blob: 56326abab602a18545891e5ff796531ee17fe336 [file] [log] [blame]
/**CFile****************************************************************
FileName [nwkTiming.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Logic network representation.]
Synopsis [Manipulation of timing information.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: nwkTiming.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "nwk.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Cleans timing information for all nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManCleanTiming( Nwk_Man_t * pNtk )
{
Nwk_Obj_t * pObj;
int i;
Nwk_ManForEachObj( pNtk, pObj, i )
{
pObj->tArrival = pObj->tSlack = 0.0;
pObj->tRequired = TIM_ETERNITY;
}
}
/**Function*************************************************************
Synopsis [Sorts the pins in the decreasing order of delays.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManDelayTraceSortPins( Nwk_Obj_t * pNode, int * pPinPerm, float * pPinDelays )
{
Nwk_Obj_t * pFanin;
int i, j, best_i, temp;
// start the trivial permutation and collect pin delays
Nwk_ObjForEachFanin( pNode, pFanin, i )
{
pPinPerm[i] = i;
pPinDelays[i] = Nwk_ObjArrival(pFanin);
}
// selection sort the pins in the decreasible order of delays
// this order will match the increasing order of LUT input pins
for ( i = 0; i < Nwk_ObjFaninNum(pNode)-1; i++ )
{
best_i = i;
for ( j = i+1; j < Nwk_ObjFaninNum(pNode); j++ )
if ( pPinDelays[pPinPerm[j]] > pPinDelays[pPinPerm[best_i]] )
best_i = j;
if ( best_i == i )
continue;
temp = pPinPerm[i];
pPinPerm[i] = pPinPerm[best_i];
pPinPerm[best_i] = temp;
}
// verify
assert( Nwk_ObjFaninNum(pNode) == 0 || pPinPerm[0] < Nwk_ObjFaninNum(pNode) );
for ( i = 1; i < Nwk_ObjFaninNum(pNode); i++ )
{
assert( pPinPerm[i] < Nwk_ObjFaninNum(pNode) );
assert( pPinDelays[pPinPerm[i-1]] >= pPinDelays[pPinPerm[i]] );
}
}
/**Function*************************************************************
Synopsis [Sorts the pins in the decreasing order of delays.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ManWhereIsPin( Nwk_Obj_t * pFanout, Nwk_Obj_t * pFanin, int * pPinPerm )
{
int i;
for ( i = 0; i < Nwk_ObjFaninNum(pFanout); i++ )
if ( Nwk_ObjFanin(pFanout, pPinPerm[i]) == pFanin )
return i;
return -1;
}
/**Function*************************************************************
Synopsis [Computes the arrival times for the given object.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Nwk_NodeComputeArrival( Nwk_Obj_t * pObj, int fUseSorting )
{
If_LibLut_t * pLutLib = pObj->pMan->pLutLib;
int pPinPerm[32];
float pPinDelays[32];
Nwk_Obj_t * pFanin;
float tArrival, * pDelays;
int k;
assert( Nwk_ObjIsNode(pObj) || Nwk_ObjIsCi(pObj) || Nwk_ObjIsCo(pObj) );
if ( Nwk_ObjIsCi(pObj) )
return Nwk_ObjArrival(pObj);
if ( Nwk_ObjIsCo(pObj) )
return Nwk_ObjArrival( Nwk_ObjFanin0(pObj) );
tArrival = -TIM_ETERNITY;
if ( pLutLib == NULL )
{
Nwk_ObjForEachFanin( pObj, pFanin, k )
if ( tArrival < Nwk_ObjArrival(pFanin) + 1.0 )
tArrival = Nwk_ObjArrival(pFanin) + 1.0;
}
else if ( !pLutLib->fVarPinDelays )
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pObj)];
Nwk_ObjForEachFanin( pObj, pFanin, k )
if ( tArrival < Nwk_ObjArrival(pFanin) + pDelays[0] )
tArrival = Nwk_ObjArrival(pFanin) + pDelays[0];
}
else
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pObj)];
if ( fUseSorting )
{
Nwk_ManDelayTraceSortPins( pObj, pPinPerm, pPinDelays );
Nwk_ObjForEachFanin( pObj, pFanin, k )
if ( tArrival < Nwk_ObjArrival(Nwk_ObjFanin(pObj,pPinPerm[k])) + pDelays[k] )
tArrival = Nwk_ObjArrival(Nwk_ObjFanin(pObj,pPinPerm[k])) + pDelays[k];
}
else
{
Nwk_ObjForEachFanin( pObj, pFanin, k )
if ( tArrival < Nwk_ObjArrival(pFanin) + pDelays[k] )
tArrival = Nwk_ObjArrival(pFanin) + pDelays[k];
}
}
if ( Nwk_ObjFaninNum(pObj) == 0 )
tArrival = 0.0;
return tArrival;
}
/**Function*************************************************************
Synopsis [Computes the required times for the given node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Nwk_NodeComputeRequired( Nwk_Obj_t * pObj, int fUseSorting )
{
If_LibLut_t * pLutLib = pObj->pMan->pLutLib;
int pPinPerm[32];
float pPinDelays[32];
Nwk_Obj_t * pFanout;
float tRequired, tDelay, * pDelays;
int k, iFanin;
assert( Nwk_ObjIsNode(pObj) || Nwk_ObjIsCi(pObj) || Nwk_ObjIsCo(pObj) );
if ( Nwk_ObjIsCo(pObj) )
return Nwk_ObjRequired(pObj);
tRequired = TIM_ETERNITY;
if ( pLutLib == NULL )
{
Nwk_ObjForEachFanout( pObj, pFanout, k )
{
tDelay = Nwk_ObjIsCo(pFanout)? 0.0 : 1.0;
if ( tRequired > Nwk_ObjRequired(pFanout) - tDelay )
tRequired = Nwk_ObjRequired(pFanout) - tDelay;
}
}
else if ( !pLutLib->fVarPinDelays )
{
Nwk_ObjForEachFanout( pObj, pFanout, k )
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pFanout)];
tDelay = Nwk_ObjIsCo(pFanout)? 0.0 : pDelays[0];
if ( tRequired > Nwk_ObjRequired(pFanout) - tDelay )
tRequired = Nwk_ObjRequired(pFanout) - tDelay;
}
}
else
{
if ( fUseSorting )
{
Nwk_ObjForEachFanout( pObj, pFanout, k )
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pFanout)];
Nwk_ManDelayTraceSortPins( pFanout, pPinPerm, pPinDelays );
iFanin = Nwk_ManWhereIsPin( pFanout, pObj, pPinPerm );
assert( Nwk_ObjFanin(pFanout,pPinPerm[iFanin]) == pObj );
tDelay = Nwk_ObjIsCo(pFanout)? 0.0 : pDelays[iFanin];
if ( tRequired > Nwk_ObjRequired(pFanout) - tDelay )
tRequired = Nwk_ObjRequired(pFanout) - tDelay;
}
}
else
{
Nwk_ObjForEachFanout( pObj, pFanout, k )
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pFanout)];
iFanin = Nwk_ObjFindFanin( pFanout, pObj );
assert( Nwk_ObjFanin(pFanout,iFanin) == pObj );
tDelay = Nwk_ObjIsCo(pFanout)? 0.0 : pDelays[iFanin];
if ( tRequired > Nwk_ObjRequired(pFanout) - tDelay )
tRequired = Nwk_ObjRequired(pFanout) - tDelay;
}
}
}
return tRequired;
}
/**Function*************************************************************
Synopsis [Propagates the required times through the given node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Nwk_NodePropagateRequired( Nwk_Obj_t * pObj, int fUseSorting )
{
If_LibLut_t * pLutLib = pObj->pMan->pLutLib;
int pPinPerm[32];
float pPinDelays[32];
Nwk_Obj_t * pFanin;
float tRequired = 0.0; // Suppress "might be used uninitialized"
float * pDelays;
int k;
assert( Nwk_ObjIsNode(pObj) );
if ( pLutLib == NULL )
{
tRequired = Nwk_ObjRequired(pObj) - (float)1.0;
Nwk_ObjForEachFanin( pObj, pFanin, k )
if ( Nwk_ObjRequired(pFanin) > tRequired )
Nwk_ObjSetRequired( pFanin, tRequired );
}
else if ( !pLutLib->fVarPinDelays )
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pObj)];
tRequired = Nwk_ObjRequired(pObj) - pDelays[0];
Nwk_ObjForEachFanin( pObj, pFanin, k )
if ( Nwk_ObjRequired(pFanin) > tRequired )
Nwk_ObjSetRequired( pFanin, tRequired );
}
else
{
pDelays = pLutLib->pLutDelays[Nwk_ObjFaninNum(pObj)];
if ( fUseSorting )
{
Nwk_ManDelayTraceSortPins( pObj, pPinPerm, pPinDelays );
Nwk_ObjForEachFanin( pObj, pFanin, k )
{
tRequired = Nwk_ObjRequired(pObj) - pDelays[k];
if ( Nwk_ObjRequired(Nwk_ObjFanin(pObj,pPinPerm[k])) > tRequired )
Nwk_ObjSetRequired( Nwk_ObjFanin(pObj,pPinPerm[k]), tRequired );
}
}
else
{
Nwk_ObjForEachFanin( pObj, pFanin, k )
{
tRequired = Nwk_ObjRequired(pObj) - pDelays[k];
if ( Nwk_ObjRequired(pFanin) > tRequired )
Nwk_ObjSetRequired( pFanin, tRequired );
}
}
}
return tRequired;
}
/**Function*************************************************************
Synopsis [Computes the delay trace of the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Nwk_ManDelayTraceLut( Nwk_Man_t * pNtk )
{
Vec_Ptr_t * vObjs;
int fUseSorting = 1;
If_LibLut_t * pLutLib = pNtk->pLutLib;
Vec_Ptr_t * vNodes;
Nwk_Obj_t * pObj;
float tArrival, tRequired, tSlack;
int i;
// get the library
if ( pLutLib && pLutLib->LutMax < Nwk_ManGetFaninMax(pNtk) )
{
printf( "The max LUT size (%d) is less than the max fanin count (%d).\n",
pLutLib->LutMax, Nwk_ManGetFaninMax(pNtk) );
return -TIM_ETERNITY;
}
// compute the reverse order of all objects
vNodes = Nwk_ManDfsReverse( pNtk );
// initialize the arrival times
Nwk_ManCleanTiming( pNtk );
// propagate arrival times
if ( pNtk->pManTime )
Tim_ManIncrementTravId( pNtk->pManTime );
// Nwk_ManForEachObj( pNtk, pObj, i )
vObjs = Nwk_ManDfs( pNtk );
Vec_PtrForEachEntry( Nwk_Obj_t *, vObjs, pObj, i )
{
tArrival = Nwk_NodeComputeArrival( pObj, fUseSorting );
if ( Nwk_ObjIsCi(pObj) && pNtk->pManTime )
tArrival = Tim_ManGetCiArrival( pNtk->pManTime, pObj->PioId );
if ( Nwk_ObjIsCo(pObj) && pNtk->pManTime )
Tim_ManSetCoArrival( pNtk->pManTime, pObj->PioId, tArrival );
Nwk_ObjSetArrival( pObj, tArrival );
}
Vec_PtrFree( vObjs );
// get the latest arrival times
tArrival = -TIM_ETERNITY;
Nwk_ManForEachPo( pNtk, pObj, i )
if ( tArrival < Nwk_ObjArrival(pObj) )
tArrival = Nwk_ObjArrival(pObj);
// initialize the required times
if ( pNtk->pManTime )
{
Tim_ManIncrementTravId( pNtk->pManTime );
Tim_ManInitPoRequiredAll( pNtk->pManTime, tArrival );
}
else
{
Nwk_ManForEachCo( pNtk, pObj, i )
Nwk_ObjSetRequired( pObj, tArrival );
}
// propagate the required times
Vec_PtrForEachEntry( Nwk_Obj_t *, vNodes, pObj, i )
{
if ( Nwk_ObjIsNode(pObj) )
{
Nwk_NodePropagateRequired( pObj, fUseSorting );
}
else if ( Nwk_ObjIsCi(pObj) )
{
if ( pNtk->pManTime )
Tim_ManSetCiRequired( pNtk->pManTime, pObj->PioId, Nwk_ObjRequired(pObj) );
}
else if ( Nwk_ObjIsCo(pObj) )
{
if ( pNtk->pManTime )
{
tRequired = Tim_ManGetCoRequired( pNtk->pManTime, pObj->PioId );
Nwk_ObjSetRequired( pObj, tRequired );
}
if ( Nwk_ObjRequired(Nwk_ObjFanin0(pObj)) > Nwk_ObjRequired(pObj) )
Nwk_ObjSetRequired( Nwk_ObjFanin0(pObj), Nwk_ObjRequired(pObj) );
}
// set slack for this object
tSlack = Nwk_ObjRequired(pObj) - Nwk_ObjArrival(pObj);
assert( tSlack + 0.01 > 0.0 );
Nwk_ObjSetSlack( pObj, tSlack < 0.0 ? 0.0 : tSlack );
}
Vec_PtrFree( vNodes );
return tArrival;
}
/**Function*************************************************************
Synopsis [Computes the arrival times for the given node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ManVerifyTiming( Nwk_Man_t * pNtk )
{
Nwk_Obj_t * pObj;
float tArrival, tRequired;
int i;
Nwk_ManForEachObj( pNtk, pObj, i )
{
if ( Nwk_ObjIsCi(pObj) && Nwk_ObjFanoutNum(pObj) == 0 )
continue;
tArrival = Nwk_NodeComputeArrival( pObj, 1 );
tRequired = Nwk_NodeComputeRequired( pObj, 1 );
if ( !Nwk_ManTimeEqual( tArrival, Nwk_ObjArrival(pObj), (float)0.01 ) )
printf( "Nwk_ManVerifyTiming(): Object %d has different arrival time (%.2f) from computed (%.2f).\n",
pObj->Id, Nwk_ObjArrival(pObj), tArrival );
if ( !Nwk_ManTimeEqual( tRequired, Nwk_ObjRequired(pObj), (float)0.01 ) )
printf( "Nwk_ManVerifyTiming(): Object %d has different required time (%.2f) from computed (%.2f).\n",
pObj->Id, Nwk_ObjRequired(pObj), tRequired );
}
return 1;
}
/**Function*************************************************************
Synopsis [Prints the delay trace for the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManDelayTracePrint( Nwk_Man_t * pNtk )
{
If_LibLut_t * pLutLib = pNtk->pLutLib;
Nwk_Obj_t * pNode;
int i, Nodes, * pCounters;
float tArrival, tDelta, nSteps, Num;
// get the library
if ( pLutLib && pLutLib->LutMax < Nwk_ManGetFaninMax(pNtk) )
{
printf( "The max LUT size (%d) is less than the max fanin count (%d).\n",
pLutLib->LutMax, Nwk_ManGetFaninMax(pNtk) );
return;
}
// decide how many steps
nSteps = pLutLib ? 20 : Nwk_ManLevelMax(pNtk);
pCounters = ABC_ALLOC( int, nSteps + 1 );
memset( pCounters, 0, sizeof(int)*(nSteps + 1) );
// perform delay trace
tArrival = Nwk_ManDelayTraceLut( pNtk );
tDelta = tArrival / nSteps;
// count how many nodes have slack in the corresponding intervals
Nwk_ManForEachNode( pNtk, pNode, i )
{
if ( Nwk_ObjFaninNum(pNode) == 0 )
continue;
Num = Nwk_ObjSlack(pNode) / tDelta;
if ( Num > nSteps )
continue;
assert( Num >=0 && Num <= nSteps );
pCounters[(int)Num]++;
}
// print the results
printf( "Max delay = %6.2f. Delay trace using %s model:\n", tArrival, pLutLib? "LUT library" : "unit-delay" );
Nodes = 0;
for ( i = 0; i < nSteps; i++ )
{
Nodes += pCounters[i];
printf( "%3d %s : %5d (%6.2f %%)\n", pLutLib? 5*(i+1) : i+1,
pLutLib? "%":"lev", Nodes, 100.0*Nodes/Nwk_ManNodeNum(pNtk) );
}
ABC_FREE( pCounters );
}
/**Function*************************************************************
Synopsis [Inserts node into the queue of nodes sorted by level.]
Description [The inserted node should not go before the current position
given by iCurrent. If the arrival times are computed, the nodes are sorted
in the increasing order of levels. If the required times are computed,
the nodes are sorted in the decreasing order of levels.]
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_NodeUpdateAddToQueue( Vec_Ptr_t * vQueue, Nwk_Obj_t * pObj, int iCurrent, int fArrival )
{
Nwk_Obj_t * pTemp1, * pTemp2;
int i;
Vec_PtrPush( vQueue, pObj );
for ( i = Vec_PtrSize(vQueue) - 1; i > iCurrent + 1; i-- )
{
pTemp1 = (Nwk_Obj_t *)vQueue->pArray[i];
pTemp2 = (Nwk_Obj_t *)vQueue->pArray[i-1];
if ( fArrival )
{
if ( Nwk_ObjLevel(pTemp2) <= Nwk_ObjLevel(pTemp1) )
break;
}
else
{
if ( Nwk_ObjLevel(pTemp2) >= Nwk_ObjLevel(pTemp1) )
break;
}
vQueue->pArray[i-1] = pTemp1;
vQueue->pArray[i] = pTemp2;
}
// verification
for ( i = iCurrent + 1; i < Vec_PtrSize(vQueue) - 1; i++ )
{
pTemp1 = (Nwk_Obj_t *)vQueue->pArray[i];
pTemp2 = (Nwk_Obj_t *)vQueue->pArray[i+1];
if ( fArrival )
assert( Nwk_ObjLevel(pTemp1) <= Nwk_ObjLevel(pTemp2) );
else
assert( Nwk_ObjLevel(pTemp1) >= Nwk_ObjLevel(pTemp2) );
}
}
/**Function*************************************************************
Synopsis [Incrementally updates arrival times of the node.]
Description [Supports variable-pin delay model and white-boxes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_NodeUpdateArrival( Nwk_Obj_t * pObj )
{
Tim_Man_t * pManTime = pObj->pMan->pManTime;
Vec_Ptr_t * vQueue = pObj->pMan->vTemp;
Nwk_Obj_t * pTemp;
Nwk_Obj_t * pNext = NULL; // Suppress "might be used uninitialized"
float tArrival;
int iCur, k, iBox, iTerm1, nTerms;
assert( Nwk_ObjIsNode(pObj) );
// verify the arrival time
tArrival = Nwk_NodeComputeArrival( pObj, 1 );
assert( Nwk_ManTimeLess( tArrival, Nwk_ObjRequired(pObj), (float)0.01 ) );
// initialize the queue with the node
Vec_PtrClear( vQueue );
Vec_PtrPush( vQueue, pObj );
pObj->MarkA = 1;
// process objects
if ( pManTime )
Tim_ManIncrementTravId( pManTime );
Vec_PtrForEachEntry( Nwk_Obj_t *, vQueue, pTemp, iCur )
{
pTemp->MarkA = 0;
tArrival = Nwk_NodeComputeArrival( pTemp, 1 );
if ( Nwk_ObjIsCi(pTemp) && pManTime )
tArrival = Tim_ManGetCiArrival( pManTime, pTemp->PioId );
if ( Nwk_ManTimeEqual( tArrival, Nwk_ObjArrival(pTemp), (float)0.01 ) )
continue;
Nwk_ObjSetArrival( pTemp, tArrival );
// add the fanouts to the queue
if ( Nwk_ObjIsCo(pTemp) )
{
if ( pManTime )
{
iBox = Tim_ManBoxForCo( pManTime, pTemp->PioId );
if ( iBox >= 0 ) // this CO is an input of the box
{
// it may happen that a box-input (CO) was already marked as visited
// when some other box-input of the same box was visited - here we undo this
if ( Tim_ManIsCoTravIdCurrent( pManTime, pTemp->PioId ) )
Tim_ManSetPreviousTravIdBoxInputs( pManTime, iBox );
Tim_ManSetCoArrival( pManTime, pTemp->PioId, tArrival );
Tim_ManSetCurrentTravIdBoxInputs( pManTime, iBox );
iTerm1 = Tim_ManBoxOutputFirst( pManTime, iBox );
nTerms = Tim_ManBoxOutputNum( pManTime, iBox );
for ( k = 0; k < nTerms; k++ )
{
pNext = Nwk_ManCi(pNext->pMan, iTerm1 + k);
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, iCur, 1 );
pNext->MarkA = 1;
}
}
}
}
else
{
Nwk_ObjForEachFanout( pTemp, pNext, k )
{
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, iCur, 1 );
pNext->MarkA = 1;
}
}
}
}
/**Function*************************************************************
Synopsis [Incrementally updates required times of the node.]
Description [Supports variable-pin delay model and white-boxes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_NodeUpdateRequired( Nwk_Obj_t * pObj )
{
Tim_Man_t * pManTime = pObj->pMan->pManTime;
Vec_Ptr_t * vQueue = pObj->pMan->vTemp;
Nwk_Obj_t * pTemp;
Nwk_Obj_t * pNext = NULL; // Suppress "might be used uninitialized"
float tRequired;
int iCur, k, iBox, iTerm1, nTerms;
assert( Nwk_ObjIsNode(pObj) );
// make sure the node's required time remained the same
tRequired = Nwk_NodeComputeRequired( pObj, 1 );
assert( Nwk_ManTimeEqual( tRequired, Nwk_ObjRequired(pObj), (float)0.01 ) );
// initialize the queue with the node's faninsa and the old node's fanins
Vec_PtrClear( vQueue );
Nwk_ObjForEachFanin( pObj, pNext, k )
{
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, -1, 0 );
pNext->MarkA = 1;
}
// process objects
if ( pManTime )
Tim_ManIncrementTravId( pManTime );
Vec_PtrForEachEntry( Nwk_Obj_t *, vQueue, pTemp, iCur )
{
pTemp->MarkA = 0;
tRequired = Nwk_NodeComputeRequired( pTemp, 1 );
if ( Nwk_ObjIsCo(pTemp) && pManTime )
tRequired = Tim_ManGetCoRequired( pManTime, pTemp->PioId );
if ( Nwk_ManTimeEqual( tRequired, Nwk_ObjRequired(pTemp), (float)0.01 ) )
continue;
Nwk_ObjSetRequired( pTemp, tRequired );
// add the fanins to the queue
if ( Nwk_ObjIsCi(pTemp) )
{
if ( pManTime )
{
iBox = Tim_ManBoxForCi( pManTime, pTemp->PioId );
if ( iBox >= 0 ) // this CI is an output of the box
{
// it may happen that a box-output (CI) was already marked as visited
// when some other box-output of the same box was visited - here we undo this
if ( Tim_ManIsCiTravIdCurrent( pManTime, pTemp->PioId ) )
Tim_ManSetPreviousTravIdBoxOutputs( pManTime, iBox );
Tim_ManSetCiRequired( pManTime, pTemp->PioId, tRequired );
Tim_ManSetCurrentTravIdBoxOutputs( pManTime, iBox );
iTerm1 = Tim_ManBoxInputFirst( pManTime, iBox );
nTerms = Tim_ManBoxInputNum( pManTime, iBox );
for ( k = 0; k < nTerms; k++ )
{
pNext = Nwk_ManCo(pNext->pMan, iTerm1 + k);
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, iCur, 0 );
pNext->MarkA = 1;
}
}
}
}
else
{
Nwk_ObjForEachFanin( pTemp, pNext, k )
{
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, iCur, 0 );
pNext->MarkA = 1;
}
}
}
}
/**Function*************************************************************
Synopsis [Computes the level of the node using its fanin levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ObjLevelNew( Nwk_Obj_t * pObj )
{
Tim_Man_t * pManTime = pObj->pMan->pManTime;
Nwk_Obj_t * pFanin;
int i, iBox, iTerm1, nTerms, Level = 0;
if ( Nwk_ObjIsCi(pObj) || Nwk_ObjIsLatch(pObj) )
{
if ( pManTime )
{
iBox = Tim_ManBoxForCi( pManTime, pObj->PioId );
if ( iBox >= 0 ) // this CI is an output of the box
{
iTerm1 = Tim_ManBoxInputFirst( pManTime, iBox );
nTerms = Tim_ManBoxInputNum( pManTime, iBox );
for ( i = 0; i < nTerms; i++ )
{
pFanin = Nwk_ManCo(pObj->pMan, iTerm1 + i);
Level = Abc_MaxInt( Level, Nwk_ObjLevel(pFanin) );
}
Level++;
}
}
return Level;
}
assert( Nwk_ObjIsNode(pObj) || Nwk_ObjIsCo(pObj) );
Nwk_ObjForEachFanin( pObj, pFanin, i )
Level = Abc_MaxInt( Level, Nwk_ObjLevel(pFanin) );
return Level + (Nwk_ObjIsNode(pObj) && Nwk_ObjFaninNum(pObj) > 0);
}
/**Function*************************************************************
Synopsis [Incrementally updates level of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManUpdateLevel( Nwk_Obj_t * pObj )
{
Tim_Man_t * pManTime = pObj->pMan->pManTime;
Vec_Ptr_t * vQueue = pObj->pMan->vTemp;
Nwk_Obj_t * pTemp;
Nwk_Obj_t * pNext = NULL; // Suppress "might be used uninitialized"
int LevelNew, iCur, k, iBox, iTerm1, nTerms;
assert( Nwk_ObjIsNode(pObj) );
// initialize the queue with the node
Vec_PtrClear( vQueue );
Vec_PtrPush( vQueue, pObj );
pObj->MarkA = 1;
// process objects
Vec_PtrForEachEntry( Nwk_Obj_t *, vQueue, pTemp, iCur )
{
pTemp->MarkA = 0;
LevelNew = Nwk_ObjLevelNew( pTemp );
if ( LevelNew == Nwk_ObjLevel(pTemp) )
continue;
Nwk_ObjSetLevel( pTemp, LevelNew );
// add the fanouts to the queue
if ( Nwk_ObjIsCo(pTemp) )
{
if ( pManTime )
{
iBox = Tim_ManBoxForCo( pManTime, pTemp->PioId );
if ( iBox >= 0 ) // this is not a true PO
{
Tim_ManSetCurrentTravIdBoxInputs( pManTime, iBox );
iTerm1 = Tim_ManBoxOutputFirst( pManTime, iBox );
nTerms = Tim_ManBoxOutputNum( pManTime, iBox );
for ( k = 0; k < nTerms; k++ )
{
pNext = Nwk_ManCi(pNext->pMan, iTerm1 + k);
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, iCur, 1 );
pNext->MarkA = 1;
}
}
}
}
else
{
Nwk_ObjForEachFanout( pTemp, pNext, k )
{
if ( pNext->MarkA )
continue;
Nwk_NodeUpdateAddToQueue( vQueue, pNext, iCur, 1 );
pNext->MarkA = 1;
}
}
}
}
/**Function*************************************************************
Synopsis [Computes the level of the node using its fanin levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ManVerifyLevel( Nwk_Man_t * pNtk )
{
Nwk_Obj_t * pObj;
int LevelNew, i;
Nwk_ManForEachObj( pNtk, pObj, i )
{
assert( pObj->MarkA == 0 );
LevelNew = Nwk_ObjLevelNew( pObj );
if ( Nwk_ObjLevel(pObj) != LevelNew )
{
printf( "Object %6d: Mismatch betweeh levels: Actual = %d. Correct = %d.\n",
i, Nwk_ObjLevel(pObj), LevelNew );
}
}
return 1;
}
/**Function*************************************************************
Synopsis [Replaces the node and incrementally updates levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManUpdate( Nwk_Obj_t * pObj, Nwk_Obj_t * pObjNew, Vec_Vec_t * vLevels )
{
assert( pObj->pMan == pObjNew->pMan );
assert( pObj != pObjNew );
assert( Nwk_ObjFanoutNum(pObj) > 0 );
assert( Nwk_ObjIsNode(pObj) && !Nwk_ObjIsCo(pObjNew) );
// transfer fanouts to the old node
Nwk_ObjTransferFanout( pObj, pObjNew );
// transfer the timing information
// (this is needed because updating level happens if the level has changed;
// when we set the old level, it will be recomputed by the level updating
// procedure, which will update level of other nodes if there is a difference)
pObjNew->Level = pObj->Level;
pObjNew->tArrival = pObj->tArrival;
pObjNew->tRequired = pObj->tRequired;
// update required times of the old fanins
pObj->tRequired = TIM_ETERNITY;
Nwk_NodeUpdateRequired( pObj );
// remove the old node
Nwk_ManDeleteNode_rec( pObj );
// update the information of the new node
Nwk_ManUpdateLevel( pObjNew );
Nwk_NodeUpdateArrival( pObjNew );
Nwk_NodeUpdateRequired( pObjNew );
//Nwk_ManVerifyTiming( pObjNew->pMan );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END