| <!-- |
| Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0. |
| |
| - 40 nm technology |
| - General purpose logic block: |
| K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared) |
| with optionally registered outputs |
| Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs) |
| Carry chain links to vertically adjacent logic blocks |
| - Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64. |
| Height = 6, found on every (8n+2)th column |
| - Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9. |
| Height = 4, found on every (8n+6)th column |
| - Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1 |
| |
| Details on Modelling: |
| |
| The electrical design of the architecture described here is NOT from an |
| optimized, SPICED architecture. Instead, we attempt to create a reasonable |
| architecture file by using an existing commercial FPGA to approximate the area, |
| delay, and power of the underlying components. This is combined with a reasonable 40 nm |
| model of wiring and circuit design for low-level routing components, where available. |
| The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also |
| has wiring electrical parameters that allow the wire lengths and switch patterns to be |
| modified and you will still get reasonable delay results for the new architecture. |
| The following describes, in detail, how we obtained the various electrical values for this |
| architecture. |
| |
| Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar |
| architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture. |
| (n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml) |
| This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to |
| match the overall target (a 40 nm FPGA). |
| |
| We obtain maximum delay numbers by measuring delays of routing, soft logic blocks, |
| memories, and multipliers from test circuits on a Stratix IV GX device |
| (EP4SGX230DF29C2X, i.e. fastest speed grade). Minimum delay values are calculated based on the |
| ratios between maximum and minimum values in Stratix IV GX device. For routing, we took the |
| average delay of H4 and V4 wires. Rmetal and Cmetal values for the routing wires were obtained |
| from work done by Charles Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal |
| stack 40 nm routing) and take the R and C data from the ITRS roadmap. |
| |
| For the general purpose logic block, we assume that the area and delays of the Stratix IV |
| crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in |
| the cluster and a full crossbar, leading to 53:1 multiplexers in front of each BLE input. |
| Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to |
| 36:1 multiplexers. We require 60 such multiplexers, while Stratix IV requires 88 for its more |
| complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows: |
| The Stratix IV crossbar has more inputs (72 vs. 60) and |
| outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the |
| Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its |
| area and delay. The total number of crossbar switch points is roughly similar between the two |
| architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area |
| & delay of the Stratix IV crossbar as a rough approximation of our crossbar. |
| |
| For LUTs, we include LUT |
| delays measured from Stratix IV which is dependant on the input used (ie. some |
| LUT inputs are faster than others). The CAD tools at the time of VTR 7 does |
| not consider differences in LUT input delays. |
| |
| Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device. |
| Delay obtained by compiling a 256 bit adder (registered inputs and outputs, |
| all pins except clock virtual) then measuring the delays in chip-planner, |
| sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns, |
| inter-block carry delay = 0.327 ns. Given this data, I will approximate |
| sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and |
| inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has |
| overhead that we don't have, I'll approximate the delay of a simpler chain at |
| one half what they have. This is very rough, anything from 0.01ns to 0.327ns |
| can be justified). |
| |
| Logic block area numbers obtained by scaling overall tile area of a 65nm |
| Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out |
| routing area at a channel width of 300. We use a channel width of 300 because it can route |
| all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the |
| total channel width of Stratix IV. Hence this channel width is close to the commercial practice of |
| choosing a width that provides high routability. The architecture can be routed at different channel |
| widths, but we estimate the tile size and hence the physical length of routing wires assuming |
| a channel width of 300. |
| |
| Sanity checks employed: |
| 1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches |
| common electrical design. |
| |
| |
| Authors: Jason Luu, Jeff Goeders, Vaughn Betz |
| --> |
| <architecture> |
| <!-- |
| ODIN II specific config begins |
| Describes the types of user-specified netlist blocks (in blif, this corresponds to |
| ".model [type_of_block]") that this architecture supports. |
| |
| Note: Basic LUTs, I/Os, and flip-flops are not included here as there are |
| already special structures in blif (.names, .input, .output, and .latch) |
| that describe them. |
| --> |
| <models> |
| <model name="multiply"> |
| <input_ports> |
| <port name="a" combinational_sink_ports="out"/> |
| <port name="b" combinational_sink_ports="out"/> |
| </input_ports> |
| <output_ports> |
| <port name="out"/> |
| </output_ports> |
| </model> |
| <model name="single_port_ram"> |
| <input_ports> |
| <port name="we" clock="clk"/> |
| <!-- control --> |
| <port name="addr" clock="clk"/> |
| <!-- address lines --> |
| <port name="data" clock="clk"/> |
| <!-- data lines can be broken down into smaller bit widths minimum size 1 --> |
| <port name="clk" is_clock="1"/> |
| <!-- memories are often clocked --> |
| </input_ports> |
| <output_ports> |
| <port name="out" clock="clk"/> |
| <!-- output can be broken down into smaller bit widths minimum size 1 --> |
| </output_ports> |
| </model> |
| <model name="dual_port_ram"> |
| <input_ports> |
| <port name="we1" clock="clk"/> |
| <!-- write enable --> |
| <port name="we2" clock="clk"/> |
| <!-- write enable --> |
| <port name="addr1" clock="clk"/> |
| <!-- address lines --> |
| <port name="addr2" clock="clk"/> |
| <!-- address lines --> |
| <port name="data1" clock="clk"/> |
| <!-- data lines can be broken down into smaller bit widths minimum size 1 --> |
| <port name="data2" clock="clk"/> |
| <!-- data lines can be broken down into smaller bit widths minimum size 1 --> |
| <port name="clk" is_clock="1"/> |
| <!-- memories are often clocked --> |
| </input_ports> |
| <output_ports> |
| <port name="out1" clock="clk"/> |
| <!-- output can be broken down into smaller bit widths minimum size 1 --> |
| <port name="out2" clock="clk"/> |
| <!-- output can be broken down into smaller bit widths minimum size 1 --> |
| </output_ports> |
| </model> |
| <model name="adder"> |
| <input_ports> |
| <port name="a" combinational_sink_ports="sumout cout"/> |
| <port name="b" combinational_sink_ports="sumout cout"/> |
| <port name="cin" combinational_sink_ports="sumout cout"/> |
| </input_ports> |
| <output_ports> |
| <port name="cout"/> |
| <port name="sumout"/> |
| </output_ports> |
| </model> |
| </models> |
| <tiles> |
| <tile name="io" capacity="8" area="0"> |
| <equivalent_sites> |
| <site pb_type="io"/> |
| </equivalent_sites> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <clock name="clock" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="custom"> |
| <loc side="left">io.outpad io.inpad io.clock</loc> |
| <loc side="top">io.outpad io.inpad io.clock</loc> |
| <loc side="right">io.outpad io.inpad io.clock</loc> |
| <loc side="bottom">io.outpad io.inpad io.clock</loc> |
| </pinlocations> |
| </tile> |
| <tile name="clb" area="53894"> |
| <equivalent_sites> |
| <site pb_type="clb"/> |
| </equivalent_sites> |
| <input name="I" num_pins="40" equivalent="full"/> |
| <input name="cin" num_pins="1"/> |
| <output name="O" num_pins="20" equivalent="none"/> |
| <output name="cout" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"> |
| <fc_override port_name="cin" fc_type="frac" fc_val="0"/> |
| <fc_override port_name="cout" fc_type="frac" fc_val="0"/> |
| </fc> |
| <pinlocations pattern="spread"/> |
| </tile> |
| <tile name="mult_36" width="3" height="3" area="396000"> |
| <equivalent_sites> |
| <site pb_type="mult_36"/> |
| </equivalent_sites> |
| <input name="a" num_pins="36"/> |
| <input name="b" num_pins="36"/> |
| <output name="out" num_pins="72"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="spread"/> |
| <switchblock_locations pattern="custom"> |
| <!-- Full outside of block --> |
| <sb_loc type="full" xoffset="0" yoffset="2"/> |
| <sb_loc type="full" xoffset="1" yoffset="2"/> |
| <sb_loc type="full" xoffset="2" yoffset="2"/> |
| <sb_loc type="full" xoffset="2" yoffset="1"/> |
| <sb_loc type="full" xoffset="2" yoffset="0"/> |
| <!-- Test all the sb types on internal locations --> |
| <sb_loc type="full" xoffset="0" yoffset="0"/> |
| <sb_loc type="straight" xoffset="0" yoffset="1"/> |
| <sb_loc type="turns" xoffset="1" yoffset="0"/> |
| <sb_loc type="none" xoffset="1" yoffset="1"/> |
| </switchblock_locations> |
| </tile> |
| <tile name="memory" width="2" height="3" area="548000"> |
| <equivalent_sites> |
| <site pb_type="memory"/> |
| </equivalent_sites> |
| <input name="addr1" num_pins="15"/> |
| <input name="addr2" num_pins="15"/> |
| <input name="data" num_pins="64"/> |
| <input name="we1" num_pins="1"/> |
| <input name="we2" num_pins="1"/> |
| <output name="out" num_pins="64"/> |
| <clock name="clk" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="spread"/> |
| <switchblock_locations pattern="external"/> |
| </tile> |
| </tiles> |
| <!-- ODIN II specific config ends --> |
| <!-- Physical descriptions begin --> |
| <layout> |
| <auto_layout> |
| <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners--> |
| <perimeter type="io" priority="100"/> |
| <corners type="EMPTY" priority="101"/> |
| <!--Fill with 'clb'--> |
| <fill type="clb" priority="10"/> |
| <!--Column of 'mult_36' with 'EMPTY' blocks wherever a 'mult_36' does not fit. Vertical offset by 1 for perimeter.--> |
| <col type="mult_36" startx="6" starty="1" repeatx="8" priority="20"/> |
| <col type="EMPTY" startx="6" repeatx="8" starty="1" priority="19"/> |
| <!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.--> |
| <col type="memory" startx="2" starty="1" repeatx="8" priority="20"/> |
| <col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/> |
| </auto_layout> |
| </layout> |
| <device> |
| <!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM |
| models. We are modifying the delay values however, to include metal C and R, which allows more architecture |
| experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS |
| (vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of |
| 45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping |
| RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately |
| lined up with Stratix IV. |
| We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm). |
| Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm). |
| The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file |
| by 2.5x when looking up in Jeff's tables. |
| The delay values are lined up with Stratix IV, which has an architecture similar to this |
| proposed FPGA, and which is also 40 nm |
| C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage |
| 4x minimum drive strength buffer. --> |
| <sizing R_minW_nmos="8926" R_minW_pmos="16067"/> |
| <!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing) |
| area; set to 0 since we explicitly set the area of all blocks currently in this architecture file. |
| --> |
| <area grid_logic_tile_area="0"/> |
| <chan_width_distr> |
| <x distr="uniform" peak="1.000000"/> |
| <y distr="uniform" peak="1.000000"/> |
| </chan_width_distr> |
| <switch_block type="wilton" fs="3"/> |
| <connection_block input_switch_name="ipin_cblock"/> |
| </device> |
| <switchlist> |
| <!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple |
| book area formula. This means the mux transistors are about 5x minimum drive strength. |
| We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large |
| mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume |
| the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed |
| by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified |
| buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive. |
| I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout |
| (diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples. |
| The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by |
| 2.5x when looking up in Jeff's tables. |
| Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps. |
| This also leads to the switch being 46% of the total wire delay, which is reasonable. --> |
| <switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/> |
| <!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer--> |
| <switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/> |
| </switchlist> |
| <segmentlist> |
| <!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space. |
| With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems |
| reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. --> |
| <segment freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15"> |
| <mux name="0"/> |
| <sb type="pattern">1 1 1 1 1</sb> |
| <cb type="pattern">1 1 1 1</cb> |
| </segment> |
| </segmentlist> |
| <directlist> |
| <direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/> |
| </directlist> |
| <complexblocklist> |
| <!-- Define I/O pads begin --> |
| <!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA --> |
| <!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. --> |
| <pb_type name="io"> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <clock name="clock" num_pins="1"/> |
| <!-- IOs can operate as either inputs or outputs. |
| Maximum delays below come from Ian Kuon. They are small, so they should be interpreted as |
| the delays to and from registers in the I/O (and generally I/Os are registered |
| today and that is when you timing analyze them. |
| |
| Minimum delays are retrieved using a ratio of maximum and minimum times as seen in Quartus II |
| in Stratix IV. The ratio of minimum value/maximum value is as follows: |
| inpad delay: 0.9239 |
| outpad delay: 0.9545 |
| |
| --> |
| <mode name="inpad"> |
| <pb_type name="inpad" blif_model=".input" num_pb="1"> |
| <output name="inpad" num_pins="1"/> |
| </pb_type> |
| <interconnect> |
| <direct name="inpad" input="inpad.inpad" output="io.inpad"> |
| <delay_constant max="4.243e-11" min="3.92e-11" in_port="inpad.inpad" out_port="io.inpad"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="outpad"> |
| <pb_type name="outpad" blif_model=".output" num_pb="1"> |
| <input name="outpad" num_pins="1"/> |
| </pb_type> |
| <interconnect> |
| <direct name="outpad" input="io.outpad" output="outpad.outpad"> |
| <delay_constant max="1.394e-11" min="1.331e-11" in_port="io.outpad" out_port="outpad.outpad"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel --> |
| <!-- IOs go on the periphery of the FPGA, for consistency, |
| make it physically equivalent on all sides so that only one definition of I/Os is needed. |
| If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA |
| --> |
| <!-- Place I/Os on the sides of the FPGA --> |
| <power method="ignore"/> |
| </pb_type> |
| <!-- Define I/O pads ends --> |
| <!-- Define general purpose logic block (CLB) begin --> |
| <!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor |
| area is 60 L^2 yields a tile area of 84375 MWTAs. |
| Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area |
| This means that only 37% of our area is in the general routing, and 63% is inside the logic |
| block. Note that the crossbar / local interconnect is considered part of the logic block |
| area in this analysis. That is a lower proportion of of routing area than most academics |
| assume, but note that the total routing area really includes the crossbar, which would push |
| routing area up significantly, we estimate into the ~70% range. |
| --> |
| <pb_type name="clb"> |
| <input name="I" num_pins="40" equivalent="full"/> |
| <input name="cin" num_pins="1"/> |
| <output name="O" num_pins="20" equivalent="none"/> |
| <output name="cout" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Describe fracturable logic element. |
| Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs. |
| The outputs of the fracturable logic element can be optionally registered |
| --> |
| <pb_type name="fle" num_pb="10"> |
| <input name="in" num_pins="6"/> |
| <input name="cin" num_pins="1"/> |
| <output name="out" num_pins="2"/> |
| <output name="cout" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <mode name="n2_lut5"> |
| <pb_type name="lut5inter" num_pb="1"> |
| <input name="in" num_pins="5"/> |
| <input name="cin" num_pins="1"/> |
| <output name="out" num_pins="2"/> |
| <output name="cout" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <pb_type name="ble5" num_pb="2"> |
| <input name="in" num_pins="5"/> |
| <input name="cin" num_pins="1"/> |
| <output name="out" num_pins="1"/> |
| <output name="cout" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <mode name="blut5"> |
| <pb_type name="flut5" num_pb="1"> |
| <input name="in" num_pins="5"/> |
| <output name="out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Regular LUT mode --> |
| <pb_type name="lut5" blif_model=".names" num_pb="1" class="lut"> |
| <input name="in" num_pins="5" port_class="lut_in"/> |
| <output name="out" num_pins="1" port_class="lut_out"/> |
| <!-- LUT timing using delay matrix --> |
| <!-- These are the physical maximum delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing, |
| we instead take the average of these numbers to get more stable results |
| 82e-12 |
| 173e-12 |
| 261e-12 |
| 263e-12 |
| 398e-12 |
| The minimum delay/maximum delay ratio is 0.7395 in QII on Stratix IV. Hence, the minimum delay |
| is 0.7295 * the average of the maximum numbers |
| --> |
| <delay_matrix type="max" in_port="lut5.in" out_port="lut5.out"> |
| 235e-12 |
| 235e-12 |
| 235e-12 |
| 235e-12 |
| 235e-12 |
| </delay_matrix> |
| <delay_matrix type="min" in_port="lut5.in" out_port="lut5.out"> |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| </delay_matrix> |
| </pb_type> |
| <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop"> |
| <input name="D" num_pins="1" port_class="D"/> |
| <output name="Q" num_pins="1" port_class="Q"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_hold value="37e-12" port="ff.D" clock="clk"/> |
| <T_clock_to_Q max="124e-12" min="60e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="flut5.in" output="lut5.in"/> |
| <direct name="direct2" input="lut5.out" output="ff.D"> |
| <pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/> |
| </direct> |
| <direct name="direct3" input="flut5.clk" output="ff.clk"/> |
| <mux name="mux1" input="ff.Q lut5.out" output="flut5.out"> |
| <delay_constant max="25e-12" min="24e-12" in_port="lut5.out" out_port="flut5.out"/> |
| <delay_constant max="45e-12" min="27e-12" in_port="ff.Q" out_port="flut5.out"/> |
| </mux> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="ble5.in" output="flut5.in"/> |
| <direct name="direct2" input="ble5.clk" output="flut5.clk"/> |
| <direct name="direct3" input="flut5.out" output="ble5.out"/> |
| </interconnect> |
| </mode> |
| <mode name="arithmetic"> |
| <pb_type name="arithmetic" num_pb="1"> |
| <input name="in" num_pins="4"/> |
| <input name="cin" num_pins="1"/> |
| <output name="out" num_pins="1"/> |
| <output name="cout" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Special dual-LUT mode that drives adder only --> |
| <pb_type name="lut4" blif_model=".names" num_pb="2" class="lut"> |
| <input name="in" num_pins="4" port_class="lut_in"/> |
| <output name="out" num_pins="1" port_class="lut_out"/> |
| <!-- LUT timing using delay matrix --> |
| <!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing, |
| we instead take the average of these numbers to get more stable results |
| 82e-12 |
| 173e-12 |
| 261e-12 |
| 263e-12 |
| The minimum delay/maximum delay ratio is 0.7395 in QII on Stratix IV. Hence, the minimum delay |
| is 0.7295 * the average of the maximum numbers |
| --> |
| <delay_matrix type="max" in_port="lut4.in" out_port="lut4.out"> |
| 195e-12 |
| 195e-12 |
| 195e-12 |
| 195e-12 |
| </delay_matrix> |
| <delay_matrix type="min" in_port="lut4.in" out_port="lut4.out"> |
| 144e-12 |
| 144e-12 |
| 144e-12 |
| 144e-12 |
| </delay_matrix> |
| </pb_type> |
| <!-- The ratio between minimum and maximum delays in StratixIV for data ports to sumout |
| is 0.6809 and cin to sumout is 0.6969--> |
| <pb_type name="adder" blif_model=".subckt adder" num_pb="1"> |
| <input name="a" num_pins="1"/> |
| <input name="b" num_pins="1"/> |
| <input name="cin" num_pins="1"/> |
| <output name="cout" num_pins="1"/> |
| <output name="sumout" num_pins="1"/> |
| <delay_constant max="0.3e-9" min="0.2043e-9" in_port="adder.a" out_port="adder.sumout"/> |
| <delay_constant max="0.3e-9" min="0.2043e-9" in_port="adder.b" out_port="adder.sumout"/> |
| <delay_constant max="0.3e-9" min="0.2043e-9" in_port="adder.cin" out_port="adder.sumout"/> |
| <delay_constant max="0.3e-9" min="0.2043e-9" in_port="adder.a" out_port="adder.cout"/> |
| <delay_constant max="0.3e-9" min="0.2043e-9" in_port="adder.b" out_port="adder.cout"/> |
| <delay_constant max="0.01e-9" min="6.9797e-12" in_port="adder.cin" out_port="adder.cout"/> |
| </pb_type> |
| <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop"> |
| <input name="D" num_pins="1" port_class="D"/> |
| <output name="Q" num_pins="1" port_class="Q"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_hold value="37e-12" port="ff.D" clock="clk"/> |
| <T_clock_to_Q max="124e-12" min="60e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="clock" input="arithmetic.clk" output="ff.clk"/> |
| <direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/> |
| <direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/> |
| <direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a"> |
| </direct> |
| <direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b"> |
| </direct> |
| <direct name="add_to_ff" input="adder.sumout" output="ff.D"> |
| <pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/> |
| </direct> |
| <direct name="carry_in" input="arithmetic.cin" output="adder.cin"> |
| <pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/> |
| </direct> |
| <direct name="carry_out" input="adder.cout" output="arithmetic.cout"> |
| <pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/> |
| </direct> |
| <mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out"> |
| <delay_constant max="25e-12" min="24e-12" in_port="adder.sumout" out_port="arithmetic.out"/> |
| <delay_constant max="45e-12" min="27e-12" in_port="ff.Q" out_port="arithmetic.out"/> |
| </mux> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="ble5.in[3:0]" output="arithmetic.in"/> |
| <direct name="carry_in" input="ble5.cin" output="arithmetic.cin"> |
| <pack_pattern name="chain" in_port="ble5.cin" out_port="arithmetic.cin"/> |
| </direct> |
| <direct name="carry_out" input="arithmetic.cout" output="ble5.cout"> |
| <pack_pattern name="chain" in_port="arithmetic.cout" out_port="ble5.cout"/> |
| </direct> |
| <direct name="direct2" input="ble5.clk" output="arithmetic.clk"/> |
| <direct name="direct3" input="arithmetic.out" output="ble5.out"/> |
| </interconnect> |
| </mode> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/> |
| <direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/> |
| <direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/> |
| <direct name="carry_in" input="lut5inter.cin" output="ble5[0:0].cin"> |
| <pack_pattern name="chain" in_port="lut5inter.cin" out_port="ble5[0:0].cin"/> |
| </direct> |
| <direct name="carry_out" input="ble5[1:1].cout" output="lut5inter.cout"> |
| <pack_pattern name="chain" in_port="ble5[1:1].cout" out_port="lut5inter.cout"/> |
| </direct> |
| <direct name="carry_link" input="ble5[0:0].cout" output="ble5[1:1].cin"> |
| <pack_pattern name="chain" in_port="ble5[0:0].cout" out_port="ble5[1:1].cout"/> |
| </direct> |
| <complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/> |
| <direct name="direct2" input="lut5inter.out" output="fle.out"/> |
| <direct name="direct3" input="fle.clk" output="lut5inter.clk"/> |
| <direct name="carry_in" input="fle.cin" output="lut5inter.cin"> |
| <pack_pattern name="chain" in_port="fle.cin" out_port="lut5inter.cin"/> |
| </direct> |
| <direct name="carry_out" input="lut5inter.cout" output="fle.cout"> |
| <pack_pattern name="chain" in_port="lut5inter.cout" out_port="fle.cout"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <!-- n2_lut5 --> |
| <mode name="n1_lut6"> |
| <pb_type name="ble6" num_pb="1"> |
| <input name="in" num_pins="6"/> |
| <output name="out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <pb_type name="lut6" blif_model=".names" num_pb="1" class="lut"> |
| <input name="in" num_pins="6" port_class="lut_in"/> |
| <output name="out" num_pins="1" port_class="lut_out"/> |
| <!-- LUT timing using delay matrix --> |
| <!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing, |
| we instead take the average of these numbers to get more stable results |
| 82e-12 |
| 173e-12 |
| 261e-12 |
| 263e-12 |
| 398e-12 |
| 397e-12 |
| |
| The minimum delay/maximum delay ratio is 0.7395 in QII on Stratix IV. Hence, the minimum delay |
| is 0.7295 * the average of the maximum numbers |
| --> |
| <delay_matrix type="max" in_port="lut6.in" out_port="lut6.out"> |
| 261e-12 |
| 261e-12 |
| 261e-12 |
| 261e-12 |
| 261e-12 |
| 261e-12 |
| </delay_matrix> |
| <delay_matrix type="min" in_port="lut6.in" out_port="lut6.out"> |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| 174e-12 |
| </delay_matrix> |
| </pb_type> |
| <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop"> |
| <input name="D" num_pins="1" port_class="D"/> |
| <output name="Q" num_pins="1" port_class="Q"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_hold value="37e-12" port="ff.D" clock="clk"/> |
| <T_hold value="37e-12" port="ff.D" clock="clk"/> |
| <T_clock_to_Q max="124e-12" min="60e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="ble6.in" output="lut6[0:0].in"/> |
| <direct name="direct2" input="lut6.out" output="ff.D"> |
| <pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/> |
| </direct> |
| <direct name="direct3" input="ble6.clk" output="ff.clk"/> |
| <mux name="mux1" input="ff.Q lut6.out" output="ble6.out"> |
| <delay_constant max="25e-12" min="24e-12" in_port="lut6.out" out_port="ble6.out"/> |
| <delay_constant max="45e-12" min="27e-12" in_port="ff.Q" out_port="ble6.out"/> |
| </mux> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fle.in" output="ble6.in"/> |
| <direct name="direct2" input="ble6.out" output="fle.out[0:0]"/> |
| <direct name="direct3" input="fle.clk" output="ble6.clk"/> |
| </interconnect> |
| </mode> |
| <!-- n1_lut6 --> |
| </pb_type> |
| <interconnect> |
| <!-- We use a full crossbar to get logical equivalence at inputs of CLB |
| The delays below come from Stratix IV. the delay through a connection block |
| input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps |
| delay on the connection block input mux (modeled by Ian Kuon), so the remaining |
| delay within the crossbar is 95 ps. |
| For the minimum delays, we have the delay through a connection block input mux + |
| the crossbar in Stratix IV is 144. Subtracting the 72 ps leaves 72 ps remaining. |
| The max delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT. |
| Since all our outputs LUT outputs go to a BLE output, and have a delay of |
| 25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback |
| to get the part that should be marked on the crossbar. For the minimum delay, |
| the value in Stratix IV is 93 ps, subtracting the 24 ps leaves 69 ps.--> |
| <complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in"> |
| <delay_constant max="95e-12" min="72e-12" in_port="clb.I" out_port="fle[9:0].in"/> |
| <delay_constant max="75e-12" min="69e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/> |
| </complete> |
| <complete name="clks" input="clb.clk" output="fle[9:0].clk"> |
| </complete> |
| <!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins. |
| By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs, |
| then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more |
| naive specification). |
| --> |
| <direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/> |
| <direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/> |
| <!-- Carry chain links --> |
| <direct name="carry_in" input="clb.cin" output="fle[0:0].cin"> |
| <!-- Put all inter-block carry chain delay on this one edge --> |
| <delay_constant max="0.16e-9" min="0.11e-9" in_port="clb.cin" out_port="fle[0:0].cin"/> |
| <pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/> |
| </direct> |
| <direct name="carry_out" input="fle[9:9].cout" output="clb.cout"> |
| <pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/> |
| </direct> |
| <direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin"> |
| <pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/> |
| </direct> |
| </interconnect> |
| </pb_type> |
| <!-- Define general purpose logic block (CLB) ends --> |
| <!-- Define fracturable multiplier begin --> |
| <!-- This multiplier can operate as a 36x36 multiplier that can fracture to two 18x18 multipliers each of which can further fracture to two 9x9 multipliers |
| For delay modelling, the 36x36 DSP multiplier in Stratix IV has a maximum delay of 1.523 ns + 1.93 ns |
| = 3.45 ns. The average difference between the maximum and minimum values of a dsp mac out in 36 bit multiply |
| mode is 0.51. Hence, the minimum delay is modeled as 0.776 ns + 0.984 ns = 1.760 ns. |
| The 18x18 mode doesn't need to sum four 18x18 multipliers, so it is a bit |
| faster: 1.523 ns for the multiplier, and 1.09 ns for the multiplier output block. |
| For the input and output interconnect delays, unlike Stratix IV, we don't |
| have any routing/logic flexibility (crossbars) at the inputs. There is some output muxing |
| in Stratix IV and this architecture to select which multiplier outputs should go out (e.g. |
| 9x9 outputs, 18x18 or 36x36) so those are very close between the two architectures. |
| We take the conservative (slightly pessimistic) |
| approach modelling the input as the same as the Stratix IV input delay and the output delay the same as the Stratix IV DSP out delay. |
| |
| We estimate block area by using the published Stratix III data (which is architecturally identical to Stratix IV) |
| (H. Wong, V. Betz and J. Rose, "Comparing FPGA vs. Custom CMOS and the Impact on Processor Microarchitecture", FPGA 2011) of 0.2623 |
| mm^2 and scaling from 65 to 40 nm to obtain 0.0993 mm^2. That area is for a DSP block with approximately 2x the functionality of |
| the block we use (can implement two 36x36 multiplies instead of our 1, eight 18x18 multiplies instead of our 4, etc.). Hence we |
| divide the area by 2 to obtain 0.0497 mm^2. One minimum-width transistor units = 60 L^2 (where L = 40 nm), so is 518,000 MWTUS. |
| That area includes routing and the connection block input muxes. Our DSP block is four |
| rows high, and hence includes four horizontal routing channel segments and four vertical ones, which is 4x the routing of a logic |
| block (single tile). It also includes 3.6x the outputs of a logic block, and 1.8x the inputs. Hence a slight overestimate of the routing |
| area associated with our DSP block is four times that of a logic tile, where the routing area of a logic tile was calculated above (at W = 300) |
| as 30481 MWTAs. Hence the (core, non-routing) area our DSP block is approximately 518,000 - 4 * 30,481 = 396,000 MWTUs. |
| --> |
| <pb_type name="mult_36"> |
| <input name="a" num_pins="36"/> |
| <input name="b" num_pins="36"/> |
| <output name="out" num_pins="72"/> |
| <mode name="two_divisible_mult_18x18"> |
| <pb_type name="divisible_mult_18x18" num_pb="2"> |
| <input name="a" num_pins="18"/> |
| <input name="b" num_pins="18"/> |
| <output name="out" num_pins="36"/> |
| <!-- Model 9x9 delay and 18x18 delay as the same. 9x9 could be faster, but in Stratix IV |
| isn't, presumably because the multiplier layout is really optimized for 18x18. |
| --> |
| <mode name="two_mult_9x9"> |
| <pb_type name="mult_9x9_slice" num_pb="2"> |
| <input name="A_cfg" num_pins="9"/> |
| <input name="B_cfg" num_pins="9"/> |
| <output name="OUT_cfg" num_pins="18"/> |
| <pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1"> |
| <input name="a" num_pins="9"/> |
| <input name="b" num_pins="9"/> |
| <output name="out" num_pins="18"/> |
| <delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_9x9.a" out_port="mult_9x9.out"/> |
| <delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_9x9.b" out_port="mult_9x9.out"/> |
| </pb_type> |
| <interconnect> |
| <direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a"> |
| </direct> |
| <direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b"> |
| </direct> |
| <direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_cfg"> |
| </direct> |
| </interconnect> |
| <power method="pin-toggle"> |
| <port name="A_cfg" energy_per_toggle="1.45e-12"/> |
| <port name="B_cfg" energy_per_toggle="1.45e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_slice[1:0].A_cfg"> |
| </direct> |
| <direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_slice[1:0].B_cfg"> |
| </direct> |
| <direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.out"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mult_18x18"> |
| <pb_type name="mult_18x18_slice" num_pb="1"> |
| <input name="A_cfg" num_pins="18"/> |
| <input name="B_cfg" num_pins="18"/> |
| <output name="OUT_cfg" num_pins="36"/> |
| <pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1"> |
| <input name="a" num_pins="18"/> |
| <input name="b" num_pins="18"/> |
| <output name="out" num_pins="36"/> |
| <delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_18x18.a" out_port="mult_18x18.out"/> |
| <delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_18x18.b" out_port="mult_18x18.out"/> |
| </pb_type> |
| <interconnect> |
| <direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a"> |
| </direct> |
| <direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b"> |
| </direct> |
| <direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.OUT_cfg"> |
| </direct> |
| </interconnect> |
| <power method="pin-toggle"> |
| <port name="A_cfg" energy_per_toggle="1.09e-12"/> |
| <port name="B_cfg" energy_per_toggle="1.09e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_slice.A_cfg"> |
| </direct> |
| <direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_slice.B_cfg"> |
| </direct> |
| <direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.out"> |
| </direct> |
| </interconnect> |
| </mode> |
| <power method="sum-of-children"/> |
| </pb_type> |
| <interconnect> |
| <!-- Stratix IV input delay of 207ps is conservative for this architecture because this architecture does not have an input crossbar in the multiplier. |
| Subtract 72.5 ps delay, which is already in the connection block input mux, leading 134 ps |
| The interconnect difference for DSP blocks is 0.5523, which leads to a minimum delay of 74 ps |
| --> |
| <direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a"> |
| <delay_constant max="134e-12" min="74e-12" in_port="mult_36.a" out_port="divisible_mult_18x18[1:0].a"/> |
| </direct> |
| <direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].b"> |
| <delay_constant max="134e-12" min="74e-12" in_port="mult_36.b" out_port="divisible_mult_18x18[1:0].b"/> |
| </direct> |
| <direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.out"> |
| <delay_constant max="1.09e-9" min="74e-12" in_port="divisible_mult_18x18[1:0].out" out_port="mult_36.out"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mult_36x36"> |
| <pb_type name="mult_36x36_slice" num_pb="1"> |
| <input name="A_cfg" num_pins="36"/> |
| <input name="B_cfg" num_pins="36"/> |
| <output name="OUT_cfg" num_pins="72"/> |
| <pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1"> |
| <input name="a" num_pins="36"/> |
| <input name="b" num_pins="36"/> |
| <output name="out" num_pins="72"/> |
| <delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_36x36.a" out_port="mult_36x36.out"/> |
| <delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_36x36.b" out_port="mult_36x36.out"/> |
| </pb_type> |
| <interconnect> |
| <direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a"> |
| </direct> |
| <direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b"> |
| </direct> |
| <direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_cfg"> |
| </direct> |
| </interconnect> |
| <power method="pin-toggle"> |
| <port name="A_cfg" energy_per_toggle="2.13e-12"/> |
| <port name="B_cfg" energy_per_toggle="2.13e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <!-- Stratix IV input delay of 207ps is conservative for this architecture because this architecture does not have an input crossbar in the multiplier. |
| Subtract 72.5 ps delay, which is already in the connection block input mux, leading |
| to a 134 ps delay. |
| The interconnect difference for DSP blocks is 0.5523, which leads to a minimum delay of 74 ps |
| --> |
| <direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg"> |
| <delay_constant max="134e-12" min="74e-12" in_port="mult_36.a" out_port="mult_36x36_slice.A_cfg"/> |
| </direct> |
| <direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg"> |
| <delay_constant max="134e-12" min="74e-12" in_port="mult_36.b" out_port="mult_36x36_slice.B_cfg"/> |
| </direct> |
| <direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out"> |
| <delay_constant max="1.93e-9" min="74e-12" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_36.out"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <!-- Place this multiplier block every 8 columns from (and including) the sixth column --> |
| <power method="sum-of-children"/> |
| </pb_type> |
| <!-- Define fracturable multiplier end --> |
| <!-- Define fracturable memory begin --> |
| <!-- 32 Kb Memory that can operate from 512x64 to 32Kx1 for single-port mode and 1024x32 to 32Kx1 for dual-port mode. |
| Area and max delay based off Stratix IV 9K and 144K memories (delay from linear interpolation, Tsu(483 ps, 636 ps) Tco(1084ps, 1969ps)). |
| |
| uTh/Tsu ratio = 0.468, uTco min/max ratio = 0.97 |
| uTh = 226ps, 298ps |
| Min uTco = 1051ps, 1909ps |
| Max input delay = 204ps (from Stratix IV LAB line) - 72ps (this architecture does not lump connection box delay in internal delay) |
| Max output delay = M9K buffer 50ps. |
| Min input delay = 160ps (from Stratix IV Lab line) - 72ps |
| Min output delay = 46ps (M9K buffer min/max ratio = 0.9286) |
| |
| Area is obtained by appropriately scaling and adjusting the published Stratix III (which is architecturally identical to Stratix IV) |
| data from H. Wong, V. Betz and J. Rose, "Comparing FPGA vs. Custom CMOS and the Impact on Processor Microarchitecture", FPGA 2011. |
| Linearly interpolating (by bit count) between the M9k and M144k areas to obtain an M32k (our RAM size) point yields a 65 nm area of |
| of 0.153 mm^2. Interpolating based on port count between the RAMs would instead yield an area of 0.209 mm^2 for our 32 kB RAM; since |
| bit count accounts for more area than ports for a RAM this size we choose the bit count interpolation; however, since the port interpolation |
| is not radically different this also gives us confidence that interpolating based on bits is OK, but slightly underpredicts area. |
| Scaling to 40 nm^2 yields .0579 mm^2, and converting to MWTUs at 60 L^2 / MWTU yields 604,000 MWTUs. This includes routing. A Stratix IV |
| M9K RAM is one row high and hence has one routing tile (one horizonal and one vertical routing segment area). An M144k RAM has 8 such tiles. |
| Linearly interpolating on |
| bits to 32 kb yields 2.2 routing tiles incorporated in the area number above. The inter-block routing represents 30% of the area of a logic |
| tile according to D. Lewis et al, "Architectural Enhancements in Stratix V," FPGA 2013. Hence we should subtract 0.3 * 2.2 * 84,375 MWTUs to |
| obtain a RAM core area (not including inter-block routing) of 548,000 MWTU areas for our 32 kb RAM in a 40 nm process. |
| --> |
| <pb_type name="memory"> |
| <input name="addr1" num_pins="15"/> |
| <input name="addr2" num_pins="15"/> |
| <input name="data" num_pins="64"/> |
| <input name="we1" num_pins="1"/> |
| <input name="we2" num_pins="1"/> |
| <output name="out" num_pins="64"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Specify single port mode first --> |
| <mode name="mem_512x64_sp"> |
| <pb_type name="mem_512x64_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="9" port_class="address"/> |
| <input name="data" num_pins="64" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="64" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_512x64_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_512x64_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_512x64_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_512x64_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_512x64_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_512x64_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_512x64_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[8:0]" output="mem_512x64_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[8:0]" out_port="mem_512x64_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[63:0]" output="mem_512x64_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[63:0]" out_port="mem_512x64_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_512x64_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_512x64_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_512x64_sp.out" output="memory.out[63:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_512x64_sp.out" out_port="memory.out[63:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_512x64_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_1024x32_sp"> |
| <pb_type name="mem_1024x32_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="10" port_class="address"/> |
| <input name="data" num_pins="32" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="32" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_1024x32_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_1024x32_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[9:0]" output="mem_1024x32_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[9:0]" out_port="mem_1024x32_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[31:0]" output="mem_1024x32_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[31:0]" out_port="mem_1024x32_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_1024x32_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_1024x32_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_1024x32_sp.out" output="memory.out[31:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_1024x32_sp.out" out_port="memory.out[31:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_1024x32_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_2048x16_sp"> |
| <pb_type name="mem_2048x16_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="11" port_class="address"/> |
| <input name="data" num_pins="16" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="16" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_2048x16_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_2048x16_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x16_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[10:0]" out_port="mem_2048x16_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[15:0]" output="mem_2048x16_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[15:0]" out_port="mem_2048x16_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_2048x16_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_2048x16_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_2048x16_sp.out" output="memory.out[15:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_2048x16_sp.out" out_port="memory.out[15:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_2048x16_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_4096x8_sp"> |
| <pb_type name="mem_4096x8_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="12" port_class="address"/> |
| <input name="data" num_pins="8" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="8" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_4096x8_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_4096x8_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_4096x8_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_4096x8_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_4096x8_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_4096x8_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_4096x8_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x8_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[11:0]" out_port="mem_4096x8_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[7:0]" output="mem_4096x8_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[7:0]" out_port="mem_4096x8_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_4096x8_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_4096x8_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_4096x8_sp.out" output="memory.out[7:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_4096x8_sp.out" out_port="memory.out[7:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_4096x8_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_8192x4_sp"> |
| <pb_type name="mem_8192x4_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="13" port_class="address"/> |
| <input name="data" num_pins="4" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="4" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_8192x4_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_8192x4_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[12:0]" output="mem_8192x4_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[12:0]" out_port="mem_8192x4_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[3:0]" output="mem_8192x4_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[3:0]" out_port="mem_8192x4_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_8192x4_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_8192x4_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_8192x4_sp.out" output="memory.out[3:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_8192x4_sp.out" out_port="memory.out[3:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_8192x4_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_16384x2_sp"> |
| <pb_type name="mem_16384x2_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="14" port_class="address"/> |
| <input name="data" num_pins="2" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="2" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_16384x2_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_16384x2_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[13:0]" output="mem_16384x2_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[13:0]" out_port="mem_16384x2_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[1:0]" output="mem_16384x2_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[1:0]" out_port="mem_16384x2_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_16384x2_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_16384x2_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_16384x2_sp.out" output="memory.out[1:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_16384x2_sp.out" out_port="memory.out[1:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_16384x2_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_32768x1_sp"> |
| <pb_type name="mem_32768x1_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1"> |
| <input name="addr" num_pins="15" port_class="address"/> |
| <input name="data" num_pins="1" port_class="data_in"/> |
| <input name="we" num_pins="1" port_class="write_en"/> |
| <output name="out" num_pins="1" port_class="data_out"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_32768x1_sp.addr" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_sp.data" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_sp.we" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_sp.addr" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_sp.data" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_sp.we" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_32768x1_sp.out" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="9.0e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[14:0]" output="mem_32768x1_sp.addr"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[14:0]" out_port="mem_32768x1_sp.addr"/> |
| </direct> |
| <direct name="data1" input="memory.data[0:0]" output="mem_32768x1_sp.data"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[0:0]" out_port="mem_32768x1_sp.data"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_32768x1_sp.we"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_32768x1_sp.we"/> |
| </direct> |
| <direct name="dataout1" input="mem_32768x1_sp.out" output="memory.out[0:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_32768x1_sp.out" out_port="memory.out[0:0]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_32768x1_sp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <!-- Specify true dual port mode next --> |
| <mode name="mem_1024x32_dp"> |
| <pb_type name="mem_1024x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1"> |
| <input name="addr1" num_pins="10" port_class="address1"/> |
| <input name="addr2" num_pins="10" port_class="address2"/> |
| <input name="data1" num_pins="32" port_class="data_in1"/> |
| <input name="data2" num_pins="32" port_class="data_in2"/> |
| <input name="we1" num_pins="1" port_class="write_en1"/> |
| <input name="we2" num_pins="1" port_class="write_en2"/> |
| <output name="out1" num_pins="32" port_class="data_out1"/> |
| <output name="out2" num_pins="32" port_class="data_out2"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_1024x32_dp.addr1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_dp.data1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_dp.we1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_dp.addr2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_dp.data2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_1024x32_dp.we2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_dp.addr1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_dp.data1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_dp.we1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_dp.addr2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_dp.data2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_1024x32_dp.we2" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_1024x32_dp.out1" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_1024x32_dp.out2" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="17.9e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[9:0]" output="mem_1024x32_dp.addr1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[9:0]" out_port="mem_1024x32_dp.addr1"/> |
| </direct> |
| <direct name="address2" input="memory.addr2[9:0]" output="mem_1024x32_dp.addr2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr2[9:0]" out_port="mem_1024x32_dp.addr2"/> |
| </direct> |
| <direct name="data1" input="memory.data[31:0]" output="mem_1024x32_dp.data1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[31:0]" out_port="mem_1024x32_dp.data1"/> |
| </direct> |
| <direct name="data2" input="memory.data[63:32]" output="mem_1024x32_dp.data2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[63:32]" out_port="mem_1024x32_dp.data2"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_1024x32_dp.we1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_1024x32_dp.we1"/> |
| </direct> |
| <direct name="writeen2" input="memory.we2" output="mem_1024x32_dp.we2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we2" out_port="mem_1024x32_dp.we2"/> |
| </direct> |
| <direct name="dataout1" input="mem_1024x32_dp.out1" output="memory.out[31:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_1024x32_dp.out1" out_port="memory.out[31:0]"/> |
| </direct> |
| <direct name="dataout2" input="mem_1024x32_dp.out2" output="memory.out[63:32]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_1024x32_dp.out2" out_port="memory.out[63:32]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_1024x32_dp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_2048x16_dp"> |
| <pb_type name="mem_2048x16_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1"> |
| <input name="addr1" num_pins="11" port_class="address1"/> |
| <input name="addr2" num_pins="11" port_class="address2"/> |
| <input name="data1" num_pins="16" port_class="data_in1"/> |
| <input name="data2" num_pins="16" port_class="data_in2"/> |
| <input name="we1" num_pins="1" port_class="write_en1"/> |
| <input name="we2" num_pins="1" port_class="write_en2"/> |
| <output name="out1" num_pins="16" port_class="data_out1"/> |
| <output name="out2" num_pins="16" port_class="data_out2"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_2048x16_dp.addr1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_dp.data1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_dp.we1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_dp.addr2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_dp.data2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x16_dp.we2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_dp.addr1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_dp.data1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_dp.we1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_dp.addr2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_dp.data2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x16_dp.we2" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_2048x16_dp.out1" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_2048x16_dp.out2" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="17.9e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x16_dp.addr1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[10:0]" out_port="mem_2048x16_dp.addr1"/> |
| </direct> |
| <direct name="address2" input="memory.addr2[10:0]" output="mem_2048x16_dp.addr2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr2[10:0]" out_port="mem_2048x16_dp.addr2"/> |
| </direct> |
| <direct name="data1" input="memory.data[15:0]" output="mem_2048x16_dp.data1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[15:0]" out_port="mem_2048x16_dp.data1"/> |
| </direct> |
| <direct name="data2" input="memory.data[31:16]" output="mem_2048x16_dp.data2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[31:16]" out_port="mem_2048x16_dp.data2"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_2048x16_dp.we1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_2048x16_dp.we1"/> |
| </direct> |
| <direct name="writeen2" input="memory.we2" output="mem_2048x16_dp.we2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we2" out_port="mem_2048x16_dp.we2"/> |
| </direct> |
| <direct name="dataout1" input="mem_2048x16_dp.out1" output="memory.out[15:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_2048x16_dp.out1" out_port="memory.out[15:0]"/> |
| </direct> |
| <direct name="dataout2" input="mem_2048x16_dp.out2" output="memory.out[31:16]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_2048x16_dp.out2" out_port="memory.out[31:16]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_2048x16_dp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_2048x8_dp"> |
| <pb_type name="mem_2048x8_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1"> |
| <input name="addr1" num_pins="12" port_class="address1"/> |
| <input name="addr2" num_pins="12" port_class="address2"/> |
| <input name="data1" num_pins="8" port_class="data_in1"/> |
| <input name="data2" num_pins="8" port_class="data_in2"/> |
| <input name="we1" num_pins="1" port_class="write_en1"/> |
| <input name="we2" num_pins="1" port_class="write_en2"/> |
| <output name="out1" num_pins="8" port_class="data_out1"/> |
| <output name="out2" num_pins="8" port_class="data_out2"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_2048x8_dp.addr1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x8_dp.data1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x8_dp.we1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x8_dp.addr2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x8_dp.data2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_2048x8_dp.we2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x8_dp.addr1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x8_dp.data1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x8_dp.we1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x8_dp.addr2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x8_dp.data2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_2048x8_dp.we2" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_2048x8_dp.out1" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_2048x8_dp.out2" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="17.9e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[11:0]" output="mem_2048x8_dp.addr1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[11:0]" out_port="mem_2048x8_dp.addr1"/> |
| </direct> |
| <direct name="address2" input="memory.addr2[11:0]" output="mem_2048x8_dp.addr2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr2[11:0]" out_port="mem_2048x8_dp.addr2"/> |
| </direct> |
| <direct name="data1" input="memory.data[7:0]" output="mem_2048x8_dp.data1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[7:0]" out_port="mem_2048x8_dp.data1"/> |
| </direct> |
| <direct name="data2" input="memory.data[15:8]" output="mem_2048x8_dp.data2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[15:8]" out_port="mem_2048x8_dp.data2"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_2048x8_dp.we1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_2048x8_dp.we1"/> |
| </direct> |
| <direct name="writeen2" input="memory.we2" output="mem_2048x8_dp.we2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we2" out_port="mem_2048x8_dp.we2"/> |
| </direct> |
| <direct name="dataout1" input="mem_2048x8_dp.out1" output="memory.out[7:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_2048x8_dp.out1" out_port="memory.out[7:0]"/> |
| </direct> |
| <direct name="dataout2" input="mem_2048x8_dp.out2" output="memory.out[15:8]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_2048x8_dp.out2" out_port="memory.out[15:8]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_2048x8_dp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_8192x4_dp"> |
| <pb_type name="mem_8192x4_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1"> |
| <input name="addr1" num_pins="13" port_class="address1"/> |
| <input name="addr2" num_pins="13" port_class="address2"/> |
| <input name="data1" num_pins="4" port_class="data_in1"/> |
| <input name="data2" num_pins="4" port_class="data_in2"/> |
| <input name="we1" num_pins="1" port_class="write_en1"/> |
| <input name="we2" num_pins="1" port_class="write_en2"/> |
| <output name="out1" num_pins="4" port_class="data_out1"/> |
| <output name="out2" num_pins="4" port_class="data_out2"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_8192x4_dp.addr1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_dp.data1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_dp.we1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_dp.addr2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_dp.data2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_8192x4_dp.we2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_dp.addr1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_dp.data1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_dp.we1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_dp.addr2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_dp.data2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_8192x4_dp.we2" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_8192x4_dp.out1" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_8192x4_dp.out2" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="17.9e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[12:0]" output="mem_8192x4_dp.addr1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[12:0]" out_port="mem_8192x4_dp.addr1"/> |
| </direct> |
| <direct name="address2" input="memory.addr2[12:0]" output="mem_8192x4_dp.addr2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr2[12:0]" out_port="mem_8192x4_dp.addr2"/> |
| </direct> |
| <direct name="data1" input="memory.data[3:0]" output="mem_8192x4_dp.data1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[3:0]" out_port="mem_8192x4_dp.data1"/> |
| </direct> |
| <direct name="data2" input="memory.data[7:4]" output="mem_8192x4_dp.data2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[7:4]" out_port="mem_8192x4_dp.data2"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_8192x4_dp.we1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_8192x4_dp.we1"/> |
| </direct> |
| <direct name="writeen2" input="memory.we2" output="mem_8192x4_dp.we2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we2" out_port="mem_8192x4_dp.we2"/> |
| </direct> |
| <direct name="dataout1" input="mem_8192x4_dp.out1" output="memory.out[3:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_8192x4_dp.out1" out_port="memory.out[3:0]"/> |
| </direct> |
| <direct name="dataout2" input="mem_8192x4_dp.out2" output="memory.out[7:4]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_8192x4_dp.out2" out_port="memory.out[7:4]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_8192x4_dp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_16384x2_dp"> |
| <pb_type name="mem_16384x2_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1"> |
| <input name="addr1" num_pins="14" port_class="address1"/> |
| <input name="addr2" num_pins="14" port_class="address2"/> |
| <input name="data1" num_pins="2" port_class="data_in1"/> |
| <input name="data2" num_pins="2" port_class="data_in2"/> |
| <input name="we1" num_pins="1" port_class="write_en1"/> |
| <input name="we2" num_pins="1" port_class="write_en2"/> |
| <output name="out1" num_pins="2" port_class="data_out1"/> |
| <output name="out2" num_pins="2" port_class="data_out2"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_16384x2_dp.addr1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_dp.data1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_dp.we1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_dp.addr2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_dp.data2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_16384x2_dp.we2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_dp.addr1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_dp.data1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_dp.we1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_dp.addr2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_dp.data2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_16384x2_dp.we2" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_16384x2_dp.out1" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_16384x2_dp.out2" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="17.9e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[13:0]" output="mem_16384x2_dp.addr1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[13:0]" out_port="mem_16384x2_dp.addr1"/> |
| </direct> |
| <direct name="address2" input="memory.addr2[13:0]" output="mem_16384x2_dp.addr2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr2[13:0]" out_port="mem_16384x2_dp.addr2"/> |
| </direct> |
| <direct name="data1" input="memory.data[1:0]" output="mem_16384x2_dp.data1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[1:0]" out_port="mem_16384x2_dp.data1"/> |
| </direct> |
| <direct name="data2" input="memory.data[3:2]" output="mem_16384x2_dp.data2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[3:2]" out_port="mem_16384x2_dp.data2"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_16384x2_dp.we1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_16384x2_dp.we1"/> |
| </direct> |
| <direct name="writeen2" input="memory.we2" output="mem_16384x2_dp.we2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we2" out_port="mem_16384x2_dp.we2"/> |
| </direct> |
| <direct name="dataout1" input="mem_16384x2_dp.out1" output="memory.out[1:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_16384x2_dp.out1" out_port="memory.out[1:0]"/> |
| </direct> |
| <direct name="dataout2" input="mem_16384x2_dp.out2" output="memory.out[3:2]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_16384x2_dp.out2" out_port="memory.out[3:2]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_16384x2_dp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="mem_32768x1_dp"> |
| <pb_type name="mem_32768x1_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1"> |
| <input name="addr1" num_pins="15" port_class="address1"/> |
| <input name="addr2" num_pins="15" port_class="address2"/> |
| <input name="data1" num_pins="1" port_class="data_in1"/> |
| <input name="data2" num_pins="1" port_class="data_in2"/> |
| <input name="we1" num_pins="1" port_class="write_en1"/> |
| <input name="we2" num_pins="1" port_class="write_en2"/> |
| <output name="out1" num_pins="1" port_class="data_out1"/> |
| <output name="out2" num_pins="1" port_class="data_out2"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="509e-12" port="mem_32768x1_dp.addr1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_dp.data1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_dp.we1" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_dp.addr2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_dp.data2" clock="clk"/> |
| <T_setup value="509e-12" port="mem_32768x1_dp.we2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_dp.addr1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_dp.data1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_dp.we1" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_dp.addr2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_dp.data2" clock="clk"/> |
| <T_hold value="238e-12" port="mem_32768x1_dp.we2" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_32768x1_dp.out1" clock="clk"/> |
| <T_clock_to_Q max="1.234e-9" min="1.196e-9" port="mem_32768x1_dp.out2" clock="clk"/> |
| <power method="pin-toggle"> |
| <port name="clk" energy_per_toggle="17.9e-12"/> |
| <static_power power_per_instance="0.0"/> |
| </power> |
| </pb_type> |
| <interconnect> |
| <direct name="address1" input="memory.addr1[14:0]" output="mem_32768x1_dp.addr1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr1[14:0]" out_port="mem_32768x1_dp.addr1"/> |
| </direct> |
| <direct name="address2" input="memory.addr2[14:0]" output="mem_32768x1_dp.addr2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.addr2[14:0]" out_port="mem_32768x1_dp.addr2"/> |
| </direct> |
| <direct name="data1" input="memory.data[0:0]" output="mem_32768x1_dp.data1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[0:0]" out_port="mem_32768x1_dp.data1"/> |
| </direct> |
| <direct name="data2" input="memory.data[1:1]" output="mem_32768x1_dp.data2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.data[1:1]" out_port="mem_32768x1_dp.data2"/> |
| </direct> |
| <direct name="writeen1" input="memory.we1" output="mem_32768x1_dp.we1"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we1" out_port="mem_32768x1_dp.we1"/> |
| </direct> |
| <direct name="writeen2" input="memory.we2" output="mem_32768x1_dp.we2"> |
| <delay_constant max="132e-12" min="88e-12" in_port="memory.we2" out_port="mem_32768x1_dp.we2"/> |
| </direct> |
| <direct name="dataout1" input="mem_32768x1_dp.out1" output="memory.out[0:0]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_32768x1_dp.out1" out_port="memory.out[0:0]"/> |
| </direct> |
| <direct name="dataout2" input="mem_32768x1_dp.out2" output="memory.out[1:1]"> |
| <delay_constant max="50e-12" min="46e-12" in_port="mem_32768x1_dp.out2" out_port="memory.out[1:1]"/> |
| </direct> |
| <direct name="clk" input="memory.clk" output="mem_32768x1_dp.clk"> |
| </direct> |
| </interconnect> |
| </mode> |
| <!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel --> |
| <!-- Place this memory block every 8 columns from (and including) the second column --> |
| <power method="sum-of-children"/> |
| </pb_type> |
| <!-- Define fracturable memory end --> |
| </complexblocklist> |
| <power> |
| <local_interconnect C_wire="2.5e-10"/> |
| <mux_transistor_size mux_transistor_size="3"/> |
| <FF_size FF_size="4"/> |
| <LUT_transistor_size LUT_transistor_size="4"/> |
| </power> |
| <clocks> |
| <clock buffer_size="auto" C_wire="2.5e-10"/> |
| </clocks> |
| </architecture> |