC_CONST(0xAAAAAAAA55555555), ABC_CONST(0x00000000AAAAAAAA), ABC_CONST(0x5555555500000000) } // 0 5 |
| }, |
| { |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 1 0 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 1 1 |
| { ABC_CONST(0xC3C3C3C3C3C3C3C3), ABC_CONST(0x0C0C0C0C0C0C0C0C), ABC_CONST(0x3030303030303030) }, // 1 2 |
| { ABC_CONST(0xCC33CC33CC33CC33), ABC_CONST(0x00CC00CC00CC00CC), ABC_CONST(0x3300330033003300) }, // 1 3 |
| { ABC_CONST(0xCCCC3333CCCC3333), ABC_CONST(0x0000CCCC0000CCCC), ABC_CONST(0x3333000033330000) }, // 1 4 |
| { ABC_CONST(0xCCCCCCCC33333333), ABC_CONST(0x00000000CCCCCCCC), ABC_CONST(0x3333333300000000) } // 1 5 |
| }, |
| { |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 2 0 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 2 1 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 2 2 |
| { ABC_CONST(0xF00FF00FF00FF00F), ABC_CONST(0x00F000F000F000F0), ABC_CONST(0x0F000F000F000F00) }, // 2 3 |
| { ABC_CONST(0xF0F00F0FF0F00F0F), ABC_CONST(0x0000F0F00000F0F0), ABC_CONST(0x0F0F00000F0F0000) }, // 2 4 |
| { ABC_CONST(0xF0F0F0F00F0F0F0F), ABC_CONST(0x00000000F0F0F0F0), ABC_CONST(0x0F0F0F0F00000000) } // 2 5 |
| }, |
| { |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 0 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 1 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 2 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 3 3 |
| { ABC_CONST(0xFF0000FFFF0000FF), ABC_CONST(0x0000FF000000FF00), ABC_CONST(0x00FF000000FF0000) }, // 3 4 |
| { ABC_CONST(0xFF00FF0000FF00FF), ABC_CONST(0x00000000FF00FF00), ABC_CONST(0x00FF00FF00000000) } // 3 5 |
| }, |
| { |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 0 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 1 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 2 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 3 |
| { ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000), ABC_CONST(0x0000000000000000) }, // 4 4 |
| { ABC_CONST(0xFFFF00000000FFFF), ABC_CONST(0x00000000FFFF0000), ABC_CONST(0x0000FFFF00000000) } // 4 5 |
| } |
| }; |
| |
| // the bit count for the first 256 integer numbers |
| static int Abc_TtBitCount8[256] = { |
| 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, |
| 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, |
| 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, |
| 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, |
| 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, |
| 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, |
| 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, |
| 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 |
| }; |
| static inline int Abc_TtBitCount16( int i ) { return Abc_TtBitCount8[i & 0xFF] + Abc_TtBitCount8[i >> 8]; } |
| |
| //////////////////////////////////////////////////////////////////////// |
| /// MACRO DEFINITIONS /// |
| //////////////////////////////////////////////////////////////////////// |
| |
| //////////////////////////////////////////////////////////////////////// |
| /// FUNCTION DECLARATIONS /// |
| //////////////////////////////////////////////////////////////////////// |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| // read/write/flip i-th bit of a bit string table: |
| static inline int Abc_TtGetBit( word * p, int i ) { return (int)(p[i>>6] >> (i & 63)) & 1; } |
| static inline void Abc_TtSetBit( word * p, int i ) { p[i>>6] |= (((word)1)<<(i & 63)); } |
| static inline void Abc_TtXorBit( word * p, int i ) { p[i>>6] ^= (((word)1)<<(i & 63)); } |
| |
| // read/write k-th digit d of a quaternary number: |
| static inline int Abc_TtGetQua( word * p, int k ) { return (int)(p[k>>5] >> ((k<<1) & 63)) & 3; } |
| static inline void Abc_TtSetQua( word * p, int k, int d ) { p[k>>5] |= (((word)d)<<((k<<1) & 63)); } |
| static inline void Abc_TtXorQua( word * p, int k, int d ) { p[k>>5] ^= (((word)d)<<((k<<1) & 63)); } |
| |
| // read/write k-th digit d of a hexadecimal number: |
| static inline int Abc_TtGetHex( word * p, int k ) { return (int)(p[k>>4] >> ((k<<2) & 63)) & 15; } |
| static inline void Abc_TtSetHex( word * p, int k, int d ) { p[k>>4] |= (((word)d)<<((k<<2) & 63)); } |
| static inline void Abc_TtXorHex( word * p, int k, int d ) { p[k>>4] ^= (((word)d)<<((k<<2) & 63)); } |
| |
| // read/write k-th digit d of a 256-base number: |
| static inline int Abc_TtGet256( word * p, int k ) { return (int)(p[k>>3] >> ((k<<3) & 63)) & 255; } |
| static inline void Abc_TtSet256( word * p, int k, int d ) { p[k>>3] |= (((word)d)<<((k<<3) & 63)); } |
| static inline void Abc_TtXor256( word * p, int k, int d ) { p[k>>3] ^= (((word)d)<<((k<<3) & 63)); } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtWordNum( int nVars ) { return nVars <= 6 ? 1 : 1 << (nVars-6); } |
| static inline int Abc_TtByteNum( int nVars ) { return nVars <= 3 ? 1 : 1 << (nVars-3); } |
| static inline int Abc_TtHexDigitNum( int nVars ) { return nVars <= 2 ? 1 : 1 << (nVars-2); } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Bit mask.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6Mask( int nBits ) { assert( nBits >= 0 && nBits <= 64 ); return (~(word)0) >> (64-nBits); } |
| static inline void Abc_TtMask( word * pTruth, int nWords, int nBits ) |
| { |
| int w; |
| assert( nBits >= 0 && nBits <= nWords * 64 ); |
| for ( w = 0; w < nWords; w++ ) |
| if ( nBits >= (w + 1) * 64 ) |
| pTruth[w] = ~(word)0; |
| else if ( nBits > w * 64 ) |
| pTruth[w] = Abc_Tt6Mask( nBits - w * 64 ); |
| else |
| pTruth[w] = 0; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtConst( word * pOut, int nWords, int fConst1 ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = fConst1 ? ~(word)0 : 0; |
| } |
| static inline void Abc_TtClear( word * pOut, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = 0; |
| } |
| static inline void Abc_TtFill( word * pOut, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ~(word)0; |
| } |
| static inline void Abc_TtUnit( word * pOut, int nWords, int fCompl ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = fCompl ? ~s_Truths6[0] : s_Truths6[0]; |
| } |
| static inline void Abc_TtNot( word * pOut, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ~pOut[w]; |
| } |
| static inline void Abc_TtCopy( word * pOut, word * pIn, int nWords, int fCompl ) |
| { |
| int w; |
| if ( fCompl ) |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ~pIn[w]; |
| else |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn[w]; |
| } |
| static inline void Abc_TtAnd( word * pOut, word * pIn1, word * pIn2, int nWords, int fCompl ) |
| { |
| int w; |
| if ( fCompl ) |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ~(pIn1[w] & pIn2[w]); |
| else |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] & pIn2[w]; |
| } |
| static inline void Abc_TtAndCompl( word * pOut, word * pIn1, int fCompl1, word * pIn2, int fCompl2, int nWords ) |
| { |
| int w; |
| if ( fCompl1 ) |
| { |
| if ( fCompl2 ) |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ~pIn1[w] & ~pIn2[w]; |
| else |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ~pIn1[w] & pIn2[w]; |
| } |
| else |
| { |
| if ( fCompl2 ) |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] & ~pIn2[w]; |
| else |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] & pIn2[w]; |
| } |
| } |
| static inline void Abc_TtAndSharp( word * pOut, word * pIn1, word * pIn2, int nWords, int fCompl ) |
| { |
| int w; |
| if ( fCompl ) |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] & ~pIn2[w]; |
| else |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] & pIn2[w]; |
| } |
| static inline void Abc_TtSharp( word * pOut, word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] & ~pIn2[w]; |
| } |
| static inline void Abc_TtOr( word * pOut, word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] | pIn2[w]; |
| } |
| static inline void Abc_TtOrXor( word * pOut, word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] |= pIn1[w] ^ pIn2[w]; |
| } |
| static inline void Abc_TtXor( word * pOut, word * pIn1, word * pIn2, int nWords, int fCompl ) |
| { |
| int w; |
| if ( fCompl ) |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] ^ ~pIn2[w]; |
| else |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = pIn1[w] ^ pIn2[w]; |
| } |
| static inline void Abc_TtMux( word * pOut, word * pCtrl, word * pIn1, word * pIn0, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = (pCtrl[w] & pIn1[w]) | (~pCtrl[w] & pIn0[w]); |
| } |
| static inline void Abc_TtMaj( word * pOut, word * pIn0, word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = (pIn0[w] & pIn1[w]) | (pIn0[w] & pIn2[w]) | (pIn1[w] & pIn2[w]); |
| } |
| static inline int Abc_TtIntersect( word * pIn1, word * pIn2, int nWords, int fCompl ) |
| { |
| int w; |
| if ( fCompl ) |
| { |
| for ( w = 0; w < nWords; w++ ) |
| if ( ~pIn1[w] & pIn2[w] ) |
| return 1; |
| } |
| else |
| { |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] & pIn2[w] ) |
| return 1; |
| } |
| return 0; |
| } |
| static inline int Abc_TtEqual( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] != pIn2[w] ) |
| return 0; |
| return 1; |
| } |
| static inline int Abc_TtOpposite( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] != ~pIn2[w] ) |
| return 0; |
| return 1; |
| } |
| static inline int Abc_TtImply( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( (pIn1[w] & pIn2[w]) != pIn1[w] ) |
| return 0; |
| return 1; |
| } |
| static inline int Abc_TtCompare( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] != pIn2[w] ) |
| return (pIn1[w] < pIn2[w]) ? -1 : 1; |
| return 0; |
| } |
| static inline int Abc_TtCompareRev( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = nWords - 1; w >= 0; w-- ) |
| if ( pIn1[w] != pIn2[w] ) |
| return (pIn1[w] < pIn2[w]) ? -1 : 1; |
| return 0; |
| } |
| static inline int Abc_TtIsConst0( word * pIn1, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] ) |
| return 0; |
| return 1; |
| } |
| static inline int Abc_TtIsConst1( word * pIn1, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( ~pIn1[w] ) |
| return 0; |
| return 1; |
| } |
| static inline void Abc_TtConst0( word * pIn1, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pIn1[w] = 0; |
| } |
| static inline void Abc_TtConst1( word * pIn1, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| pIn1[w] = ~(word)0; |
| } |
| static inline void Abc_TtIthVar( word * pOut, int iVar, int nVars ) |
| { |
| int k, nWords = Abc_TtWordNum( nVars ); |
| if ( iVar < 6 ) |
| { |
| for ( k = 0; k < nWords; k++ ) |
| pOut[k] = s_Truths6[iVar]; |
| } |
| else |
| { |
| for ( k = 0; k < nWords; k++ ) |
| if ( k & (1 << (iVar-6)) ) |
| pOut[k] = ~(word)0; |
| else |
| pOut[k] = 0; |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Compares Cof0 and Cof1.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtCompare1VarCofs( word * pTruth, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| { |
| word Cof0 = pTruth[0] & s_Truths6Neg[iVar]; |
| word Cof1 = (pTruth[0] >> (1 << iVar)) & s_Truths6Neg[iVar]; |
| if ( Cof0 != Cof1 ) |
| return Cof0 < Cof1 ? -1 : 1; |
| return 0; |
| } |
| if ( iVar <= 5 ) |
| { |
| word Cof0, Cof1; |
| int w, shift = (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| { |
| Cof0 = pTruth[w] & s_Truths6Neg[iVar]; |
| Cof1 = (pTruth[w] >> shift) & s_Truths6Neg[iVar]; |
| if ( Cof0 != Cof1 ) |
| return Cof0 < Cof1 ? -1 : 1; |
| } |
| return 0; |
| } |
| // if ( iVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| assert( nWords >= 2 ); |
| for ( ; pTruth < pLimit; pTruth += 2*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| if ( pTruth[i] != pTruth[i + iStep] ) |
| return pTruth[i] < pTruth[i + iStep] ? -1 : 1; |
| return 0; |
| } |
| } |
| static inline int Abc_TtCompare1VarCofsRev( word * pTruth, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| { |
| word Cof0 = pTruth[0] & s_Truths6Neg[iVar]; |
| word Cof1 = (pTruth[0] >> (1 << iVar)) & s_Truths6Neg[iVar]; |
| if ( Cof0 != Cof1 ) |
| return Cof0 < Cof1 ? -1 : 1; |
| return 0; |
| } |
| if ( iVar <= 5 ) |
| { |
| word Cof0, Cof1; |
| int w, shift = (1 << iVar); |
| for ( w = nWords - 1; w >= 0; w-- ) |
| { |
| Cof0 = pTruth[w] & s_Truths6Neg[iVar]; |
| Cof1 = (pTruth[w] >> shift) & s_Truths6Neg[iVar]; |
| if ( Cof0 != Cof1 ) |
| return Cof0 < Cof1 ? -1 : 1; |
| } |
| return 0; |
| } |
| // if ( iVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| assert( nWords >= 2 ); |
| for ( pLimit -= 2*iStep; pLimit >= pTruth; pLimit -= 2*iStep ) |
| for ( i = iStep - 1; i >= 0; i-- ) |
| if ( pLimit[i] != pLimit[i + iStep] ) |
| return pLimit[i] < pLimit[i + iStep] ? -1 : 1; |
| return 0; |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Compute elementary truth tables.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtElemInit( word ** pTtElems, int nVars ) |
| { |
| int i, k, nWords = Abc_TtWordNum( nVars ); |
| for ( i = 0; i < nVars; i++ ) |
| if ( i < 6 ) |
| for ( k = 0; k < nWords; k++ ) |
| pTtElems[i][k] = s_Truths6[i]; |
| else |
| for ( k = 0; k < nWords; k++ ) |
| pTtElems[i][k] = (k & (1 << (i-6))) ? ~(word)0 : 0; |
| } |
| static inline void Abc_TtElemInit2( word * pTtElems, int nVars ) |
| { |
| int i, k, nWords = Abc_TtWordNum( nVars ); |
| for ( i = 0; i < nVars; i++ ) |
| { |
| word * pTruth = pTtElems + i * nWords; |
| if ( i < 6 ) |
| for ( k = 0; k < nWords; k++ ) |
| pTruth[k] = s_Truths6[i]; |
| else |
| for ( k = 0; k < nWords; k++ ) |
| pTruth[k] = (k & (1 << (i-6))) ? ~(word)0 : 0; |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6Cofactor0( word t, int iVar ) |
| { |
| assert( iVar >= 0 && iVar < 6 ); |
| return (t &s_Truths6Neg[iVar]) | ((t &s_Truths6Neg[iVar]) << (1<<iVar)); |
| } |
| static inline word Abc_Tt6Cofactor1( word t, int iVar ) |
| { |
| assert( iVar >= 0 && iVar < 6 ); |
| return (t & s_Truths6[iVar]) | ((t & s_Truths6[iVar]) >> (1<<iVar)); |
| } |
| |
| static inline void Abc_TtCofactor0p( word * pOut, word * pIn, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| pOut[0] = ((pIn[0] & s_Truths6Neg[iVar]) << (1 << iVar)) | (pIn[0] & s_Truths6Neg[iVar]); |
| else if ( iVar <= 5 ) |
| { |
| int w, shift = (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = ((pIn[w] & s_Truths6Neg[iVar]) << shift) | (pIn[w] & s_Truths6Neg[iVar]); |
| } |
| else // if ( iVar > 5 ) |
| { |
| word * pLimit = pIn + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| for ( ; pIn < pLimit; pIn += 2*iStep, pOut += 2*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| { |
| pOut[i] = pIn[i]; |
| pOut[i + iStep] = pIn[i]; |
| } |
| } |
| } |
| static inline void Abc_TtCofactor1p( word * pOut, word * pIn, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| pOut[0] = (pIn[0] & s_Truths6[iVar]) | ((pIn[0] & s_Truths6[iVar]) >> (1 << iVar)); |
| else if ( iVar <= 5 ) |
| { |
| int w, shift = (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| pOut[w] = (pIn[w] & s_Truths6[iVar]) | ((pIn[w] & s_Truths6[iVar]) >> shift); |
| } |
| else // if ( iVar > 5 ) |
| { |
| word * pLimit = pIn + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| for ( ; pIn < pLimit; pIn += 2*iStep, pOut += 2*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| { |
| pOut[i] = pIn[i + iStep]; |
| pOut[i + iStep] = pIn[i + iStep]; |
| } |
| } |
| } |
| static inline void Abc_TtCofactor0( word * pTruth, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| pTruth[0] = ((pTruth[0] & s_Truths6Neg[iVar]) << (1 << iVar)) | (pTruth[0] & s_Truths6Neg[iVar]); |
| else if ( iVar <= 5 ) |
| { |
| int w, shift = (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| pTruth[w] = ((pTruth[w] & s_Truths6Neg[iVar]) << shift) | (pTruth[w] & s_Truths6Neg[iVar]); |
| } |
| else // if ( iVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| for ( ; pTruth < pLimit; pTruth += 2*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| pTruth[i + iStep] = pTruth[i]; |
| } |
| } |
| static inline void Abc_TtCofactor1( word * pTruth, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| pTruth[0] = (pTruth[0] & s_Truths6[iVar]) | ((pTruth[0] & s_Truths6[iVar]) >> (1 << iVar)); |
| else if ( iVar <= 5 ) |
| { |
| int w, shift = (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| pTruth[w] = (pTruth[w] & s_Truths6[iVar]) | ((pTruth[w] & s_Truths6[iVar]) >> shift); |
| } |
| else // if ( iVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| for ( ; pTruth < pLimit; pTruth += 2*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| pTruth[i] = pTruth[i + iStep]; |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Checks pairs of cofactors w.r.t. two variables.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtCheckEqualCofs( word * pTruth, int nWords, int iVar, int jVar, int Num1, int Num2 ) |
| { |
| assert( Num1 < Num2 && Num2 < 4 ); |
| assert( iVar < jVar ); |
| if ( nWords == 1 ) |
| { |
| word Mask = s_Truths6Neg[jVar] & s_Truths6Neg[iVar]; |
| int shift1 = (Num1 >> 1) * (1 << jVar) + (Num1 & 1) * (1 << iVar); |
| int shift2 = (Num2 >> 1) * (1 << jVar) + (Num2 & 1) * (1 << iVar); |
| return ((pTruth[0] >> shift1) & Mask) == ((pTruth[0] >> shift2) & Mask); |
| } |
| if ( jVar <= 5 ) |
| { |
| word Mask = s_Truths6Neg[jVar] & s_Truths6Neg[iVar]; |
| int shift1 = (Num1 >> 1) * (1 << jVar) + (Num1 & 1) * (1 << iVar); |
| int shift2 = (Num2 >> 1) * (1 << jVar) + (Num2 & 1) * (1 << iVar); |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( ((pTruth[w] >> shift1) & Mask) != ((pTruth[w] >> shift2) & Mask) ) |
| return 0; |
| return 1; |
| } |
| if ( iVar <= 5 && jVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int j, jStep = Abc_TtWordNum(jVar); |
| int shift1 = (Num1 & 1) * (1 << iVar); |
| int shift2 = (Num2 & 1) * (1 << iVar); |
| int Offset1 = (Num1 >> 1) * jStep; |
| int Offset2 = (Num2 >> 1) * jStep; |
| for ( ; pTruth < pLimit; pTruth += 2*jStep ) |
| for ( j = 0; j < jStep; j++ ) |
| if ( ((pTruth[j + Offset1] >> shift1) & s_Truths6Neg[iVar]) != ((pTruth[j + Offset2] >> shift2) & s_Truths6Neg[iVar]) ) |
| return 0; |
| return 1; |
| } |
| { |
| word * pLimit = pTruth + nWords; |
| int j, jStep = Abc_TtWordNum(jVar); |
| int i, iStep = Abc_TtWordNum(iVar); |
| int Offset1 = (Num1 >> 1) * jStep + (Num1 & 1) * iStep; |
| int Offset2 = (Num2 >> 1) * jStep + (Num2 & 1) * iStep; |
| for ( ; pTruth < pLimit; pTruth += 2*jStep ) |
| for ( i = 0; i < jStep; i += 2*iStep ) |
| for ( j = 0; j < iStep; j++ ) |
| if ( pTruth[Offset1 + i + j] != pTruth[Offset2 + i + j] ) |
| return 0; |
| return 1; |
| } |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6Cof0IsConst0( word t, int iVar ) { return (t & s_Truths6Neg[iVar]) == 0; } |
| static inline int Abc_Tt6Cof0IsConst1( word t, int iVar ) { return (t & s_Truths6Neg[iVar]) == s_Truths6Neg[iVar]; } |
| static inline int Abc_Tt6Cof1IsConst0( word t, int iVar ) { return (t & s_Truths6[iVar]) == 0; } |
| static inline int Abc_Tt6Cof1IsConst1( word t, int iVar ) { return (t & s_Truths6[iVar]) == s_Truths6[iVar]; } |
| static inline int Abc_Tt6CofsOpposite( word t, int iVar ) { return (~t & s_Truths6Neg[iVar]) == ((t >> (1 << iVar)) & s_Truths6Neg[iVar]); } |
| static inline int Abc_Tt6Cof0EqualCof1( word t1, word t2, int iVar ) { return (t1 & s_Truths6Neg[iVar]) == ((t2 >> (1 << iVar)) & s_Truths6Neg[iVar]); } |
| static inline int Abc_Tt6Cof0EqualCof0( word t1, word t2, int iVar ) { return (t1 & s_Truths6Neg[iVar]) == (t2 & s_Truths6Neg[iVar]); } |
| static inline int Abc_Tt6Cof1EqualCof1( word t1, word t2, int iVar ) { return (t1 & s_Truths6[iVar]) == (t2 & s_Truths6[iVar]); } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtTruthIsConst0( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != 0 ) return 0; return 1; } |
| static inline int Abc_TtTruthIsConst1( word * p, int nWords ) { int w; for ( w = 0; w < nWords; w++ ) if ( p[w] != ~(word)0 ) return 0; return 1; } |
| |
| static inline int Abc_TtCof0IsConst0( word * t, int nWords, int iVar ) |
| { |
| if ( iVar < 6 ) |
| { |
| int i; |
| for ( i = 0; i < nWords; i++ ) |
| if ( t[i] & s_Truths6Neg[iVar] ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + nWords; |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( t[i] ) |
| return 0; |
| return 1; |
| } |
| } |
| static inline int Abc_TtCof0IsConst1( word * t, int nWords, int iVar ) |
| { |
| if ( iVar < 6 ) |
| { |
| int i; |
| for ( i = 0; i < nWords; i++ ) |
| if ( (t[i] & s_Truths6Neg[iVar]) != s_Truths6Neg[iVar] ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + nWords; |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( ~t[i] ) |
| return 0; |
| return 1; |
| } |
| } |
| static inline int Abc_TtCof1IsConst0( word * t, int nWords, int iVar ) |
| { |
| if ( iVar < 6 ) |
| { |
| int i; |
| for ( i = 0; i < nWords; i++ ) |
| if ( t[i] & s_Truths6[iVar] ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + nWords; |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( t[i+Step] ) |
| return 0; |
| return 1; |
| } |
| } |
| static inline int Abc_TtCof1IsConst1( word * t, int nWords, int iVar ) |
| { |
| if ( iVar < 6 ) |
| { |
| int i; |
| for ( i = 0; i < nWords; i++ ) |
| if ( (t[i] & s_Truths6[iVar]) != s_Truths6[iVar] ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + nWords; |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( ~t[i+Step] ) |
| return 0; |
| return 1; |
| } |
| } |
| static inline int Abc_TtCofsOpposite( word * t, int nWords, int iVar ) |
| { |
| if ( iVar < 6 ) |
| { |
| int i, Shift = (1 << iVar); |
| for ( i = 0; i < nWords; i++ ) |
| if ( ((t[i] << Shift) & s_Truths6[iVar]) != (~t[i] & s_Truths6[iVar]) ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + nWords; |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( t[i] != ~t[i+Step] ) |
| return 0; |
| return 1; |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Stretch truthtable to have more input variables.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtStretch5( unsigned * pInOut, int nVarS, int nVarB ) |
| { |
| int w, i, step, nWords; |
| if ( nVarS == nVarB ) |
| return; |
| assert( nVarS < nVarB ); |
| step = Abc_TruthWordNum(nVarS); |
| nWords = Abc_TruthWordNum(nVarB); |
| if ( step == nWords ) |
| return; |
| assert( step < nWords ); |
| for ( w = 0; w < nWords; w += step ) |
| for ( i = 0; i < step; i++ ) |
| pInOut[w + i] = pInOut[i]; |
| } |
| static inline void Abc_TtStretch6( word * pInOut, int nVarS, int nVarB ) |
| { |
| int w, i, step, nWords; |
| if ( nVarS == nVarB ) |
| return; |
| assert( nVarS < nVarB ); |
| step = Abc_Truth6WordNum(nVarS); |
| nWords = Abc_Truth6WordNum(nVarB); |
| if ( step == nWords ) |
| return; |
| assert( step < nWords ); |
| for ( w = 0; w < nWords; w += step ) |
| for ( i = 0; i < step; i++ ) |
| pInOut[w + i] = pInOut[i]; |
| } |
| static inline word Abc_Tt6Stretch( word t, int nVars ) |
| { |
| assert( nVars >= 0 ); |
| if ( nVars == 0 ) |
| nVars++, t = (t & 0x1) | ((t & 0x1) << 1); |
| if ( nVars == 1 ) |
| nVars++, t = (t & 0x3) | ((t & 0x3) << 2); |
| if ( nVars == 2 ) |
| nVars++, t = (t & 0xF) | ((t & 0xF) << 4); |
| if ( nVars == 3 ) |
| nVars++, t = (t & 0xFF) | ((t & 0xFF) << 8); |
| if ( nVars == 4 ) |
| nVars++, t = (t & 0xFFFF) | ((t & 0xFFFF) << 16); |
| if ( nVars == 5 ) |
| nVars++, t = (t & 0xFFFFFFFF) | ((t & 0xFFFFFFFF) << 32); |
| assert( nVars == 6 ); |
| return t; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtIsHexDigit( char HexChar ) |
| { |
| return (HexChar >= '0' && HexChar <= '9') || (HexChar >= 'A' && HexChar <= 'F') || (HexChar >= 'a' && HexChar <= 'f'); |
| } |
| static inline char Abc_TtPrintDigit( int Digit ) |
| { |
| assert( Digit >= 0 && Digit < 16 ); |
| if ( Digit < 10 ) |
| return '0' + Digit; |
| return 'A' + Digit-10; |
| } |
| static inline char Abc_TtPrintDigitLower( int Digit ) |
| { |
| assert( Digit >= 0 && Digit < 16 ); |
| if ( Digit < 10 ) |
| return '0' + Digit; |
| return 'a' + Digit-10; |
| } |
| static inline int Abc_TtReadHexDigit( char HexChar ) |
| { |
| if ( HexChar >= '0' && HexChar <= '9' ) |
| return HexChar - '0'; |
| if ( HexChar >= 'A' && HexChar <= 'F' ) |
| return HexChar - 'A' + 10; |
| if ( HexChar >= 'a' && HexChar <= 'f' ) |
| return HexChar - 'a' + 10; |
| assert( 0 ); // not a hexadecimal symbol |
| return -1; // return value which makes no sense |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtPrintHex( word * pTruth, int nVars ) |
| { |
| word * pThis, * pLimit = pTruth + Abc_TtWordNum(nVars); |
| int k; |
| assert( nVars >= 2 ); |
| for ( pThis = pTruth; pThis < pLimit; pThis++ ) |
| for ( k = 0; k < 16; k++ ) |
| printf( "%c", Abc_TtPrintDigit((int)(pThis[0] >> (k << 2)) & 15) ); |
| printf( "\n" ); |
| } |
| static inline void Abc_TtPrintHexRev( FILE * pFile, word * pTruth, int nVars ) |
| { |
| word * pThis; |
| int k, StartK = nVars >= 6 ? 16 : (1 << (nVars - 2)); |
| assert( nVars >= 2 ); |
| for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- ) |
| for ( k = StartK - 1; k >= 0; k-- ) |
| fprintf( pFile, "%c", Abc_TtPrintDigit((int)(pThis[0] >> (k << 2)) & 15) ); |
| // printf( "\n" ); |
| } |
| static inline void Abc_TtPrintHexSpecial( word * pTruth, int nVars ) |
| { |
| word * pThis; |
| int k; |
| assert( nVars >= 2 ); |
| for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- ) |
| for ( k = 0; k < 16; k++ ) |
| printf( "%c", Abc_TtPrintDigit((int)(pThis[0] >> (k << 2)) & 15) ); |
| printf( "\n" ); |
| } |
| static inline int Abc_TtWriteHexRev( char * pStr, word * pTruth, int nVars ) |
| { |
| word * pThis; |
| char * pStrInit = pStr; |
| int k, StartK = nVars >= 6 ? 16 : (1 << (nVars - 2)); |
| assert( nVars >= 2 ); |
| for ( pThis = pTruth + Abc_TtWordNum(nVars) - 1; pThis >= pTruth; pThis-- ) |
| for ( k = StartK - 1; k >= 0; k-- ) |
| *pStr++ = Abc_TtPrintDigit( (int)(pThis[0] >> (k << 2)) & 15 ); |
| return pStr - pStrInit; |
| } |
| static inline void Abc_TtPrintHexArrayRev( FILE * pFile, word * pTruth, int nDigits ) |
| { |
| int k; |
| for ( k = nDigits - 1; k >= 0; k-- ) |
| fprintf( pFile, "%c", Abc_TtPrintDigitLower( Abc_TtGetHex(pTruth, k) ) ); |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Reads hex truth table from a string.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtReadHex( word * pTruth, char * pString ) |
| { |
| int k, nVars, Digit, nDigits; |
| // skip the first 2 symbols if they are "0x" |
| if ( pString[0] == '0' && pString[1] == 'x' ) |
| pString += 2; |
| // count the number of hex digits |
| nDigits = 0; |
| for ( k = 0; Abc_TtIsHexDigit(pString[k]); k++ ) |
| nDigits++; |
| if ( nDigits == 1 ) |
| { |
| if ( pString[0] == '0' || pString[0] == 'F' ) |
| { |
| pTruth[0] = (pString[0] == '0') ? 0 : ~(word)0; |
| return 0; |
| } |
| if ( pString[0] == '5' || pString[0] == 'A' ) |
| { |
| pTruth[0] = (pString[0] == '5') ? s_Truths6Neg[0] : s_Truths6[0]; |
| return 1; |
| } |
| } |
| // determine the number of variables |
| nVars = 2 + (nDigits == 1 ? 0 : Abc_Base2Log(nDigits)); |
| // clean storage |
| for ( k = Abc_TtWordNum(nVars) - 1; k >= 0; k-- ) |
| pTruth[k] = 0; |
| // read hexadecimal digits in the reverse order |
| // (the last symbol in the string is the least significant digit) |
| for ( k = 0; k < nDigits; k++ ) |
| { |
| Digit = Abc_TtReadHexDigit( pString[nDigits - 1 - k] ); |
| assert( Digit >= 0 && Digit < 16 ); |
| Abc_TtSetHex( pTruth, k, Digit ); |
| } |
| if ( nVars < 6 ) |
| pTruth[0] = Abc_Tt6Stretch( pTruth[0], nVars ); |
| return nVars; |
| } |
| static inline int Abc_TtReadHexNumber( word * pTruth, char * pString ) |
| { |
| // count the number of hex digits |
| int k, Digit, nDigits = 0; |
| for ( k = 0; Abc_TtIsHexDigit(pString[k]); k++ ) |
| nDigits++; |
| // read hexadecimal digits in the reverse order |
| // (the last symbol in the string is the least significant digit) |
| for ( k = 0; k < nDigits; k++ ) |
| { |
| Digit = Abc_TtReadHexDigit( pString[nDigits - 1 - k] ); |
| assert( Digit >= 0 && Digit < 16 ); |
| Abc_TtSetHex( pTruth, k, Digit ); |
| } |
| return nDigits; |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtPrintBinary( word * pTruth, int nVars ) |
| { |
| word * pThis, * pLimit = pTruth + Abc_TtWordNum(nVars); |
| int k, Limit = Abc_MinInt( 64, (1 << nVars) ); |
| assert( nVars >= 2 ); |
| for ( pThis = pTruth; pThis < pLimit; pThis++ ) |
| for ( k = 0; k < Limit; k++ ) |
| printf( "%d", Abc_InfoHasBit( (unsigned *)pThis, k ) ); |
| printf( "\n" ); |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtSuppFindFirst( int Supp ) |
| { |
| int i; |
| assert( Supp > 0 ); |
| for ( i = 0; i < 32; i++ ) |
| if ( Supp & (1 << i) ) |
| return i; |
| return -1; |
| } |
| static inline int Abc_TtSuppOnlyOne( int Supp ) |
| { |
| if ( Supp == 0 ) |
| return 0; |
| return (Supp & (Supp-1)) == 0; |
| } |
| static inline int Abc_TtSuppIsMinBase( int Supp ) |
| { |
| assert( Supp > 0 ); |
| return (Supp & (Supp+1)) == 0; |
| } |
| static inline int Abc_Tt6HasVar( word t, int iVar ) |
| { |
| return ((t >> (1<<iVar)) & s_Truths6Neg[iVar]) != (t & s_Truths6Neg[iVar]); |
| } |
| static inline int Abc_TtHasVar( word * t, int nVars, int iVar ) |
| { |
| assert( iVar < nVars ); |
| if ( nVars <= 6 ) |
| return Abc_Tt6HasVar( t[0], iVar ); |
| if ( iVar < 6 ) |
| { |
| int i, Shift = (1 << iVar); |
| int nWords = Abc_TtWordNum( nVars ); |
| for ( i = 0; i < nWords; i++ ) |
| if ( ((t[i] >> Shift) & s_Truths6Neg[iVar]) != (t[i] & s_Truths6Neg[iVar]) ) |
| return 1; |
| return 0; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + Abc_TtWordNum( nVars ); |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( t[i] != t[Step+i] ) |
| return 1; |
| return 0; |
| } |
| } |
| static inline int Abc_TtSupport( word * t, int nVars ) |
| { |
| int v, Supp = 0; |
| for ( v = 0; v < nVars; v++ ) |
| if ( Abc_TtHasVar( t, nVars, v ) ) |
| Supp |= (1 << v); |
| return Supp; |
| } |
| static inline int Abc_TtSupportSize( word * t, int nVars ) |
| { |
| int v, SuppSize = 0; |
| for ( v = 0; v < nVars; v++ ) |
| if ( Abc_TtHasVar( t, nVars, v ) ) |
| SuppSize++; |
| return SuppSize; |
| } |
| static inline int Abc_TtSupportAndSize( word * t, int nVars, int * pSuppSize ) |
| { |
| int v, Supp = 0; |
| *pSuppSize = 0; |
| for ( v = 0; v < nVars; v++ ) |
| if ( Abc_TtHasVar( t, nVars, v ) ) |
| Supp |= (1 << v), (*pSuppSize)++; |
| return Supp; |
| } |
| static inline int Abc_Tt6SupportAndSize( word t, int nVars, int * pSuppSize ) |
| { |
| int v, Supp = 0; |
| *pSuppSize = 0; |
| assert( nVars <= 6 ); |
| for ( v = 0; v < nVars; v++ ) |
| if ( Abc_Tt6HasVar( t, v ) ) |
| Supp |= (1 << v), (*pSuppSize)++; |
| return Supp; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Checks if there is a var whose both cofs have supp <= nSuppLim.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtCheckCondDep2( word * pTruth, int nVars, int nSuppLim ) |
| { |
| int v, d, nWords = Abc_TtWordNum(nVars); |
| if ( nVars <= nSuppLim + 1 ) |
| return 0; |
| for ( v = 0; v < nVars; v++ ) |
| { |
| int nDep0 = 0, nDep1 = 0; |
| for ( d = 0; d < nVars; d++ ) |
| { |
| if ( v == d ) |
| continue; |
| if ( v < d ) |
| { |
| nDep0 += !Abc_TtCheckEqualCofs( pTruth, nWords, v, d, 0, 2 ); |
| nDep1 += !Abc_TtCheckEqualCofs( pTruth, nWords, v, d, 1, 3 ); |
| } |
| else // if ( v > d ) |
| { |
| nDep0 += !Abc_TtCheckEqualCofs( pTruth, nWords, d, v, 0, 1 ); |
| nDep1 += !Abc_TtCheckEqualCofs( pTruth, nWords, d, v, 2, 3 ); |
| } |
| if ( nDep0 > nSuppLim || nDep1 > nSuppLim ) |
| break; |
| } |
| if ( d == nVars ) |
| return v; |
| } |
| return nVars; |
| } |
| static inline int Abc_TtCheckCondDep( word * pTruth, int nVars, int nSuppLim ) |
| { |
| int nVarsMax = 13; |
| word Cof0[128], Cof1[128]; // pow( 2, nVarsMax-6 ) |
| int v, d, nWords = Abc_TtWordNum(nVars); |
| assert( nVars <= nVarsMax ); |
| if ( nVars <= nSuppLim + 1 ) |
| return 0; |
| for ( v = 0; v < nVars; v++ ) |
| { |
| int nDep0 = 0, nDep1 = 0; |
| Abc_TtCofactor0p( Cof0, pTruth, nWords, v ); |
| Abc_TtCofactor1p( Cof1, pTruth, nWords, v ); |
| for ( d = 0; d < nVars; d++ ) |
| { |
| if ( v == d ) |
| continue; |
| nDep0 += Abc_TtHasVar( Cof0, nVars, d ); |
| nDep1 += Abc_TtHasVar( Cof1, nVars, d ); |
| if ( nDep0 > nSuppLim || nDep1 > nSuppLim ) |
| break; |
| } |
| if ( d == nVars ) |
| return v; |
| } |
| return nVars; |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [Detecting elementary functions.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtOnlyOneOne( word t ) |
| { |
| if ( t == 0 ) |
| return 0; |
| return (t & (t-1)) == 0; |
| } |
| static inline int Abc_Tt6IsAndType( word t, int nVars ) |
| { |
| return Abc_TtOnlyOneOne( t & Abc_Tt6Mask(1 << nVars) ); |
| } |
| static inline int Abc_Tt6IsOrType( word t, int nVars ) |
| { |
| return Abc_TtOnlyOneOne( ~t & Abc_Tt6Mask(1 << nVars) ); |
| } |
| static inline int Abc_Tt6IsXorType( word t, int nVars ) |
| { |
| return ((((t & 1) ? ~t : t) ^ s_TruthXors[nVars]) & Abc_Tt6Mask(1 << nVars)) == 0; |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6Flip( word Truth, int iVar ) |
| { |
| return Truth = ((Truth << (1 << iVar)) & s_Truths6[iVar]) | ((Truth & s_Truths6[iVar]) >> (1 << iVar)); |
| } |
| static inline void Abc_TtFlip( word * pTruth, int nWords, int iVar ) |
| { |
| if ( nWords == 1 ) |
| pTruth[0] = ((pTruth[0] << (1 << iVar)) & s_Truths6[iVar]) | ((pTruth[0] & s_Truths6[iVar]) >> (1 << iVar)); |
| else if ( iVar <= 5 ) |
| { |
| int w, shift = (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| pTruth[w] = ((pTruth[w] << shift) & s_Truths6[iVar]) | ((pTruth[w] & s_Truths6[iVar]) >> shift); |
| } |
| else // if ( iVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| for ( ; pTruth < pLimit; pTruth += 2*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| ABC_SWAP( word, pTruth[i], pTruth[i + iStep] ); |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6Permute_rec( word t, int * pPerm, int nVars ) |
| { |
| word uRes0, uRes1; int Var; |
| if ( t == 0 ) return 0; |
| if ( ~t == 0 ) return ~(word)0; |
| for ( Var = nVars-1; Var >= 0; Var-- ) |
| if ( Abc_Tt6HasVar( t, Var ) ) |
| break; |
| assert( Var >= 0 ); |
| uRes0 = Abc_Tt6Permute_rec( Abc_Tt6Cofactor0(t, Var), pPerm, Var ); |
| uRes1 = Abc_Tt6Permute_rec( Abc_Tt6Cofactor1(t, Var), pPerm, Var ); |
| return (uRes0 & s_Truths6Neg[pPerm[Var]]) | (uRes1 & s_Truths6[pPerm[Var]]); |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6SwapAdjacent( word Truth, int iVar ) |
| { |
| return (Truth & s_PMasks[iVar][0]) | ((Truth & s_PMasks[iVar][1]) << (1 << iVar)) | ((Truth & s_PMasks[iVar][2]) >> (1 << iVar)); |
| } |
| static inline void Abc_TtSwapAdjacent( word * pTruth, int nWords, int iVar ) |
| { |
| if ( iVar < 5 ) |
| { |
| int i, Shift = (1 << iVar); |
| for ( i = 0; i < nWords; i++ ) |
| pTruth[i] = (pTruth[i] & s_PMasks[iVar][0]) | ((pTruth[i] & s_PMasks[iVar][1]) << Shift) | ((pTruth[i] & s_PMasks[iVar][2]) >> Shift); |
| } |
| else if ( iVar == 5 ) |
| { |
| unsigned * pTruthU = (unsigned *)pTruth; |
| unsigned * pLimitU = (unsigned *)(pTruth + nWords); |
| for ( ; pTruthU < pLimitU; pTruthU += 4 ) |
| ABC_SWAP( unsigned, pTruthU[1], pTruthU[2] ); |
| } |
| else // if ( iVar > 5 ) |
| { |
| word * pLimit = pTruth + nWords; |
| int i, iStep = Abc_TtWordNum(iVar); |
| for ( ; pTruth < pLimit; pTruth += 4*iStep ) |
| for ( i = 0; i < iStep; i++ ) |
| ABC_SWAP( word, pTruth[i + iStep], pTruth[i + 2*iStep] ); |
| } |
| } |
| static inline word Abc_Tt6SwapVars( word t, int iVar, int jVar ) |
| { |
| word * s_PMasks = s_PPMasks[iVar][jVar]; |
| int shift = (1 << jVar) - (1 << iVar); |
| assert( iVar < jVar ); |
| return (t & s_PMasks[0]) | ((t & s_PMasks[1]) << shift) | ((t & s_PMasks[2]) >> shift); |
| } |
| static inline void Abc_TtSwapVars( word * pTruth, int nVars, int iVar, int jVar ) |
| { |
| if ( iVar == jVar ) |
| return; |
| if ( jVar < iVar ) |
| ABC_SWAP( int, iVar, jVar ); |
| assert( iVar < jVar && jVar < nVars ); |
| if ( nVars <= 6 ) |
| { |
| pTruth[0] = Abc_Tt6SwapVars( pTruth[0], iVar, jVar ); |
| return; |
| } |
| if ( jVar <= 5 ) |
| { |
| word * s_PMasks = s_PPMasks[iVar][jVar]; |
| int nWords = Abc_TtWordNum(nVars); |
| int w, shift = (1 << jVar) - (1 << iVar); |
| for ( w = 0; w < nWords; w++ ) |
| pTruth[w] = (pTruth[w] & s_PMasks[0]) | ((pTruth[w] & s_PMasks[1]) << shift) | ((pTruth[w] & s_PMasks[2]) >> shift); |
| return; |
| } |
| if ( iVar <= 5 && jVar > 5 ) |
| { |
| word low2High, high2Low; |
| word * pLimit = pTruth + Abc_TtWordNum(nVars); |
| int j, jStep = Abc_TtWordNum(jVar); |
| int shift = 1 << iVar; |
| for ( ; pTruth < pLimit; pTruth += 2*jStep ) |
| for ( j = 0; j < jStep; j++ ) |
| { |
| low2High = (pTruth[j] & s_Truths6[iVar]) >> shift; |
| high2Low = (pTruth[j+jStep] << shift) & s_Truths6[iVar]; |
| pTruth[j] = (pTruth[j] & ~s_Truths6[iVar]) | high2Low; |
| pTruth[j+jStep] = (pTruth[j+jStep] & s_Truths6[iVar]) | low2High; |
| } |
| return; |
| } |
| { |
| word * pLimit = pTruth + Abc_TtWordNum(nVars); |
| int i, iStep = Abc_TtWordNum(iVar); |
| int j, jStep = Abc_TtWordNum(jVar); |
| for ( ; pTruth < pLimit; pTruth += 2*jStep ) |
| for ( i = 0; i < jStep; i += 2*iStep ) |
| for ( j = 0; j < iStep; j++ ) |
| ABC_SWAP( word, pTruth[iStep + i + j], pTruth[jStep + i + j] ); |
| return; |
| } |
| } |
| // moves one var (v) to the given position (p) |
| static inline void Abc_TtMoveVar( word * pF, int nVars, int * V2P, int * P2V, int v, int p ) |
| { |
| int iVar = V2P[v], jVar = p; |
| if ( iVar == jVar ) |
| return; |
| Abc_TtSwapVars( pF, nVars, iVar, jVar ); |
| V2P[P2V[iVar]] = jVar; |
| V2P[P2V[jVar]] = iVar; |
| P2V[iVar] ^= P2V[jVar]; |
| P2V[jVar] ^= P2V[iVar]; |
| P2V[iVar] ^= P2V[jVar]; |
| } |
| static inline word Abc_Tt6RemoveVar( word t, int iVar ) |
| { |
| assert( !Abc_Tt6HasVar(t, iVar) ); |
| while ( iVar < 5 ) |
| t = Abc_Tt6SwapAdjacent( t, iVar++ ); |
| return t; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Support minimization.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtShrink( word * pF, int nVars, int nVarsAll, unsigned Phase ) |
| { |
| int i, k, Var = 0; |
| assert( nVarsAll <= 16 ); |
| for ( i = 0; i < nVarsAll; i++ ) |
| if ( Phase & (1 << i) ) |
| { |
| for ( k = i-1; k >= Var; k-- ) |
| Abc_TtSwapAdjacent( pF, Abc_TtWordNum(nVarsAll), k ); |
| Var++; |
| } |
| assert( Var == nVars ); |
| } |
| static inline int Abc_TtMinimumBase( word * t, int * pSupp, int nVarsAll, int * pnVars ) |
| { |
| int v, iVar = 0, uSupp = 0; |
| assert( nVarsAll <= 16 ); |
| for ( v = 0; v < nVarsAll; v++ ) |
| if ( Abc_TtHasVar( t, nVarsAll, v ) ) |
| { |
| uSupp |= (1 << v); |
| if ( pSupp ) |
| pSupp[iVar] = pSupp[v]; |
| iVar++; |
| } |
| if ( pnVars ) |
| *pnVars = iVar; |
| if ( uSupp == 0 || Abc_TtSuppIsMinBase( uSupp ) ) |
| return 0; |
| Abc_TtShrink( t, iVar, nVarsAll, uSupp ); |
| return 1; |
| } |
| static inline int Abc_TtSimplify( word * t, int * pLits, int nVarsAll, int * pnVars ) |
| { |
| int v, u; |
| for ( v = 0; v < nVarsAll; v++ ) |
| { |
| if ( pLits[v] == 0 ) |
| Abc_TtCofactor0( t, Abc_TtWordNum(nVarsAll), v ); |
| else if ( pLits[v] == 1 ) |
| Abc_TtCofactor1( t, Abc_TtWordNum(nVarsAll), v ); |
| } |
| for ( v = 0; v < nVarsAll; v++ ) |
| for ( u = v+1; u < nVarsAll; u++ ) |
| if ( Abc_Lit2Var(pLits[v]) == Abc_Lit2Var(pLits[u]) ) |
| { |
| assert( nVarsAll <= 6 ); |
| if ( pLits[v] == pLits[u] ) |
| { |
| word t0 = Abc_Tt6Cofactor0(Abc_Tt6Cofactor0(*t, v), u); |
| word t1 = Abc_Tt6Cofactor1(Abc_Tt6Cofactor1(*t, v), u); |
| *t = (t0 & s_Truths6Neg[v]) | (t1 & s_Truths6[v]); |
| } |
| else // if ( pLits[v] == Abc_LitNot(pLits[u]) ) |
| { |
| word t0 = Abc_Tt6Cofactor1(Abc_Tt6Cofactor0(*t, v), u); |
| word t1 = Abc_Tt6Cofactor0(Abc_Tt6Cofactor1(*t, v), u); |
| *t = (t0 & s_Truths6Neg[v]) | (t1 & s_Truths6[v]); |
| } |
| } |
| return Abc_TtMinimumBase( t, pLits, nVarsAll, pnVars ); |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Cut minimization.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6Expand( word t, int * pCut0, int nCutSize0, int * pCut, int nCutSize ) |
| { |
| int i, k; |
| for ( i = nCutSize - 1, k = nCutSize0 - 1; i >= 0 && k >= 0; i-- ) |
| { |
| if ( pCut[i] > pCut0[k] ) |
| continue; |
| assert( pCut[i] == pCut0[k] ); |
| if ( k < i ) |
| t = Abc_Tt6SwapVars( t, k, i ); |
| k--; |
| } |
| assert( k == -1 ); |
| return t; |
| } |
| static inline void Abc_TtExpand( word * pTruth0, int nVars, int * pCut0, int nCutSize0, int * pCut, int nCutSize ) |
| { |
| int i, k; |
| for ( i = nCutSize - 1, k = nCutSize0 - 1; i >= 0 && k >= 0; i-- ) |
| { |
| if ( pCut[i] > pCut0[k] ) |
| continue; |
| assert( pCut[i] == pCut0[k] ); |
| if ( k < i ) |
| Abc_TtSwapVars( pTruth0, nVars, k, i ); |
| k--; |
| } |
| assert( k == -1 ); |
| } |
| static inline int Abc_Tt6MinBase( word * pTruth, int * pVars, int nVars ) |
| { |
| word t = *pTruth; |
| int i, k; |
| for ( i = k = 0; i < nVars; i++ ) |
| { |
| if ( !Abc_Tt6HasVar( t, i ) ) |
| continue; |
| if ( k < i ) |
| { |
| if ( pVars ) pVars[k] = pVars[i]; |
| t = Abc_Tt6SwapVars( t, k, i ); |
| } |
| k++; |
| } |
| if ( k == nVars ) |
| return k; |
| assert( k < nVars ); |
| *pTruth = t; |
| return k; |
| } |
| static inline int Abc_TtMinBase( word * pTruth, int * pVars, int nVars, int nVarsAll ) |
| { |
| int i, k; |
| assert( nVars <= nVarsAll ); |
| for ( i = k = 0; i < nVars; i++ ) |
| { |
| if ( !Abc_TtHasVar( pTruth, nVarsAll, i ) ) |
| continue; |
| if ( k < i ) |
| { |
| if ( pVars ) pVars[k] = pVars[i]; |
| Abc_TtSwapVars( pTruth, nVarsAll, k, i ); |
| } |
| k++; |
| } |
| if ( k == nVars ) |
| return k; |
| assert( k < nVars ); |
| // assert( k == Abc_TtSupportSize(pTruth, nVars) ); |
| return k; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Implemeting given NPN config.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtImplementNpnConfig( word * pTruth, int nVars, char * pCanonPerm, unsigned uCanonPhase ) |
| { |
| int i, k, nWords = Abc_TtWordNum( nVars ); |
| if ( (uCanonPhase >> nVars) & 1 ) |
| Abc_TtNot( pTruth, nWords ); |
| for ( i = 0; i < nVars; i++ ) |
| if ( (uCanonPhase >> i) & 1 ) |
| Abc_TtFlip( pTruth, nWords, i ); |
| if ( pCanonPerm ) |
| for ( i = 0; i < nVars; i++ ) |
| { |
| for ( k = i; k < nVars; k++ ) |
| if ( pCanonPerm[k] == i ) |
| break; |
| assert( k < nVars ); |
| if ( i == k ) |
| continue; |
| Abc_TtSwapVars( pTruth, nVars, i, k ); |
| ABC_SWAP( int, pCanonPerm[i], pCanonPerm[k] ); |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtCountOnesSlow( word t ) |
| { |
| t = (t & ABC_CONST(0x5555555555555555)) + ((t>> 1) & ABC_CONST(0x5555555555555555)); |
| t = (t & ABC_CONST(0x3333333333333333)) + ((t>> 2) & ABC_CONST(0x3333333333333333)); |
| t = (t & ABC_CONST(0x0F0F0F0F0F0F0F0F)) + ((t>> 4) & ABC_CONST(0x0F0F0F0F0F0F0F0F)); |
| t = (t & ABC_CONST(0x00FF00FF00FF00FF)) + ((t>> 8) & ABC_CONST(0x00FF00FF00FF00FF)); |
| t = (t & ABC_CONST(0x0000FFFF0000FFFF)) + ((t>>16) & ABC_CONST(0x0000FFFF0000FFFF)); |
| return (t & ABC_CONST(0x00000000FFFFFFFF)) + (t>>32); |
| } |
| static inline int Abc_TtCountOnes( word x ) |
| { |
| x = x - ((x >> 1) & ABC_CONST(0x5555555555555555)); |
| x = (x & ABC_CONST(0x3333333333333333)) + ((x >> 2) & ABC_CONST(0x3333333333333333)); |
| x = (x + (x >> 4)) & ABC_CONST(0x0F0F0F0F0F0F0F0F); |
| x = x + (x >> 8); |
| x = x + (x >> 16); |
| x = x + (x >> 32); |
| return (int)(x & 0xFF); |
| } |
| static inline int Abc_TtCountOnesVec( word * x, int nWords ) |
| { |
| int w, Count = 0; |
| for ( w = 0; w < nWords; w++ ) |
| Count += Abc_TtCountOnes( x[w] ); |
| return Count; |
| } |
| static inline int Abc_TtCountOnesVecMask( word * x, word * pMask, int nWords, int fCompl ) |
| { |
| int w, Count = 0; |
| if ( fCompl ) |
| for ( w = 0; w < nWords; w++ ) |
| Count += Abc_TtCountOnes( pMask[w] & ~x[w] ); |
| else |
| for ( w = 0; w < nWords; w++ ) |
| Count += Abc_TtCountOnes( pMask[w] & x[w] ); |
| return Count; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6FirstBit( word t ) |
| { |
| int n = 0; |
| if ( t == 0 ) return -1; |
| if ( (t & ABC_CONST(0x00000000FFFFFFFF)) == 0 ) { n += 32; t >>= 32; } |
| if ( (t & ABC_CONST(0x000000000000FFFF)) == 0 ) { n += 16; t >>= 16; } |
| if ( (t & ABC_CONST(0x00000000000000FF)) == 0 ) { n += 8; t >>= 8; } |
| if ( (t & ABC_CONST(0x000000000000000F)) == 0 ) { n += 4; t >>= 4; } |
| if ( (t & ABC_CONST(0x0000000000000003)) == 0 ) { n += 2; t >>= 2; } |
| if ( (t & ABC_CONST(0x0000000000000001)) == 0 ) { n++; } |
| return n; |
| } |
| static inline int Abc_Tt6LastBit( word t ) |
| { |
| int n = 0; |
| if ( t == 0 ) return -1; |
| if ( (t & ABC_CONST(0xFFFFFFFF00000000)) == 0 ) { n += 32; t <<= 32; } |
| if ( (t & ABC_CONST(0xFFFF000000000000)) == 0 ) { n += 16; t <<= 16; } |
| if ( (t & ABC_CONST(0xFF00000000000000)) == 0 ) { n += 8; t <<= 8; } |
| if ( (t & ABC_CONST(0xF000000000000000)) == 0 ) { n += 4; t <<= 4; } |
| if ( (t & ABC_CONST(0xC000000000000000)) == 0 ) { n += 2; t <<= 2; } |
| if ( (t & ABC_CONST(0x8000000000000000)) == 0 ) { n++; } |
| return 63-n; |
| } |
| static inline int Abc_TtFindFirstBit( word * pIn, int nVars ) |
| { |
| int w, nWords = Abc_TtWordNum(nVars); |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn[w] ) |
| return 64*w + Abc_Tt6FirstBit(pIn[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindFirstBit2( word * pIn, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn[w] ) |
| return 64*w + Abc_Tt6FirstBit(pIn[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindLastBit( word * pIn, int nVars ) |
| { |
| int w, nWords = Abc_TtWordNum(nVars); |
| for ( w = nWords - 1; w >= 0; w-- ) |
| if ( pIn[w] ) |
| return 64*w + Abc_Tt6LastBit(pIn[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindLastBit2( word * pIn, int nWords ) |
| { |
| int w; |
| for ( w = nWords - 1; w >= 0; w-- ) |
| if ( pIn[w] ) |
| return 64*w + Abc_Tt6LastBit(pIn[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindFirstDiffBit( word * pIn1, word * pIn2, int nVars ) |
| { |
| int w, nWords = Abc_TtWordNum(nVars); |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] ^ pIn2[w] ) |
| return 64*w + Abc_Tt6FirstBit(pIn1[w] ^ pIn2[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindFirstDiffBit2( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = 0; w < nWords; w++ ) |
| if ( pIn1[w] ^ pIn2[w] ) |
| return 64*w + Abc_Tt6FirstBit(pIn1[w] ^ pIn2[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindLastDiffBit( word * pIn1, word * pIn2, int nVars ) |
| { |
| int w, nWords = Abc_TtWordNum(nVars); |
| for ( w = nWords - 1; w >= 0; w-- ) |
| if ( pIn1[w] ^ pIn2[w] ) |
| return 64*w + Abc_Tt6LastBit(pIn1[w] ^ pIn2[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindLastDiffBit2( word * pIn1, word * pIn2, int nWords ) |
| { |
| int w; |
| for ( w = nWords - 1; w >= 0; w-- ) |
| if ( pIn1[w] ^ pIn2[w] ) |
| return 64*w + Abc_Tt6LastBit(pIn1[w] ^ pIn2[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindFirstZero( word * pIn, int nVars ) |
| { |
| int w, nWords = Abc_TtWordNum(nVars); |
| for ( w = 0; w < nWords; w++ ) |
| if ( ~pIn[w] ) |
| return 64*w + Abc_Tt6FirstBit(~pIn[w]); |
| return -1; |
| } |
| static inline int Abc_TtFindLastZero( word * pIn, int nVars ) |
| { |
| int w, nWords = Abc_TtWordNum(nVars); |
| for ( w = nWords - 1; w >= 0; w-- ) |
| if ( ~pIn[w] ) |
| return 64*w + Abc_Tt6LastBit(~pIn[w]); |
| return -1; |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtReverseVars( word * pTruth, int nVars ) |
| { |
| int k; |
| for ( k = 0; k < nVars/2 ; k++ ) |
| Abc_TtSwapVars( pTruth, nVars, k, nVars - 1 - k ); |
| } |
| static inline void Abc_TtReverseBits( word * pTruth, int nVars ) |
| { |
| static unsigned char pMirror[256] = { |
| 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, |
| 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, |
| 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, |
| 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, |
| 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, |
| 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, |
| 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, |
| 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, |
| 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, |
| 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, |
| 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, |
| 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, |
| 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, |
| 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, |
| 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, |
| 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 |
| }; |
| unsigned char Temp, * pTruthC = (unsigned char *)pTruth; |
| int i, nBytes = (nVars > 6) ? (1 << (nVars - 3)) : 8; |
| for ( i = 0; i < nBytes/2; i++ ) |
| { |
| Temp = pMirror[pTruthC[i]]; |
| pTruthC[i] = pMirror[pTruthC[nBytes-1-i]]; |
| pTruthC[nBytes-1-i] = Temp; |
| } |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [Checks unateness of a function.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6PosVar( word t, int iVar ) |
| { |
| return ((t >> (1<<iVar)) & t & s_Truths6Neg[iVar]) == (t & s_Truths6Neg[iVar]); |
| } |
| static inline int Abc_Tt6NegVar( word t, int iVar ) |
| { |
| return ((t << (1<<iVar)) & t & s_Truths6[iVar]) == (t & s_Truths6[iVar]); |
| } |
| static inline int Abc_TtPosVar( word * t, int nVars, int iVar ) |
| { |
| assert( iVar < nVars ); |
| if ( nVars <= 6 ) |
| return Abc_Tt6PosVar( t[0], iVar ); |
| if ( iVar < 6 ) |
| { |
| int i, Shift = (1 << iVar); |
| int nWords = Abc_TtWordNum( nVars ); |
| for ( i = 0; i < nWords; i++ ) |
| if ( ((t[i] >> Shift) & t[i] & s_Truths6Neg[iVar]) != (t[i] & s_Truths6Neg[iVar]) ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + Abc_TtWordNum( nVars ); |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( t[i] != (t[i] & t[Step+i]) ) |
| return 0; |
| return 1; |
| } |
| } |
| static inline int Abc_TtNegVar( word * t, int nVars, int iVar ) |
| { |
| assert( iVar < nVars ); |
| if ( nVars <= 6 ) |
| return Abc_Tt6NegVar( t[0], iVar ); |
| if ( iVar < 6 ) |
| { |
| int i, Shift = (1 << iVar); |
| int nWords = Abc_TtWordNum( nVars ); |
| for ( i = 0; i < nWords; i++ ) |
| if ( ((t[i] << Shift) & t[i] & s_Truths6[iVar]) != (t[i] & s_Truths6[iVar]) ) |
| return 0; |
| return 1; |
| } |
| else |
| { |
| int i, Step = (1 << (iVar - 6)); |
| word * tLimit = t + Abc_TtWordNum( nVars ); |
| for ( ; t < tLimit; t += 2*Step ) |
| for ( i = 0; i < Step; i++ ) |
| if ( (t[i] & t[Step+i]) != t[Step+i] ) |
| return 0; |
| return 1; |
| } |
| } |
| static inline int Abc_TtIsUnate( word * t, int nVars ) |
| { |
| int i; |
| for ( i = 0; i < nVars; i++ ) |
| if ( !Abc_TtNegVar(t, nVars, i) && !Abc_TtPosVar(t, nVars, i) ) |
| return 0; |
| return 1; |
| } |
| static inline int Abc_TtIsPosUnate( word * t, int nVars ) |
| { |
| int i; |
| for ( i = 0; i < nVars; i++ ) |
| if ( !Abc_TtPosVar(t, nVars, i) ) |
| return 0; |
| return 1; |
| } |
| static inline void Abc_TtMakePosUnate( word * t, int nVars ) |
| { |
| int i, nWords = Abc_TtWordNum(nVars); |
| for ( i = 0; i < nVars; i++ ) |
| if ( Abc_TtNegVar(t, nVars, i) ) |
| Abc_TtFlip( t, nWords, i ); |
| else assert( Abc_TtPosVar(t, nVars, i) ); |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [Computes ISOP for 6 variables or less.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6Isop( word uOn, word uOnDc, int nVars, int * pnCubes ) |
| { |
| word uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2; |
| int Var; |
| assert( nVars <= 6 ); |
| assert( (uOn & ~uOnDc) == 0 ); |
| if ( uOn == 0 ) |
| return 0; |
| if ( uOnDc == ~(word)0 ) |
| { |
| (*pnCubes)++; |
| return ~(word)0; |
| } |
| assert( nVars > 0 ); |
| // find the topmost var |
| for ( Var = nVars-1; Var >= 0; Var-- ) |
| if ( Abc_Tt6HasVar( uOn, Var ) || Abc_Tt6HasVar( uOnDc, Var ) ) |
| break; |
| assert( Var >= 0 ); |
| // cofactor |
| uOn0 = Abc_Tt6Cofactor0( uOn, Var ); |
| uOn1 = Abc_Tt6Cofactor1( uOn , Var ); |
| uOnDc0 = Abc_Tt6Cofactor0( uOnDc, Var ); |
| uOnDc1 = Abc_Tt6Cofactor1( uOnDc, Var ); |
| // solve for cofactors |
| uRes0 = Abc_Tt6Isop( uOn0 & ~uOnDc1, uOnDc0, Var, pnCubes ); |
| uRes1 = Abc_Tt6Isop( uOn1 & ~uOnDc0, uOnDc1, Var, pnCubes ); |
| uRes2 = Abc_Tt6Isop( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pnCubes ); |
| // derive the final truth table |
| uRes2 |= (uRes0 & s_Truths6Neg[Var]) | (uRes1 & s_Truths6[Var]); |
| assert( (uOn & ~uRes2) == 0 ); |
| assert( (uRes2 & ~uOnDc) == 0 ); |
| return uRes2; |
| } |
| static inline int Abc_Tt7Isop( word uOn[2], word uOnDc[2], int nVars, word uRes[2] ) |
| { |
| int nCubes = 0; |
| if ( nVars <= 6 || (uOn[0] == uOn[1] && uOnDc[0] == uOnDc[1]) ) |
| uRes[0] = uRes[1] = Abc_Tt6Isop( uOn[0], uOnDc[0], Abc_MinInt(nVars, 6), &nCubes ); |
| else |
| { |
| word uRes0, uRes1, uRes2; |
| assert( nVars == 7 ); |
| // solve for cofactors |
| uRes0 = Abc_Tt6Isop( uOn[0] & ~uOnDc[1], uOnDc[0], 6, &nCubes ); |
| uRes1 = Abc_Tt6Isop( uOn[1] & ~uOnDc[0], uOnDc[1], 6, &nCubes ); |
| uRes2 = Abc_Tt6Isop( (uOn[0] & ~uRes0) | (uOn[1] & ~uRes1), uOnDc[0] & uOnDc[1], 6, &nCubes ); |
| // derive the final truth table |
| uRes[0] = uRes2 | uRes0; |
| uRes[1] = uRes2 | uRes1; |
| assert( (uOn[0] & ~uRes[0]) == 0 && (uOn[1] & ~uRes[1]) == 0 ); |
| assert( (uRes[0] & ~uOnDc[0])==0 && (uRes[1] & ~uOnDc[1])==0 ); |
| } |
| return nCubes; |
| } |
| static inline int Abc_Tt8Isop( word uOn[4], word uOnDc[4], int nVars, word uRes[4] ) |
| { |
| int nCubes = 0; |
| if ( nVars <= 6 ) |
| uRes[0] = uRes[1] = uRes[2] = uRes[3] = Abc_Tt6Isop( uOn[0], uOnDc[0], nVars, &nCubes ); |
| else if ( nVars == 7 || (uOn[0] == uOn[2] && uOn[1] == uOn[3] && uOnDc[0] == uOnDc[2] && uOnDc[1] == uOnDc[3]) ) |
| { |
| nCubes = Abc_Tt7Isop( uOn, uOnDc, 7, uRes ); |
| uRes[2] = uRes[0]; |
| uRes[3] = uRes[1]; |
| } |
| else |
| { |
| word uOn0[2], uOn1[2], uOn2[2], uOnDc2[2], uRes0[2], uRes1[2], uRes2[2]; |
| assert( nVars == 8 ); |
| // cofactor |
| uOn0[0] = uOn[0] & ~uOnDc[2]; |
| uOn0[1] = uOn[1] & ~uOnDc[3]; |
| uOn1[0] = uOn[2] & ~uOnDc[0]; |
| uOn1[1] = uOn[3] & ~uOnDc[1]; |
| uOnDc2[0] = uOnDc[0] & uOnDc[2]; |
| uOnDc2[1] = uOnDc[1] & uOnDc[3]; |
| // solve for cofactors |
| nCubes += Abc_Tt7Isop( uOn0, uOnDc+0, 7, uRes0 ); |
| nCubes += Abc_Tt7Isop( uOn1, uOnDc+2, 7, uRes1 ); |
| uOn2[0] = (uOn[0] & ~uRes0[0]) | (uOn[2] & ~uRes1[0]); |
| uOn2[1] = (uOn[1] & ~uRes0[1]) | (uOn[3] & ~uRes1[1]); |
| nCubes += Abc_Tt7Isop( uOn2, uOnDc2, 7, uRes2 ); |
| // derive the final truth table |
| uRes[0] = uRes2[0] | uRes0[0]; |
| uRes[1] = uRes2[1] | uRes0[1]; |
| uRes[2] = uRes2[0] | uRes1[0]; |
| uRes[3] = uRes2[1] | uRes1[1]; |
| assert( (uOn[0] & ~uRes[0]) == 0 && (uOn[1] & ~uRes[1]) == 0 && (uOn[2] & ~uRes[2]) == 0 && (uOn[3] & ~uRes[3]) == 0 ); |
| assert( (uRes[0] & ~uOnDc[0])==0 && (uRes[1] & ~uOnDc[1])==0 && (uRes[2] & ~uOnDc[2])==0 && (uRes[3] & ~uOnDc[3])==0 ); |
| } |
| return nCubes; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Computes CNF size.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6CnfSize( word t, int nVars ) |
| { |
| int nCubes = 0; |
| Abc_Tt6Isop( t, t, nVars, &nCubes ); |
| Abc_Tt6Isop( ~t, ~t, nVars, &nCubes ); |
| assert( nCubes <= 64 ); |
| return nCubes; |
| } |
| static inline int Abc_Tt8CnfSize( word t[4], int nVars ) |
| { |
| word uRes[4], tc[4] = {~t[0], ~t[1], ~t[2], ~t[3]}; |
| int nCubes = 0; |
| nCubes += Abc_Tt8Isop( t, t, nVars, uRes ); |
| nCubes += Abc_Tt8Isop( tc, tc, nVars, uRes ); |
| assert( nCubes <= 256 ); |
| return nCubes; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Derives ISOP cover for the function.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_Tt6IsopCover( word uOn, word uOnDc, int nVars, int * pCover, int * pnCubes ) |
| { |
| word uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2; |
| int c, Var, nBeg0, nEnd0, nEnd1; |
| assert( nVars <= 6 ); |
| assert( (uOn & ~uOnDc) == 0 ); |
| if ( uOn == 0 ) |
| return 0; |
| if ( uOnDc == ~(word)0 ) |
| { |
| pCover[(*pnCubes)++] = 0; |
| return ~(word)0; |
| } |
| assert( nVars > 0 ); |
| // find the topmost var |
| for ( Var = nVars-1; Var >= 0; Var-- ) |
| if ( Abc_Tt6HasVar( uOn, Var ) || Abc_Tt6HasVar( uOnDc, Var ) ) |
| break; |
| assert( Var >= 0 ); |
| // cofactor |
| uOn0 = Abc_Tt6Cofactor0( uOn, Var ); |
| uOn1 = Abc_Tt6Cofactor1( uOn , Var ); |
| uOnDc0 = Abc_Tt6Cofactor0( uOnDc, Var ); |
| uOnDc1 = Abc_Tt6Cofactor1( uOnDc, Var ); |
| // solve for cofactors |
| nBeg0 = *pnCubes; |
| uRes0 = Abc_Tt6IsopCover( uOn0 & ~uOnDc1, uOnDc0, Var, pCover, pnCubes ); |
| nEnd0 = *pnCubes; |
| uRes1 = Abc_Tt6IsopCover( uOn1 & ~uOnDc0, uOnDc1, Var, pCover, pnCubes ); |
| nEnd1 = *pnCubes; |
| uRes2 = Abc_Tt6IsopCover( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pCover, pnCubes ); |
| // derive the final truth table |
| uRes2 |= (uRes0 & s_Truths6Neg[Var]) | (uRes1 & s_Truths6[Var]); |
| for ( c = nBeg0; c < nEnd0; c++ ) |
| pCover[c] |= (1 << (2*Var+0)); |
| for ( c = nEnd0; c < nEnd1; c++ ) |
| pCover[c] |= (1 << (2*Var+1)); |
| assert( (uOn & ~uRes2) == 0 ); |
| assert( (uRes2 & ~uOnDc) == 0 ); |
| return uRes2; |
| } |
| static inline void Abc_Tt7IsopCover( word uOn[2], word uOnDc[2], int nVars, word uRes[2], int * pCover, int * pnCubes ) |
| { |
| if ( nVars <= 6 || (uOn[0] == uOn[1] && uOnDc[0] == uOnDc[1]) ) |
| uRes[0] = uRes[1] = Abc_Tt6IsopCover( uOn[0], uOnDc[0], Abc_MinInt(nVars, 6), pCover, pnCubes ); |
| else |
| { |
| word uRes0, uRes1, uRes2; |
| int c, nBeg0, nEnd0, nEnd1; |
| assert( nVars == 7 ); |
| // solve for cofactors |
| nBeg0 = *pnCubes; |
| uRes0 = Abc_Tt6IsopCover( uOn[0] & ~uOnDc[1], uOnDc[0], 6, pCover, pnCubes ); |
| nEnd0 = *pnCubes; |
| uRes1 = Abc_Tt6IsopCover( uOn[1] & ~uOnDc[0], uOnDc[1], 6, pCover, pnCubes ); |
| nEnd1 = *pnCubes; |
| uRes2 = Abc_Tt6IsopCover( (uOn[0] & ~uRes0) | (uOn[1] & ~uRes1), uOnDc[0] & uOnDc[1], 6, pCover, pnCubes ); |
| // derive the final truth table |
| uRes[0] = uRes2 | uRes0; |
| uRes[1] = uRes2 | uRes1; |
| for ( c = nBeg0; c < nEnd0; c++ ) |
| pCover[c] |= (1 << (2*6+0)); |
| for ( c = nEnd0; c < nEnd1; c++ ) |
| pCover[c] |= (1 << (2*6+1)); |
| assert( (uOn[0] & ~uRes[0]) == 0 && (uOn[1] & ~uRes[1]) == 0 ); |
| assert( (uRes[0] & ~uOnDc[0])==0 && (uRes[1] & ~uOnDc[1])==0 ); |
| } |
| } |
| static inline void Abc_Tt8IsopCover( word uOn[4], word uOnDc[4], int nVars, word uRes[4], int * pCover, int * pnCubes ) |
| { |
| if ( nVars <= 6 ) |
| uRes[0] = uRes[1] = uRes[2] = uRes[3] = Abc_Tt6IsopCover( uOn[0], uOnDc[0], nVars, pCover, pnCubes ); |
| else if ( nVars == 7 || (uOn[0] == uOn[2] && uOn[1] == uOn[3] && uOnDc[0] == uOnDc[2] && uOnDc[1] == uOnDc[3]) ) |
| { |
| Abc_Tt7IsopCover( uOn, uOnDc, 7, uRes, pCover, pnCubes ); |
| uRes[2] = uRes[0]; |
| uRes[3] = uRes[1]; |
| } |
| else |
| { |
| word uOn0[2], uOn1[2], uOn2[2], uOnDc2[2], uRes0[2], uRes1[2], uRes2[2]; |
| int c, nBeg0, nEnd0, nEnd1; |
| assert( nVars == 8 ); |
| // cofactor |
| uOn0[0] = uOn[0] & ~uOnDc[2]; |
| uOn0[1] = uOn[1] & ~uOnDc[3]; |
| uOn1[0] = uOn[2] & ~uOnDc[0]; |
| uOn1[1] = uOn[3] & ~uOnDc[1]; |
| uOnDc2[0] = uOnDc[0] & uOnDc[2]; |
| uOnDc2[1] = uOnDc[1] & uOnDc[3]; |
| // solve for cofactors |
| nBeg0 = *pnCubes; |
| Abc_Tt7IsopCover( uOn0, uOnDc+0, 7, uRes0, pCover, pnCubes ); |
| nEnd0 = *pnCubes; |
| Abc_Tt7IsopCover( uOn1, uOnDc+2, 7, uRes1, pCover, pnCubes ); |
| nEnd1 = *pnCubes; |
| uOn2[0] = (uOn[0] & ~uRes0[0]) | (uOn[2] & ~uRes1[0]); |
| uOn2[1] = (uOn[1] & ~uRes0[1]) | (uOn[3] & ~uRes1[1]); |
| Abc_Tt7IsopCover( uOn2, uOnDc2, 7, uRes2, pCover, pnCubes ); |
| // derive the final truth table |
| uRes[0] = uRes2[0] | uRes0[0]; |
| uRes[1] = uRes2[1] | uRes0[1]; |
| uRes[2] = uRes2[0] | uRes1[0]; |
| uRes[3] = uRes2[1] | uRes1[1]; |
| for ( c = nBeg0; c < nEnd0; c++ ) |
| pCover[c] |= (1 << (2*7+0)); |
| for ( c = nEnd0; c < nEnd1; c++ ) |
| pCover[c] |= (1 << (2*7+1)); |
| assert( (uOn[0] & ~uRes[0]) == 0 && (uOn[1] & ~uRes[1]) == 0 && (uOn[2] & ~uRes[2]) == 0 && (uOn[3] & ~uRes[3]) == 0 ); |
| assert( (uRes[0] & ~uOnDc[0])==0 && (uRes[1] & ~uOnDc[1])==0 && (uRes[2] & ~uOnDc[2])==0 && (uRes[3] & ~uOnDc[3])==0 ); |
| } |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Computes CNF for the function.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6Cnf( word t, int nVars, int * pCover ) |
| { |
| int c, nCubes = 0; |
| Abc_Tt6IsopCover( t, t, nVars, pCover, &nCubes ); |
| for ( c = 0; c < nCubes; c++ ) |
| pCover[c] |= (1 << (2*nVars+0)); |
| Abc_Tt6IsopCover( ~t, ~t, nVars, pCover, &nCubes ); |
| for ( ; c < nCubes; c++ ) |
| pCover[c] |= (1 << (2*nVars+1)); |
| assert( nCubes <= 64 ); |
| return nCubes; |
| } |
| static inline int Abc_Tt8Cnf( word t[4], int nVars, int * pCover ) |
| { |
| word uRes[4], tc[4] = {~t[0], ~t[1], ~t[2], ~t[3]}; |
| int c, nCubes = 0; |
| Abc_Tt8IsopCover( t, t, nVars, uRes, pCover, &nCubes ); |
| for ( c = 0; c < nCubes; c++ ) |
| pCover[c] |= (1 << (2*nVars+0)); |
| Abc_Tt8IsopCover( tc, tc, nVars, uRes, pCover, &nCubes ); |
| for ( ; c < nCubes; c++ ) |
| pCover[c] |= (1 << (2*nVars+1)); |
| assert( nCubes <= 256 ); |
| return nCubes; |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [Computes ISOP for 6 variables or less.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6Esop( word t, int nVars, int * pCover ) |
| { |
| word c0, c1; |
| int Var, r0, r1, r2, Max, i; |
| assert( nVars <= 6 ); |
| if ( t == 0 ) |
| return 0; |
| if ( t == ~(word)0 ) |
| { |
| if ( pCover ) *pCover = 0; |
| return 1; |
| } |
| assert( nVars > 0 ); |
| // find the topmost var |
| for ( Var = nVars-1; Var >= 0; Var-- ) |
| if ( Abc_Tt6HasVar( t, Var ) ) |
| break; |
| assert( Var >= 0 ); |
| // cofactor |
| c0 = Abc_Tt6Cofactor0( t, Var ); |
| c1 = Abc_Tt6Cofactor1( t, Var ); |
| // call recursively |
| r0 = Abc_Tt6Esop( c0, Var, pCover ? pCover : NULL ); |
| r1 = Abc_Tt6Esop( c1, Var, pCover ? pCover + r0 : NULL ); |
| r2 = Abc_Tt6Esop( c0 ^ c1, Var, pCover ? pCover + r0 + r1 : NULL ); |
| Max = Abc_MaxInt( r0, Abc_MaxInt(r1, r2) ); |
| // add literals |
| if ( pCover ) |
| { |
| if ( Max == r0 ) |
| { |
| for ( i = 0; i < r1; i++ ) |
| pCover[i] = pCover[r0+i]; |
| for ( i = 0; i < r2; i++ ) |
| pCover[r1+i] = pCover[r0+r1+i] | (1 << (2*Var+0)); |
| } |
| else if ( Max == r1 ) |
| { |
| for ( i = 0; i < r2; i++ ) |
| pCover[r0+i] = pCover[r0+r1+i] | (1 << (2*Var+1)); |
| } |
| else |
| { |
| for ( i = 0; i < r0; i++ ) |
| pCover[i] |= (1 << (2*Var+0)); |
| for ( i = 0; i < r1; i++ ) |
| pCover[r0+i] |= (1 << (2*Var+1)); |
| } |
| } |
| return r0 + r1 + r2 - Max; |
| } |
| static inline word Abc_Tt6EsopBuild( int nVars, int * pCover, int nCubes ) |
| { |
| word p, t = 0; int c, v; |
| for ( c = 0; c < nCubes; c++ ) |
| { |
| p = ~(word)0; |
| for ( v = 0; v < nVars; v++ ) |
| if ( ((pCover[c] >> (v << 1)) & 3) == 1 ) |
| p &= ~s_Truths6[v]; |
| else if ( ((pCover[c] >> (v << 1)) & 3) == 2 ) |
| p &= s_Truths6[v]; |
| t ^= p; |
| } |
| return t; |
| } |
| static inline int Abc_Tt6EsopVerify( word t, int nVars ) |
| { |
| int pCover[64]; |
| int nCubes = Abc_Tt6Esop( t, nVars, pCover ); |
| word t2 = Abc_Tt6EsopBuild( nVars, pCover, nCubes ); |
| if ( t != t2 ) |
| printf( "Verification failed.\n" ); |
| return nCubes; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Check if the function is output-decomposable with the given var.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt6CheckOutDec( word t, int i, word * pOut ) |
| { |
| word c0 = Abc_Tt6Cofactor0( t, i ); |
| word c1 = Abc_Tt6Cofactor1( t, i ); |
| assert( c0 != c1 ); |
| if ( c0 == 0 ) // F = i * G |
| { |
| if ( pOut ) *pOut = c1; |
| return 0; |
| } |
| if ( c1 == 0 ) // F = ~i * G |
| { |
| if ( pOut ) *pOut = c0; |
| return 1; |
| } |
| if ( ~c0 == 0 ) // F = ~i + G |
| { |
| if ( pOut ) *pOut = c1; |
| return 2; |
| } |
| if ( ~c1 == 0 ) // F = i + G |
| { |
| if ( pOut ) *pOut = c0; |
| return 3; |
| } |
| if ( c0 == ~c1 ) // F = i # G |
| { |
| if ( pOut ) *pOut = c0; |
| return 4; |
| } |
| return -1; |
| } |
| static inline int Abc_TtCheckOutDec( word * pTruth, int nVars, int v, word * pOut ) |
| { |
| word Cof0[4], Cof1[4]; |
| int nWords = Abc_TtWordNum(nVars); |
| assert( nVars <= 8 ); |
| Abc_TtCofactor0p( Cof0, pTruth, nWords, v ); |
| Abc_TtCofactor1p( Cof1, pTruth, nWords, v ); |
| assert( !Abc_TtEqual(Cof0, Cof1, nWords) ); |
| if ( Abc_TtIsConst0(Cof0, nWords) ) //if ( c0 == 0 ) // F = i * G |
| { |
| if ( pOut ) Abc_TtCopy( pOut, Cof1, nWords, 0 ); //*pOut = c1; |
| return 0; |
| } |
| if ( Abc_TtIsConst0(Cof1, nWords) ) //if ( c1 == 0 ) // F = ~i * G |
| { |
| if ( pOut ) Abc_TtCopy( pOut, Cof0, nWords, 0 ); //*pOut = c0; |
| return 1; |
| } |
| if ( Abc_TtIsConst1(Cof0, nWords) ) //if ( ~c0 == 0 ) // F = ~i + G |
| { |
| if ( pOut ) Abc_TtCopy( pOut, Cof1, nWords, 0 ); //*pOut = c1; |
| return 2; |
| } |
| if ( Abc_TtIsConst1(Cof1, nWords) ) //if ( ~c1 == 0 ) // F = i + G |
| { |
| if ( pOut ) Abc_TtCopy( pOut, Cof0, nWords, 0 ); //*pOut = c0; |
| return 3; |
| } |
| if ( Abc_TtOpposite(Cof0, Cof1, nWords) ) //if ( c0 == ~c1 ) // F = i # G |
| { |
| if ( pOut ) Abc_TtCopy( pOut, Cof0, nWords, 0 ); //*pOut = c0; |
| return 4; |
| } |
| return -1; |
| } |
| static inline word Abc_TtCheckDecOutOne7( word * t, int * piVar, int * pType ) |
| { |
| int v, Type, Type2; word Out[2]; |
| for ( v = 6; v >= 0; v-- ) |
| if ( (Type = Abc_TtCheckOutDec(t, 7, v, NULL)) != -1 ) |
| { |
| Abc_TtSwapVars( t, 7, 6, v ); |
| Type2 = Abc_TtCheckOutDec( t, 7, 6, Out ); |
| assert( Type == Type2 ); |
| *piVar = v; |
| *pType = Type; |
| return Out[0]; |
| } |
| return 0; |
| } |
| static inline word Abc_TtCheckDecOutOne8( word * t, int * piVar1, int * piVar2, int * pType1, int * pType2 ) |
| { |
| int v, Type1, Type12, Type2, Type22; word Out[4], Out2[2]; |
| for ( v = 7; v >= 0; v-- ) |
| if ( (Type1 = Abc_TtCheckOutDec(t, 8, v, NULL)) != -1 ) |
| { |
| Abc_TtSwapVars( t, 8, 7, v ); |
| Type12 = Abc_TtCheckOutDec( t, 8, 7, Out ); |
| assert( Type1 == Type12 ); |
| *piVar1 = v; |
| *pType1 = Type1; |
| break; |
| } |
| if ( v == -1 ) |
| return 0; |
| for ( v = 6; v >= 0; v-- ) |
| if ( (Type2 = Abc_TtCheckOutDec(Out, 7, v, NULL)) != -1 && Abc_Lit2Var(Type2) == Abc_Lit2Var(Type1) ) |
| { |
| Abc_TtSwapVars( Out, 7, 6, v ); |
| Type22 = Abc_TtCheckOutDec(Out, 7, 6, Out2); |
| assert( Type2 == Type22 ); |
| *piVar2 = v; |
| *pType2 = Type2; |
| assert( *piVar2 < *piVar1 ); |
| return Out2[0]; |
| } |
| return 0; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Check if the function is input-decomposable with the given pair.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_TtCheckDsdAnd( word t, int i, int j, word * pOut ) |
| { |
| word c0 = Abc_Tt6Cofactor0( t, i ); |
| word c1 = Abc_Tt6Cofactor1( t, i ); |
| word c00 = Abc_Tt6Cofactor0( c0, j ); |
| word c01 = Abc_Tt6Cofactor1( c0, j ); |
| word c10 = Abc_Tt6Cofactor0( c1, j ); |
| word c11 = Abc_Tt6Cofactor1( c1, j ); |
| if ( c00 == c01 && c00 == c10 ) // i * j |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c00) | (s_Truths6[i] & c11); |
| return 0; |
| } |
| if ( c11 == c00 && c11 == c10 ) // i * !j |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c11) | (s_Truths6[i] & c01); |
| return 1; |
| } |
| if ( c11 == c00 && c11 == c01 ) // !i * j |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c11) | (s_Truths6[i] & c10); |
| return 2; |
| } |
| if ( c11 == c01 && c11 == c10 ) // !i * !j |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c11) | (s_Truths6[i] & c00); |
| return 3; |
| } |
| if ( c00 == c11 && c01 == c10 ) |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c11) | (s_Truths6[i] & c10); |
| return 4; |
| } |
| return -1; |
| } |
| static inline int Abc_TtCheckDsdMux( word t, int i, word * pOut ) |
| { |
| word c0 = Abc_Tt6Cofactor0( t, i ); |
| word c1 = Abc_Tt6Cofactor1( t, i ); |
| word c00, c01, c10, c11; |
| int k, fPres0, fPres1, iVar0 = -1, iVar1 = -1; |
| for ( k = 0; k < 6; k++ ) |
| { |
| if ( k == i ) continue; |
| fPres0 = Abc_Tt6HasVar( c0, k ); |
| fPres1 = Abc_Tt6HasVar( c1, k ); |
| if ( fPres0 && !fPres1 ) |
| { |
| if ( iVar0 >= 0 ) |
| return -1; |
| iVar0 = k; |
| } |
| if ( !fPres0 && fPres1 ) |
| { |
| if ( iVar1 >= 0 ) |
| return -1; |
| iVar1 = k; |
| } |
| } |
| if ( iVar0 == -1 || iVar1 == -1 ) |
| return -1; |
| c00 = Abc_Tt6Cofactor0( c0, iVar0 ); |
| c01 = Abc_Tt6Cofactor1( c0, iVar0 ); |
| c10 = Abc_Tt6Cofactor0( c1, iVar1 ); |
| c11 = Abc_Tt6Cofactor1( c1, iVar1 ); |
| if ( c00 == c10 && c01 == c11 ) // ITE(i, iVar1, iVar0) |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c10) | (s_Truths6[i] & c11); |
| return (Abc_Var2Lit(iVar1, 0) << 16) | Abc_Var2Lit(iVar0, 0); |
| } |
| if ( c00 == ~c10 && c01 == ~c11 ) // ITE(i, iVar1, !iVar0) |
| { |
| if ( pOut ) *pOut = (~s_Truths6[i] & c10) | (s_Truths6[i] & c11); |
| return (Abc_Var2Lit(iVar1, 0) << 16) | Abc_Var2Lit(iVar0, 1); |
| } |
| return -1; |
| } |
| static inline void Unm_ManCheckTest2() |
| { |
| word t, t1, Out, Var0, Var1, Var0_, Var1_; |
| int iVar0, iVar1, i, Res; |
| for ( iVar0 = 0; iVar0 < 6; iVar0++ ) |
| for ( iVar1 = 0; iVar1 < 6; iVar1++ ) |
| { |
| if ( iVar0 == iVar1 ) |
| continue; |
| Var0 = s_Truths6[iVar0]; |
| Var1 = s_Truths6[iVar1]; |
| for ( i = 0; i < 5; i++ ) |
| { |
| Var0_ = ((i >> 0) & 1) ? ~Var0 : Var0; |
| Var1_ = ((i >> 1) & 1) ? ~Var1 : Var1; |
| |
| t = Var0_ & Var1_; |
| if ( i == 4 ) |
| t = ~(Var0_ ^ Var1_); |
| |
| // Kit_DsdPrintFromTruth( (unsigned *)&t, 6 ), printf( "\n" ); |
| |
| Res = Abc_TtCheckDsdAnd( t, iVar0, iVar1, &Out ); |
| if ( Res == -1 ) |
| { |
| printf( "No decomposition\n" ); |
| continue; |
| } |
| |
| Var0_ = s_Truths6[iVar0]; |
| Var0_ = ((Res >> 0) & 1) ? ~Var0_ : Var0_; |
| |
| Var1_ = s_Truths6[iVar1]; |
| Var1_ = ((Res >> 1) & 1) ? ~Var1_ : Var1_; |
| |
| t1 = Var0_ & Var1_; |
| if ( Res == 4 ) |
| t1 = Var0_ ^ Var1_; |
| |
| t1 = (~t1 & Abc_Tt6Cofactor0(Out, iVar0)) | (t1 & Abc_Tt6Cofactor1(Out, iVar0)); |
| |
| // Kit_DsdPrintFromTruth( (unsigned *)&t1, 6 ), printf( "\n" ); |
| |
| if ( t1 != t ) |
| printf( "Verification failed.\n" ); |
| else |
| printf( "Verification succeeded.\n" ); |
| } |
| } |
| } |
| static inline void Unm_ManCheckTest() |
| { |
| word t, t1, Out, Ctrl, Var0, Var1, Ctrl_, Var0_, Var1_; |
| int iVar0, iVar1, iCtrl, i, Res; |
| for ( iCtrl = 0; iCtrl < 6; iCtrl++ ) |
| for ( iVar0 = 0; iVar0 < 6; iVar0++ ) |
| for ( iVar1 = 0; iVar1 < 6; iVar1++ ) |
| { |
| if ( iCtrl == iVar0 || iCtrl == iVar1 || iVar0 == iVar1 ) |
| continue; |
| Ctrl = s_Truths6[iCtrl]; |
| Var0 = s_Truths6[iVar0]; |
| Var1 = s_Truths6[iVar1]; |
| for ( i = 0; i < 8; i++ ) |
| { |
| Ctrl_ = ((i >> 0) & 1) ? ~Ctrl : Ctrl; |
| Var0_ = ((i >> 1) & 1) ? ~Var0 : Var0; |
| Var1_ = ((i >> 2) & 1) ? ~Var1 : Var1; |
| |
| t = (~Ctrl_ & Var0_) | (Ctrl_ & Var1_); |
| |
| // Kit_DsdPrintFromTruth( (unsigned *)&t, 6 ), printf( "\n" ); |
| |
| Res = Abc_TtCheckDsdMux( t, iCtrl, &Out ); |
| if ( Res == -1 ) |
| { |
| printf( "No decomposition\n" ); |
| continue; |
| } |
| |
| // Kit_DsdPrintFromTruth( (unsigned *)&Out, 6 ), printf( "\n" ); |
| |
| Ctrl_ = s_Truths6[iCtrl]; |
| Var0_ = s_Truths6[Abc_Lit2Var(Res & 0xFFFF)]; |
| Var0_ = Abc_LitIsCompl(Res & 0xFFFF) ? ~Var0_ : Var0_; |
| |
| Res >>= 16; |
| Var1_ = s_Truths6[Abc_Lit2Var(Res & 0xFFFF)]; |
| Var1_ = Abc_LitIsCompl(Res & 0xFFFF) ? ~Var1_ : Var1_; |
| |
| t1 = (~Ctrl_ & Var0_) | (Ctrl_ & Var1_); |
| |
| // Kit_DsdPrintFromTruth( (unsigned *)&t1, 6 ), printf( "\n" ); |
| // Kit_DsdPrintFromTruth( (unsigned *)&Out, 6 ), printf( "\n" ); |
| |
| t1 = (~t1 & Abc_Tt6Cofactor0(Out, iCtrl)) | (t1 & Abc_Tt6Cofactor1(Out, iCtrl)); |
| |
| // Kit_DsdPrintFromTruth( (unsigned *)&t1, 6 ), printf( "\n" ); |
| |
| if ( t1 != t ) |
| printf( "Verification failed.\n" ); |
| else |
| printf( "Verification succeeded.\n" ); |
| } |
| } |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [Truth table evaluation.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline word Abc_TtEvalLut6( word Ins[6], word Lut, int nVars ) |
| { |
| word Cube, Res = 0; int k, i; |
| for ( k = 0; k < (1<<nVars); k++ ) |
| { |
| if ( ((Lut >> k) & 1) == 0 ) |
| continue; |
| Cube = ~(word)0; |
| for ( i = 0; i < nVars; i++ ) |
| Cube &= ((k >> i) & 1) ? Ins[i] : ~Ins[i]; |
| Res |= Cube; |
| } |
| return Res; |
| } |
| static inline unsigned Abc_TtEvalLut5( unsigned Ins[5], int Lut, int nVars ) |
| { |
| unsigned Cube, Res = 0; int k, i; |
| for ( k = 0; k < (1<<nVars); k++ ) |
| { |
| if ( ((Lut >> k) & 1) == 0 ) |
| continue; |
| Cube = ~(unsigned)0; |
| for ( i = 0; i < nVars; i++ ) |
| Cube &= ((k >> i) & 1) ? Ins[i] : ~Ins[i]; |
| Res |= Cube; |
| } |
| return Res; |
| } |
| static inline int Abc_TtEvalLut4( int Ins[4], int Lut, int nVars ) |
| { |
| int Cube, Res = 0; int k, i; |
| for ( k = 0; k < (1<<nVars); k++ ) |
| { |
| if ( ((Lut >> k) & 1) == 0 ) |
| continue; |
| Cube = ~(int)0; |
| for ( i = 0; i < nVars; i++ ) |
| Cube &= ((k >> i) & 1) ? Ins[i] : ~Ins[i]; |
| Res |= Cube; |
| } |
| return Res & ~(~0 << (1<<nVars)); |
| } |
| |
| |
| /**Function************************************************************* |
| |
| Synopsis [Checks existence of bi-decomposition.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtComputeGraph( word * pTruth, int v, int nVars, int * pGraph ) |
| { |
| word Cof0[64], Cof1[64]; // pow( 2, nVarsMax-6 ) |
| word Cof00[64], Cof01[64], Cof10[64], Cof11[64]; |
| word CofXor, CofAndTest; |
| int i, w, nWords = Abc_TtWordNum(nVars); |
| pGraph[v] |= (1 << v); |
| if ( v == nVars - 1 ) |
| return; |
| assert( v < nVars - 1 ); |
| Abc_TtCofactor0p( Cof0, pTruth, nWords, v ); |
| Abc_TtCofactor1p( Cof1, pTruth, nWords, v ); |
| for ( i = v + 1; i < nVars; i++ ) |
| { |
| Abc_TtCofactor0p( Cof00, Cof0, nWords, i ); |
| Abc_TtCofactor1p( Cof01, Cof0, nWords, i ); |
| Abc_TtCofactor0p( Cof10, Cof1, nWords, i ); |
| Abc_TtCofactor1p( Cof11, Cof1, nWords, i ); |
| for ( w = 0; w < nWords; w++ ) |
| { |
| CofXor = Cof00[w] ^ Cof01[w] ^ Cof10[w] ^ Cof11[w]; |
| CofAndTest = (Cof00[w] & Cof01[w]) | (Cof10[w] & Cof11[w]); |
| if ( CofXor & CofAndTest ) |
| { |
| pGraph[v] |= (1 << i); |
| pGraph[i] |= (1 << v); |
| } |
| else if ( CofXor & ~CofAndTest ) |
| { |
| pGraph[v] |= (1 << (16+i)); |
| pGraph[i] |= (1 << (16+v)); |
| } |
| } |
| } |
| } |
| static inline void Abc_TtPrintVarSet( int Mask, int nVars ) |
| { |
| int i; |
| for ( i = 0; i < nVars; i++ ) |
| if ( (Mask >> i) & 1 ) |
| printf( "1" ); |
| else |
| printf( "." ); |
| } |
| static inline void Abc_TtPrintBiDec( word * pTruth, int nVars ) |
| { |
| int v, pGraph[12] = {0}; |
| assert( nVars <= 12 ); |
| for ( v = 0; v < nVars; v++ ) |
| { |
| Abc_TtComputeGraph( pTruth, v, nVars, pGraph ); |
| Abc_TtPrintVarSet( pGraph[v], nVars ); |
| printf( " " ); |
| Abc_TtPrintVarSet( pGraph[v] >> 16, nVars ); |
| printf( "\n" ); |
| } |
| } |
| static inline int Abc_TtVerifyBiDec( word * pTruth, int nVars, int This, int That, int nSuppLim, word wThis, word wThat ) |
| { |
| int pVarsThis[12], pVarsThat[12], pVarsAll[12]; |
| int nThis = Abc_TtBitCount16(This); |
| int nThat = Abc_TtBitCount16(That); |
| int i, k, nWords = Abc_TtWordNum(nVars); |
| word pThis[64] = {wThis}, pThat[64] = {wThat}; |
| assert( nVars <= 12 ); |
| for ( i = 0; i < nVars; i++ ) |
| pVarsAll[i] = i; |
| for ( i = k = 0; i < nVars; i++ ) |
| if ( (This >> i) & 1 ) |
| pVarsThis[k++] = i; |
| assert( k == nThis ); |
| for ( i = k = 0; i < nVars; i++ ) |
| if ( (That >> i) & 1 ) |
| pVarsThat[k++] = i; |
| assert( k == nThat ); |
| Abc_TtStretch6( pThis, nThis, nVars ); |
| Abc_TtStretch6( pThat, nThat, nVars ); |
| Abc_TtExpand( pThis, nVars, pVarsThis, nThis, pVarsAll, nVars ); |
| Abc_TtExpand( pThat, nVars, pVarsThat, nThat, pVarsAll, nVars ); |
| for ( k = 0; k < nWords; k++ ) |
| if ( pTruth[k] != (pThis[k] & pThat[k]) ) |
| return 0; |
| return 1; |
| } |
| static inline void Abc_TtExist( word * pTruth, int iVar, int nWords ) |
| { |
| word Cof0[64], Cof1[64]; |
| Abc_TtCofactor0p( Cof0, pTruth, nWords, iVar ); |
| Abc_TtCofactor1p( Cof1, pTruth, nWords, iVar ); |
| Abc_TtOr( pTruth, Cof0, Cof1, nWords ); |
| } |
| static inline int Abc_TtCheckBiDec( word * pTruth, int nVars, int This, int That ) |
| { |
| int VarMask[2] = {This & ~That, That & ~This}; |
| int v, c, nWords = Abc_TtWordNum(nVars); |
| word pTempR[2][64]; |
| for ( c = 0; c < 2; c++ ) |
| { |
| Abc_TtCopy( pTempR[c], pTruth, nWords, 0 ); |
| for ( v = 0; v < nVars; v++ ) |
| if ( ((VarMask[c] >> v) & 1) ) |
| Abc_TtExist( pTempR[c], v, nWords ); |
| } |
| for ( v = 0; v < nWords; v++ ) |
| if ( ~pTruth[v] & pTempR[0][v] & pTempR[1][v] ) |
| return 0; |
| return 1; |
| } |
| static inline word Abc_TtDeriveBiDecOne( word * pTruth, int nVars, int This ) |
| { |
| word pTemp[64]; |
| int nThis = Abc_TtBitCount16(This); |
| int v, nWords = Abc_TtWordNum(nVars); |
| Abc_TtCopy( pTemp, pTruth, nWords, 0 ); |
| for ( v = 0; v < nVars; v++ ) |
| if ( !((This >> v) & 1) ) |
| Abc_TtExist( pTemp, v, nWords ); |
| Abc_TtShrink( pTemp, nThis, nVars, This ); |
| return Abc_Tt6Stretch( pTemp[0], nThis ); |
| } |
| static inline void Abc_TtDeriveBiDec( word * pTruth, int nVars, int This, int That, int nSuppLim, word * pThis, word * pThat ) |
| { |
| assert( Abc_TtBitCount16(This) <= nSuppLim ); |
| assert( Abc_TtBitCount16(That) <= nSuppLim ); |
| pThis[0] = Abc_TtDeriveBiDecOne( pTruth, nVars, This ); |
| pThat[0] = Abc_TtDeriveBiDecOne( pTruth, nVars, That ); |
| if ( !Abc_TtVerifyBiDec(pTruth, nVars, This, That, nSuppLim, pThis[0], pThat[0] ) ) |
| printf( "Bi-decomposition verification failed.\n" ); |
| } |
| // detect simple case of decomposition with topmost AND gate |
| static inline int Abc_TtCheckBiDecSimple( word * pTruth, int nVars, int nSuppLim ) |
| { |
| word Cof0[64], Cof1[64]; |
| int v, Res = 0, nDecVars = 0, nWords = Abc_TtWordNum(nVars); |
| for ( v = 0; v < nVars; v++ ) |
| { |
| Abc_TtCofactor0p( Cof0, pTruth, nWords, v ); |
| Abc_TtCofactor1p( Cof1, pTruth, nWords, v ); |
| if ( !Abc_TtIsConst0(Cof0, nWords) && !Abc_TtIsConst0(Cof1, nWords) ) |
| continue; |
| nDecVars++; |
| Res |= 1 << v; |
| if ( nDecVars >= nVars - nSuppLim ) |
| return ((Res ^ (int)Abc_Tt6Mask(nVars)) << 16) | Res; |
| } |
| return 0; |
| } |
| static inline int Abc_TtProcessBiDecInt( word * pTruth, int nVars, int nSuppLim ) |
| { |
| int i, v, Res, nSupp, CountShared = 0, pGraph[12] = {0}; |
| assert( nSuppLim < nVars && nVars <= 2 * nSuppLim && nVars <= 12 ); |
| assert( 2 <= nSuppLim && nSuppLim <= 6 ); |
| Res = Abc_TtCheckBiDecSimple( pTruth, nVars, nSuppLim ); |
| if ( Res ) |
| return Res; |
| for ( v = 0; v < nVars; v++ ) |
| { |
| Abc_TtComputeGraph( pTruth, v, nVars, pGraph ); |
| nSupp = Abc_TtBitCount16(pGraph[v] & 0xFFFF); |
| if ( nSupp > nSuppLim ) |
| { |
| // this variable is shared - check if the limit is exceeded |
| if ( ++CountShared > 2*nSuppLim - nVars ) |
| return 0; |
| } |
| else if ( nVars - nSupp <= nSuppLim ) |
| { |
| int This = pGraph[v] & 0xFFFF; |
| int That = This ^ (int)Abc_Tt6Mask(nVars); |
| // find the other component |
| int Graph = That; |
| for ( i = 0; i < nVars; i++ ) |
| if ( (That >> i) & 1 ) |
| Graph |= pGraph[i] & 0xFFFF; |
| // check if this can be done |
| if ( Abc_TtBitCount16(Graph) > nSuppLim ) |
| continue; |
| // try decomposition |
| if ( Abc_TtCheckBiDec(pTruth, nVars, This, Graph) ) |
| return (Graph << 16) | This; |
| } |
| } |
| return 0; |
| } |
| static inline int Abc_TtProcessBiDec( word * pTruth, int nVars, int nSuppLim ) |
| { |
| word pFunc[64]; |
| int Res, nWords = Abc_TtWordNum(nVars); |
| Abc_TtCopy( pFunc, pTruth, nWords, 0 ); |
| Res = Abc_TtProcessBiDecInt( pFunc, nVars, nSuppLim ); |
| if ( Res ) |
| return Res; |
| Abc_TtCopy( pFunc, pTruth, nWords, 1 ); |
| Res = Abc_TtProcessBiDecInt( pFunc, nVars, nSuppLim ); |
| if ( Res ) |
| return Res | (1 << 30); |
| return 0; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Tests decomposition procedures.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline void Abc_TtProcessBiDecTest( word * pTruth, int nVars, int nSuppLim ) |
| { |
| word This, That, pTemp[64]; |
| int Res, resThis, resThat;//, nThis, nThat; |
| int nWords = Abc_TtWordNum(nVars); |
| Abc_TtCopy( pTemp, pTruth, nWords, 0 ); |
| Res = Abc_TtProcessBiDec( pTemp, nVars, nSuppLim ); |
| if ( Res == 0 ) |
| { |
| //Dau_DsdPrintFromTruth( pTemp, nVars ); |
| //printf( "Non_dec\n\n" ); |
| return; |
| } |
| |
| resThis = Res & 0xFFFF; |
| resThat = Res >> 16; |
| |
| Abc_TtDeriveBiDec( pTemp, nVars, resThis, resThat, nSuppLim, &This, &That ); |
| return; |
| |
| //if ( !(resThis & resThat) ) |
| // return; |
| |
| // Dau_DsdPrintFromTruth( pTemp, nVars ); |
| |
| //nThis = Abc_TtBitCount16(resThis); |
| //nThat = Abc_TtBitCount16(resThat); |
| |
| printf( "Variable sets: " ); |
| Abc_TtPrintVarSet( resThis, nVars ); |
| printf( " " ); |
| Abc_TtPrintVarSet( resThat, nVars ); |
| printf( "\n" ); |
| Abc_TtDeriveBiDec( pTemp, nVars, resThis, resThat, nSuppLim, &This, &That ); |
| // Dau_DsdPrintFromTruth( &This, nThis ); |
| // Dau_DsdPrintFromTruth( &That, nThat ); |
| printf( "\n" ); |
| } |
| static inline void Abc_TtProcessBiDecExperiment() |
| { |
| int nVars = 3; |
| int nSuppLim = 2; |
| int Res, resThis, resThat; |
| word This, That; |
| // word t = ABC_CONST(0x8000000000000000); |
| // word t = (s_Truths6[0] | s_Truths6[1]) & (s_Truths6[2] | s_Truths6[3] | s_Truths6[4] | s_Truths6[5]); |
| // word t = ((s_Truths6[0] & s_Truths6[1]) | (~s_Truths6[1] & s_Truths6[2])); |
| word t = ((s_Truths6[0] | s_Truths6[1]) & (s_Truths6[1] | s_Truths6[2])); |
| Abc_TtPrintBiDec( &t, nVars ); |
| Res = Abc_TtProcessBiDec( &t, nVars, nSuppLim ); |
| resThis = Res & 0xFFFF; |
| resThat = Res >> 16; |
| Abc_TtDeriveBiDec( &t, nVars, resThis, resThat, nSuppLim, &This, &That ); |
| // Dau_DsdPrintFromTruth( &This, Abc_TtBitCount16(resThis) ); |
| // Dau_DsdPrintFromTruth( &That, Abc_TtBitCount16(resThat) ); |
| nVars = nSuppLim; |
| } |
| |
| /**Function************************************************************* |
| |
| Synopsis [Truth table checking procedure.] |
| |
| Description [] |
| |
| SideEffects [] |
| |
| SeeAlso [] |
| |
| ***********************************************************************/ |
| static inline int Abc_Tt4Equal3( int c0, int c1, int c2, int c3 ) |
| { |
| if ( c0 == c1 && c0 == c2 ) return 3; |
| if ( c0 == c1 && c0 == c3 ) return 2; |
| if ( c0 == c3 && c0 == c2 ) return 1; |
| if ( c3 == c1 && c3 == c2 ) return 0; |
| return -1; |
| } |
| static inline int Abc_Tt4Check2( int t, int i, int j, int * f, int * r ) |
| { |
| int c0 = t & r[j]; |
| int c1 = (t & f[j]) >> (1 << j); |
| int c00 = c0 & r[i]; |
| int c01 = (c0 & f[i]) >> (1 << i); |
| int c10 = c1 & r[i]; |
| int c11 = (c1 & f[i]) >> (1 << i); |
| return Abc_Tt4Equal3( c00, c01, c10, c11 ); |
| } |
| static inline int Abc_Tt4CheckTwoLevel( int t ) |
| { |
| int pair1, pair2; |
| int f[4] = { 0xAAAA, 0xCCCC, 0xF0F0, 0xFF00 }; |
| int r[4] = { 0x5555, 0x3333, 0x0F0F, 0x00FF }; |
| if ( (pair1 = Abc_Tt4Check2(t, 0, 1, f, r)) >= 0 && (pair2 = Abc_Tt4Check2(t, 2, 3, f, r)) >= 0 ) return (1 << 4) | (pair2 << 2) | pair1; |
| if ( (pair1 = Abc_Tt4Check2(t, 0, 2, f, r)) >= 0 && (pair2 = Abc_Tt4Check2(t, 1, 3, f, r)) >= 0 ) return (2 << 4) | (pair2 << 2) | pair1; |
| if ( (pair1 = Abc_Tt4Check2(t, 0, 3, f, r)) >= 0 && (pair2 = Abc_Tt4Check2(t, 1, 2, f, r)) >= 0 ) return (3 << 4) | (pair2 << 2) | pair1; |
| return -1; |
| } |
| static inline int Abc_Tt4CountOnes( int t ) |
| { |
| t = (t & (0x5555)) + ((t >> 1) & (0x5555)); |
| t = (t & (0x3333)) + ((t >> 2) & (0x3333)); |
| t = (t & (0x0f0f)) + ((t >> 4) & (0x0f0f)); |
| t = (t & (0x00ff)) + ((t >> 8) & (0x00ff)); |
| return t; |
| } |
| static inline int Abc_Tt4FirstBit( int t ) |
| { |
| int n = 0; |
| if ( t == 0 ) return -1; |
| if ( (t & 0x00FF) == 0 ) { n += 8; t >>= 8; } |
| if ( (t & 0x000F) == 0 ) { n += 4; t >>= 4; } |
| if ( (t & 0x0003) == 0 ) { n += 2; t >>= 2; } |
| if ( (t & 0x0001) == 0 ) { n++; } |
| return n; |
| } |
| static inline int Abc_Tt4Check( int t ) |
| { |
| int Count, tn = 0xFFFF & ~t; |
| if ( t == 0x6996 || tn == 0x6996 ) return 1; |
| if ( (t & (t-1)) == 0 ) return 1; |
| if ( (tn & (tn-1)) == 0 ) return 1; |
| Count = Abc_Tt4CountOnes( t ); |
| if ( Count == 7 && Abc_Tt4CheckTwoLevel(t) > 0 ) return 1; |
| if ( Count == 9 && Abc_Tt4CheckTwoLevel(tn) > 0 ) return 1; |
| return 0; |
| } |
| |
| /*=== utilTruth.c ===========================================================*/ |
| |
| |
| ABC_NAMESPACE_HEADER_END |
| |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////// |
| /// END OF FILE /// |
| //////////////////////////////////////////////////////////////////////// |