blob: 2d2e7dedbe19e6973ac0546e726c821bd612b0c0 [file] [log] [blame]
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko
#ifndef ABC__sat__bsat__satSolver3_h
#define ABC__sat__bsat__satSolver3_h
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "satVec.h"
#include "satClause.h"
#include "misc/util/utilDouble.h"
ABC_NAMESPACE_HEADER_START
//=================================================================================================
// Public interface:
struct sat_solver3_t;
typedef struct sat_solver3_t sat_solver3;
extern sat_solver3* sat_solver3_new(void);
extern sat_solver3* zsat_solver3_new_seed(double seed);
extern void sat_solver3_delete(sat_solver3* s);
extern int sat_solver3_addclause(sat_solver3* s, lit* begin, lit* end);
extern int sat_solver3_clause_new(sat_solver3* s, lit* begin, lit* end, int learnt);
extern int sat_solver3_simplify(sat_solver3* s);
extern int sat_solver3_solve(sat_solver3* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
extern int sat_solver3_solve_internal(sat_solver3* s);
extern int sat_solver3_solve_lexsat(sat_solver3* s, int * pLits, int nLits);
extern int sat_solver3_minimize_assumptions( sat_solver3* s, int * pLits, int nLits, int nConfLimit );
extern int sat_solver3_minimize_assumptions2( sat_solver3* s, int * pLits, int nLits, int nConfLimit );
extern int sat_solver3_push(sat_solver3* s, int p);
extern void sat_solver3_pop(sat_solver3* s);
extern void sat_solver3_set_resource_limits(sat_solver3* s, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
extern void sat_solver3_restart( sat_solver3* s );
extern void zsat_solver3_restart_seed( sat_solver3* s, double seed );
extern void sat_solver3_rollback( sat_solver3* s );
extern int sat_solver3_nvars(sat_solver3* s);
extern int sat_solver3_nclauses(sat_solver3* s);
extern int sat_solver3_nconflicts(sat_solver3* s);
extern double sat_solver3_memory(sat_solver3* s);
extern int sat_solver3_count_assigned(sat_solver3* s);
extern void sat_solver3_setnvars(sat_solver3* s,int n);
extern int sat_solver3_get_var_value(sat_solver3* s, int v);
extern void sat_solver3_set_var_activity(sat_solver3* s, int * pVars, int nVars);
extern void sat_solver3WriteDimacs( sat_solver3 * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars );
extern void sat_solver3PrintStats( FILE * pFile, sat_solver3 * p );
extern int * sat_solver3GetModel( sat_solver3 * p, int * pVars, int nVars );
extern void sat_solver3DoubleClauses( sat_solver3 * p, int iVar );
// trace recording
extern void sat_solver3TraceStart( sat_solver3 * pSat, char * pName );
extern void sat_solver3TraceStop( sat_solver3 * pSat );
extern void sat_solver3TraceWrite( sat_solver3 * pSat, int * pBeg, int * pEnd, int fRoot );
// clause storage
extern void sat_solver3_store_alloc( sat_solver3 * s );
extern void sat_solver3_store_write( sat_solver3 * s, char * pFileName );
extern void sat_solver3_store_free( sat_solver3 * s );
extern void sat_solver3_store_mark_roots( sat_solver3 * s );
extern void sat_solver3_store_mark_clauses_a( sat_solver3 * s );
extern void * sat_solver3_store_release( sat_solver3 * s );
//=================================================================================================
// Solver representation:
//struct clause_t;
//typedef struct clause_t clause;
struct varinfo_t;
typedef struct varinfo_t varinfo;
struct sat_solver3_t
{
int size; // nof variables
int cap; // size of varmaps
int qhead; // Head index of queue.
int qtail; // Tail index of queue.
// clauses
Sat_Mem_t Mem;
int hLearnts; // the first learnt clause
int hBinary; // the special binary clause
clause * binary;
veci* wlists; // watcher lists
// rollback
int iVarPivot; // the pivot for variables
int iTrailPivot; // the pivot for trail
int hProofPivot; // the pivot for proof records
// activities
int VarActType;
int ClaActType;
word var_inc; // Amount to bump next variable with.
word var_inc2; // Amount to bump next variable with.
word var_decay; // INVERSE decay factor for variable activity: stores 1/decay.
word* activity; // A heuristic measurement of the activity of a variable.
word* activity2; // backup variable activity
unsigned cla_inc; // Amount to bump next clause with.
unsigned cla_decay; // INVERSE decay factor for clause activity: stores 1/decay.
veci act_clas; // contain clause activities
char * pFreqs; // how many times this variable was assigned a value
int nVarUsed;
// varinfo * vi; // variable information
int* levels; //
char* assigns; // Current values of variables.
char* polarity; //
char* tags; //
char* loads; //
int* orderpos; // Index in variable order.
int* reasons; //
lit* trail;
veci tagged; // (contains: var)
veci stack; // (contains: var)
veci order; // Variable order. (heap) (contains: var)
veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int)
// veci model; // If problem is solved, this vector contains the model (contains: lbool).
int * model; // If problem is solved, this vector contains the model (contains: lbool).
veci conf_final; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
int root_level; // Level of first proper decision.
int simpdb_assigns;// Number of top-level assignments at last 'simplifyDB()'.
int simpdb_props; // Number of propagations before next 'simplifyDB()'.
double random_seed;
double progress_estimate;
int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything
int fVerbose;
stats_t stats;
int nLearntMax; // max number of learned clauses
int nLearntStart; // starting learned clause limit
int nLearntDelta; // delta of learned clause limit
int nLearntRatio; // ratio percentage of learned clauses
int nDBreduces; // number of DB reductions
ABC_INT64_T nConfLimit; // external limit on the number of conflicts
ABC_INT64_T nInsLimit; // external limit on the number of implications
abctime nRuntimeLimit; // external limit on runtime
veci act_vars; // variables whose activity has changed
double* factors; // the activity factors
int nRestarts; // the number of local restarts
int nCalls; // the number of local restarts
int nCalls2; // the number of local restarts
veci unit_lits; // variables whose activity has changed
veci pivot_vars; // pivot variables
int fSkipSimplify; // set to one to skip simplification of the clause database
int fNotUseRandom; // do not allow random decisions with a fixed probability
int fNoRestarts; // disables periodic restarts
int * pGlobalVars; // for experiments with global vars during interpolation
// clause store
void * pStore;
int fSolved;
// trace recording
FILE * pFile;
int nClauses;
int nRoots;
veci temp_clause; // temporary storage for a CNF clause
// CNF loading
void * pCnfMan; // external CNF manager
int(*pCnfFunc)(void * p, int); // external callback
};
static inline clause * clause_read( sat_solver3 * s, cla h )
{
return Sat_MemClauseHand( &s->Mem, h );
}
static int sat_solver3_var_value( sat_solver3* s, int v )
{
assert( v >= 0 && v < s->size );
return (int)(s->model[v] == l_True);
}
static int sat_solver3_var_literal( sat_solver3* s, int v )
{
assert( v >= 0 && v < s->size );
return toLitCond( v, s->model[v] != l_True );
}
static void sat_solver3_act_var_clear(sat_solver3* s)
{
int i;
if ( s->VarActType == 0 )
{
for (i = 0; i < s->size; i++)
s->activity[i] = (1 << 10);
s->var_inc = (1 << 5);
}
else if ( s->VarActType == 1 )
{
for (i = 0; i < s->size; i++)
s->activity[i] = 0;
s->var_inc = 1;
}
else if ( s->VarActType == 2 )
{
for (i = 0; i < s->size; i++)
s->activity[i] = Xdbl_Const1();
s->var_inc = Xdbl_Const1();
}
else assert(0);
}
static void sat_solver3_compress(sat_solver3* s)
{
if ( s->qtail != s->qhead )
{
int RetValue = sat_solver3_simplify(s);
assert( RetValue != 0 );
(void) RetValue;
}
}
static void sat_solver3_delete_p( sat_solver3 ** ps )
{
if ( *ps )
sat_solver3_delete( *ps );
*ps = NULL;
}
static void sat_solver3_clean_polarity(sat_solver3* s, int * pVars, int nVars )
{
int i;
for ( i = 0; i < nVars; i++ )
s->polarity[pVars[i]] = 0;
}
static void sat_solver3_set_polarity(sat_solver3* s, int * pVars, int nVars )
{
int i;
for ( i = 0; i < s->size; i++ )
s->polarity[i] = 0;
for ( i = 0; i < nVars; i++ )
s->polarity[pVars[i]] = 1;
}
static void sat_solver3_set_literal_polarity(sat_solver3* s, int * pLits, int nLits )
{
int i;
for ( i = 0; i < nLits; i++ )
s->polarity[Abc_Lit2Var(pLits[i])] = !Abc_LitIsCompl(pLits[i]);
}
static int sat_solver3_final(sat_solver3* s, int ** ppArray)
{
*ppArray = s->conf_final.ptr;
return s->conf_final.size;
}
static abctime sat_solver3_set_runtime_limit(sat_solver3* s, abctime Limit)
{
abctime nRuntimeLimit = s->nRuntimeLimit;
s->nRuntimeLimit = Limit;
return nRuntimeLimit;
}
static int sat_solver3_set_random(sat_solver3* s, int fNotUseRandom)
{
int fNotUseRandomOld = s->fNotUseRandom;
s->fNotUseRandom = fNotUseRandom;
return fNotUseRandomOld;
}
static inline void sat_solver3_bookmark(sat_solver3* s)
{
assert( s->qhead == s->qtail );
s->iVarPivot = s->size;
s->iTrailPivot = s->qhead;
Sat_MemBookMark( &s->Mem );
if ( s->activity2 )
{
s->var_inc2 = s->var_inc;
memcpy( s->activity2, s->activity, sizeof(word) * s->iVarPivot );
}
}
static inline void sat_solver3_set_pivot_variables( sat_solver3* s, int * pPivots, int nPivots )
{
s->pivot_vars.cap = nPivots;
s->pivot_vars.size = nPivots;
s->pivot_vars.ptr = pPivots;
}
static inline int sat_solver3_count_usedvars(sat_solver3* s)
{
int i, nVars = 0;
for ( i = 0; i < s->size; i++ )
if ( s->pFreqs[i] )
{
s->pFreqs[i] = 0;
nVars++;
}
return nVars;
}
static inline int sat_solver3_add_const( sat_solver3 * pSat, int iVar, int fCompl )
{
lit Lits[1];
int Cid;
assert( iVar >= 0 );
Lits[0] = toLitCond( iVar, fCompl );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 1 );
assert( Cid );
return 1;
}
static inline int sat_solver3_add_buffer( sat_solver3 * pSat, int iVarA, int iVarB, int fCompl )
{
lit Lits[2];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 );
Lits[0] = toLitCond( iVarA, 0 );
Lits[1] = toLitCond( iVarB, !fCompl );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
if ( Cid == 0 )
return 0;
assert( Cid );
Lits[0] = toLitCond( iVarA, 1 );
Lits[1] = toLitCond( iVarB, fCompl );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
if ( Cid == 0 )
return 0;
assert( Cid );
return 2;
}
static inline int sat_solver3_add_buffer_enable( sat_solver3 * pSat, int iVarA, int iVarB, int iVarEn, int fCompl )
{
lit Lits[3];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 && iVarEn >= 0 );
Lits[0] = toLitCond( iVarA, 0 );
Lits[1] = toLitCond( iVarB, !fCompl );
Lits[2] = toLitCond( iVarEn, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, 1 );
Lits[1] = toLitCond( iVarB, fCompl );
Lits[2] = toLitCond( iVarEn, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 2;
}
static inline int sat_solver3_add_and( sat_solver3 * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl )
{
lit Lits[3];
int Cid;
Lits[0] = toLitCond( iVar, !fCompl );
Lits[1] = toLitCond( iVar0, fCompl0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVar, !fCompl );
Lits[1] = toLitCond( iVar1, fCompl1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar0, !fCompl0 );
Lits[2] = toLitCond( iVar1, !fCompl1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 3;
}
static inline int sat_solver3_add_xor( sat_solver3 * pSat, int iVarA, int iVarB, int iVarC, int fCompl )
{
lit Lits[3];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );
Lits[0] = toLitCond( iVarA, !fCompl );
Lits[1] = toLitCond( iVarB, 1 );
Lits[2] = toLitCond( iVarC, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, !fCompl );
Lits[1] = toLitCond( iVarB, 0 );
Lits[2] = toLitCond( iVarC, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, fCompl );
Lits[1] = toLitCond( iVarB, 1 );
Lits[2] = toLitCond( iVarC, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarA, fCompl );
Lits[1] = toLitCond( iVarB, 0 );
Lits[2] = toLitCond( iVarC, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 4;
}
static inline int sat_solver3_add_mux( sat_solver3 * pSat, int iVarZ, int iVarC, int iVarT, int iVarE, int iComplC, int iComplT, int iComplE, int iComplZ )
{
lit Lits[3];
int Cid;
assert( iVarC >= 0 && iVarT >= 0 && iVarE >= 0 && iVarZ >= 0 );
Lits[0] = toLitCond( iVarC, 1 ^ iComplC );
Lits[1] = toLitCond( iVarT, 1 ^ iComplT );
Lits[2] = toLitCond( iVarZ, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarC, 1 ^ iComplC );
Lits[1] = toLitCond( iVarT, 0 ^ iComplT );
Lits[2] = toLitCond( iVarZ, 1 ^ iComplZ );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarC, 0 ^ iComplC );
Lits[1] = toLitCond( iVarE, 1 ^ iComplE );
Lits[2] = toLitCond( iVarZ, 0 ^ iComplZ );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarC, 0 ^ iComplC );
Lits[1] = toLitCond( iVarE, 0 ^ iComplE );
Lits[2] = toLitCond( iVarZ, 1 ^ iComplZ );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
if ( iVarT == iVarE )
return 4;
Lits[0] = toLitCond( iVarT, 0 ^ iComplT );
Lits[1] = toLitCond( iVarE, 0 ^ iComplE );
Lits[2] = toLitCond( iVarZ, 1 ^ iComplZ );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarT, 1 ^ iComplT );
Lits[1] = toLitCond( iVarE, 1 ^ iComplE );
Lits[2] = toLitCond( iVarZ, 0 ^ iComplZ );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 6;
}
static inline int sat_solver3_add_mux41( sat_solver3 * pSat, int iVarZ, int iVarC0, int iVarC1, int iVarD0, int iVarD1, int iVarD2, int iVarD3 )
{
lit Lits[4];
int Cid;
assert( iVarC0 >= 0 && iVarC1 >= 0 && iVarD0 >= 0 && iVarD1 >= 0 && iVarD2 >= 0 && iVarD3 >= 0 && iVarZ >= 0 );
Lits[0] = toLitCond( iVarD0, 1 );
Lits[1] = toLitCond( iVarC0, 0 );
Lits[2] = toLitCond( iVarC1, 0 );
Lits[3] = toLitCond( iVarZ, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD1, 1 );
Lits[1] = toLitCond( iVarC0, 1 );
Lits[2] = toLitCond( iVarC1, 0 );
Lits[3] = toLitCond( iVarZ, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD2, 1 );
Lits[1] = toLitCond( iVarC0, 0 );
Lits[2] = toLitCond( iVarC1, 1 );
Lits[3] = toLitCond( iVarZ, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD3, 1 );
Lits[1] = toLitCond( iVarC0, 1 );
Lits[2] = toLitCond( iVarC1, 1 );
Lits[3] = toLitCond( iVarZ, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD0, 0 );
Lits[1] = toLitCond( iVarC0, 0 );
Lits[2] = toLitCond( iVarC1, 0 );
Lits[3] = toLitCond( iVarZ, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD1, 0 );
Lits[1] = toLitCond( iVarC0, 1 );
Lits[2] = toLitCond( iVarC1, 0 );
Lits[3] = toLitCond( iVarZ, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD2, 0 );
Lits[1] = toLitCond( iVarC0, 0 );
Lits[2] = toLitCond( iVarC1, 1 );
Lits[3] = toLitCond( iVarZ, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarD3, 0 );
Lits[1] = toLitCond( iVarC0, 1 );
Lits[2] = toLitCond( iVarC1, 1 );
Lits[3] = toLitCond( iVarZ, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
return 8;
}
static inline int sat_solver3_add_xor_and( sat_solver3 * pSat, int iVarF, int iVarA, int iVarB, int iVarC )
{
// F = (a (+) b) * c
lit Lits[4];
int Cid;
assert( iVarF >= 0 && iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );
Lits[0] = toLitCond( iVarF, 1 );
Lits[1] = toLitCond( iVarA, 1 );
Lits[2] = toLitCond( iVarB, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarF, 1 );
Lits[1] = toLitCond( iVarA, 0 );
Lits[2] = toLitCond( iVarB, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
Lits[0] = toLitCond( iVarF, 1 );
Lits[1] = toLitCond( iVarC, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVarF, 0 );
Lits[1] = toLitCond( iVarA, 1 );
Lits[2] = toLitCond( iVarB, 0 );
Lits[3] = toLitCond( iVarC, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
Lits[0] = toLitCond( iVarF, 0 );
Lits[1] = toLitCond( iVarA, 0 );
Lits[2] = toLitCond( iVarB, 1 );
Lits[3] = toLitCond( iVarC, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 4 );
assert( Cid );
return 5;
}
static inline int sat_solver3_add_constraint( sat_solver3 * pSat, int iVar, int iVar2, int fCompl )
{
lit Lits[2];
int Cid;
assert( iVar >= 0 );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar2, 0 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar2, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
return 2;
}
static inline int sat_solver3_add_half_sorter( sat_solver3 * pSat, int iVarA, int iVarB, int iVar0, int iVar1 )
{
lit Lits[3];
int Cid;
Lits[0] = toLitCond( iVarA, 0 );
Lits[1] = toLitCond( iVar0, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVarA, 0 );
Lits[1] = toLitCond( iVar1, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 2 );
assert( Cid );
Lits[0] = toLitCond( iVarB, 0 );
Lits[1] = toLitCond( iVar0, 1 );
Lits[2] = toLitCond( iVar1, 1 );
Cid = sat_solver3_addclause( pSat, Lits, Lits + 3 );
assert( Cid );
return 3;
}
ABC_NAMESPACE_HEADER_END
#endif