blob: a823f7262186e8f852f4525dfb5f094e272f4168 [file] [log] [blame]
/**CFile****************************************************************
FileName [giaKf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [Cut computation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaKf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "gia.h"
#include "misc/vec/vecSet.h"
#ifdef ABC_USE_PTHREADS
#ifdef _WIN32
#include "../lib/pthread.h"
#else
#include <pthread.h>
#include <unistd.h>
#endif
#endif
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#ifndef ABC_USE_PTHREADS
void Kf_ManSetDefaultPars( Jf_Par_t * pPars ) {}
Gia_Man_t * Kf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) { return NULL; }
#else // pthreads are used
#define KF_LEAF_MAX 16
#define KF_CUT_MAX 32
#define KF_PROC_MAX 32
#define KF_WORD_MAX ((KF_LEAF_MAX > 6) ? 1 << (KF_LEAF_MAX-6) : 1)
#define KF_LOG_TABLE 8
#define KF_ADD_ON1 2 // offset in cut storage for each node (cut count; best cut)
#define KF_ADD_ON2 4 // offset in cut storage for each cut (leaf count; function, cut delay; cut area)
typedef struct Kf_Cut_t_ Kf_Cut_t;
typedef struct Kf_Set_t_ Kf_Set_t;
typedef struct Kf_Man_t_ Kf_Man_t;
struct Kf_Cut_t_
{
word Sign; // signature
int Polar; // polarity
int Delay; // delay
float Area; // area
int iFunc; // function
int iNext; // next cut
int nLeaves; // number of leaves
int pLeaves[KF_LEAF_MAX];
};
struct Kf_Set_t_
{
Kf_Man_t * pMan; // manager
unsigned short nLutSize; // lut size
unsigned short nCutNum; // cut count
int nCuts0; // fanin0 cut count
int nCuts1; // fanin1 cut count
int nCuts; // resulting cut count
int nTEntries; // hash table entries
int TableMask; // hash table mask
int pTable[1 << KF_LOG_TABLE];
int pValue[1 << KF_LOG_TABLE];
int pPlace[KF_LEAF_MAX];
int pList [KF_LEAF_MAX+1];
Kf_Cut_t pCuts0[KF_CUT_MAX];
Kf_Cut_t pCuts1[KF_CUT_MAX];
Kf_Cut_t pCutsR[KF_CUT_MAX*KF_CUT_MAX];
Kf_Cut_t * ppCuts[KF_CUT_MAX];
Kf_Cut_t * pCutBest;
word CutCount[4]; // statistics
};
struct Kf_Man_t_
{
Gia_Man_t * pGia; // user's manager
Jf_Par_t * pPars; // user's parameters
Vec_Set_t pMem; // cut storage
Vec_Int_t vCuts; // node params
Vec_Int_t vTime; // node params
Vec_Flt_t vArea; // node params
Vec_Flt_t vRefs; // node params
Vec_Int_t * vTemp; // temporary
abctime clkStart; // starting time
Kf_Set_t pSett[KF_PROC_MAX];
};
static inline int Kf_SetCutId( Kf_Set_t * p, Kf_Cut_t * pCut ) { return pCut - p->pCutsR; }
static inline Kf_Cut_t * Kf_SetCut( Kf_Set_t * p, int i ) { return i >= 0 ? p->pCutsR + i : NULL; }
static inline int Kf_ObjTime( Kf_Man_t * p, int i ) { return Vec_IntEntry(&p->vTime, i); }
static inline float Kf_ObjArea( Kf_Man_t * p, int i ) { return Vec_FltEntry(&p->vArea, i); }
static inline float Kf_ObjRefs( Kf_Man_t * p, int i ) { return Vec_FltEntry(&p->vRefs, i); }
static inline void Kf_ObjSetCuts( Kf_Man_t * p, int i, Vec_Int_t * vVec ) { Vec_IntWriteEntry(&p->vCuts, i, Vec_SetAppend(&p->pMem, Vec_IntArray(vVec), Vec_IntSize(vVec))); }
static inline int * Kf_ObjCuts( Kf_Man_t * p, int i ) { return (int *)Vec_SetEntry(&p->pMem, Vec_IntEntry(&p->vCuts, i)); }
static inline int * Kf_ObjCuts0( Kf_Man_t * p, int i ) { return Kf_ObjCuts(p, Gia_ObjFaninId0(Gia_ManObj(p->pGia, i), i)); }
static inline int * Kf_ObjCuts1( Kf_Man_t * p, int i ) { return Kf_ObjCuts(p, Gia_ObjFaninId1(Gia_ManObj(p->pGia, i), i)); }
static inline int * Kf_ObjCutBest( Kf_Man_t * p, int i ) { int * pCuts = Kf_ObjCuts(p, i); return pCuts + pCuts[1]; }
#define Kf_ObjForEachCutInt( pList, pCut, i ) for ( i = 0, pCut = pList + KF_ADD_ON1; i < pList[0]; i++, pCut += pCut[0] + KF_ADD_ON2 )
#define Kf_ListForEachCut( p, iList, pCut ) for ( pCut = Kf_SetCut(p, p->pList[iList]); pCut; pCut = Kf_SetCut(p, pCut->iNext) )
#define Kf_ListForEachCutP( p, iList, pCut, pPlace ) for ( pPlace = p->pList+iList, pCut = Kf_SetCut(p, *pPlace); pCut; pCut = Kf_SetCut(p, *pPlace) )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_SetLoadCuts( Kf_Cut_t * pCuts, int * pIntCuts )
{
Kf_Cut_t * pCut;
int k, * pIntCut, nCuts = 0;
Kf_ObjForEachCutInt( pIntCuts, pIntCut, nCuts )
{
pCut = pCuts + nCuts;
pCut->Sign = 0;
pCut->Polar = 0;
pCut->iFunc = pIntCut[pIntCut[0] + 1];
pCut->Delay = pIntCut[pIntCut[0] + 2];
pCut->Area = Abc_Int2Float(pIntCut[pIntCut[0] + 3]);
pCut->nLeaves = pIntCut[0];
for ( k = 0; k < pIntCut[0]; k++ )
{
pCut->pLeaves[k] = Abc_Lit2Var(pIntCut[k+1]);
pCut->Sign |= ((word)1) << (pCut->pLeaves[k] & 0x3F);
if ( Abc_LitIsCompl(pIntCut[k+1]) )
pCut->Polar |= (1 << k);
}
}
return nCuts;
}
static inline void Kf_SetPrepare( Kf_Set_t * p, int * pCuts0, int * pCuts1 )
{
int i;
// prepare hash table
// for ( i = 0; i <= p->TableMask; i++ )
// assert( p->pTable[i] == 0 );
// prepare cut storage
for ( i = 0; i <= p->nLutSize; i++ )
p->pList[i] = -1;
// transfer cuts
p->nCuts0 = Kf_SetLoadCuts( p->pCuts0, pCuts0 );
p->nCuts1 = Kf_SetLoadCuts( p->pCuts1, pCuts1 );
p->nCuts = 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Kf_ManStoreStart( Vec_Int_t * vTemp, int nCuts )
{
Vec_IntClear( vTemp );
Vec_IntPush( vTemp, nCuts ); // cut count
Vec_IntPush( vTemp, -1 ); // best offset
}
static inline void Kf_ManStoreAddUnit( Vec_Int_t * vTemp, int iObj, int Time, float Area )
{
Vec_IntAddToEntry( vTemp, 0, 1 );
Vec_IntPush( vTemp, 1 ); // cut size
Vec_IntPush( vTemp, Abc_Var2Lit(iObj, 0) ); // leaf
Vec_IntPush( vTemp, 2 ); // function
Vec_IntPush( vTemp, Time ); // delay
Vec_IntPush( vTemp, Abc_Float2Int(Area) ); // area
}
static inline void Kf_ManSaveResults( Kf_Cut_t ** ppCuts, int nCuts, Kf_Cut_t * pCutBest, Vec_Int_t * vTemp )
{
int i, k;
assert( nCuts > 0 && nCuts < KF_CUT_MAX );
Kf_ManStoreStart( vTemp, nCuts );
for ( i = 0; i < nCuts; i++ )
{
if ( ppCuts[i] == pCutBest )
Vec_IntWriteEntry( vTemp, 1, Vec_IntSize(vTemp) );
Vec_IntPush( vTemp, ppCuts[i]->nLeaves );
// Vec_IntPushArray( vTemp, ppCuts[i]->pLeaves, ppCuts[i]->nLeaves );
for ( k = 0; k < ppCuts[i]->nLeaves; k++ )
Vec_IntPush( vTemp, Abc_Var2Lit(ppCuts[i]->pLeaves[k], 0) );
Vec_IntPush( vTemp, ppCuts[i]->iFunc );
Vec_IntPush( vTemp, ppCuts[i]->Delay );
Vec_IntPush( vTemp, Abc_Float2Int(ppCuts[i]->Area) );
}
assert( Vec_IntEntry(vTemp, 1) > 0 );
}
static inline int Kf_SetCompareCuts( Kf_Cut_t * p1, Kf_Cut_t * p2 )
{
if ( p1 == NULL || p2 == NULL )
return (p1 != NULL) - (p2 != NULL);
if ( p1->nLeaves != p2->nLeaves )
return p1->nLeaves - p2->nLeaves;
return memcmp( p1->pLeaves, p2->pLeaves, sizeof(int)*p1->nLeaves );
}
static inline void Kf_SetAddToList( Kf_Set_t * p, Kf_Cut_t * pCut, int fSort )
{
if ( !fSort )
pCut->iNext = p->pList[pCut->nLeaves], p->pList[pCut->nLeaves] = Kf_SetCutId(p, pCut);
else
{
int Value, * pPlace;
Kf_Cut_t * pTemp;
Vec_IntSelectSort( pCut->pLeaves, pCut->nLeaves );
Kf_ListForEachCutP( p, pCut->nLeaves, pTemp, pPlace )
{
if ( (Value = Kf_SetCompareCuts(pTemp, pCut)) > 0 )
break;
assert( Value < 0 );
pPlace = &pTemp->iNext;
}
pCut->iNext = *pPlace, *pPlace = Kf_SetCutId(p, pCut);
}
}
static inline int Kf_CutCompare( Kf_Cut_t * pCut0, Kf_Cut_t * pCut1, int fArea )
{
if ( fArea )
{
if ( pCut0->Area < pCut1->Area ) return -1;
if ( pCut0->Area > pCut1->Area ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
}
else
{
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
if ( pCut0->Area < pCut1->Area ) return -1;
if ( pCut0->Area > pCut1->Area ) return 1;
}
return 0;
}
static inline int Kf_SetStoreAddOne( Kf_Set_t * p, int nCuts, int nCutNum, Kf_Cut_t * pCut, int fArea )
{
int i;
p->ppCuts[nCuts] = pCut;
if ( nCuts == 0 )
return 1;
for ( i = nCuts; i > 0; i-- )
if ( Kf_CutCompare(p->ppCuts[i-1], p->ppCuts[i], fArea) > 0 )
ABC_SWAP( Kf_Cut_t *, p->ppCuts[i-1], p->ppCuts[i] )
else
break;
return Abc_MinInt( nCuts+1, nCutNum );
}
static inline void Kf_SetSelectBest( Kf_Set_t * p, int fArea, int fSort )
{
// int fArea = p->pMan->pPars->fArea;
Kf_Cut_t * pCut;
int i, nCuts = 0;
for ( i = 0; i <= p->nLutSize; i++ )
Kf_ListForEachCut( p, i, pCut )
nCuts = Kf_SetStoreAddOne( p, nCuts, p->nCutNum-1, pCut, fArea );
assert( nCuts > 0 && nCuts < p->nCutNum );
p->nCuts = nCuts;
p->pCutBest = p->ppCuts[0];
if ( !fSort )
return;
// sort by size in the reverse order
for ( i = 0; i <= p->nLutSize; i++ )
p->pList[i] = -1;
for ( i = 0; i < nCuts; i++ )
Kf_SetAddToList( p, p->ppCuts[i], 0 );
p->nCuts = 0;
for ( i = p->nLutSize; i >= 0; i-- )
Kf_ListForEachCut( p, i, pCut )
p->ppCuts[p->nCuts++] = pCut;
assert( p->nCuts == nCuts );
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_CheckCut( Kf_Cut_t * pBase, Kf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int * pB = pBase->pLeaves;
int * pC = pCut->pLeaves;
int i, k;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Kf_CheckCuts( Kf_Set_t * p )
{
Kf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( p->nCuts > 0 );
for ( i = 0; i <= p->nLutSize; i++ )
Kf_ListForEachCut( p, i, pCut0 )
{
// check duplicates
for ( m = 0; m < pCut0->nLeaves; m++ )
for ( n = m+1; n < pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] != pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k <= p->nLutSize; k++ )
Kf_ListForEachCut( p, k, pCut1 )
{
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Kf_CheckCut( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis [Hash table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_HashLookup( Kf_Set_t * p, int i )
{
int k;
assert( i > 0 );
for ( k = i & p->TableMask; p->pTable[k]; k = (k + 1) & p->TableMask )
if ( p->pTable[k] == i )
return -1;
return k;
}
static inline int Kf_HashFindOrAdd( Kf_Set_t * p, int i )
{
int k = Kf_HashLookup( p, i );
if ( k == -1 )
return 0;
if ( p->nTEntries == p->nLutSize )
return 1;
assert( p->pTable[k] == 0 );
p->pTable[k] = i;
p->pPlace[p->nTEntries] = k;
p->pValue[k] = p->nTEntries++;
return 0;
}
static inline void Kf_HashPopulate( Kf_Set_t * p, Kf_Cut_t * pCut )
{
int i;
assert( p->nTEntries == 0 );
for ( i = 0; i < pCut->nLeaves; i++ )
Kf_HashFindOrAdd( p, pCut->pLeaves[i] );
assert( p->nTEntries == pCut->nLeaves );
}
static inline void Kf_HashCleanup( Kf_Set_t * p, int iStart )
{
int i;
for ( i = iStart; i < p->nTEntries; i++ )
p->pTable[p->pPlace[i]] = 0;
p->nTEntries = iStart;
}
/**Function*************************************************************
Synopsis [Cut merging with arbitary order.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_SetCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline word Kf_SetCutGetSign( Kf_Cut_t * p )
{
word Sign = 0; int i;
for ( i = 0; i < p->nLeaves; i++ )
Sign |= ((word)1) << (p->pLeaves[i] & 0x3F);
return Sign;
}
// returns 1 if the cut in hash table is dominated by the given one
static inline int Kf_SetCutDominatedByThis( Kf_Set_t * p, Kf_Cut_t * pCut )
{
int i;
for ( i = 0; i < pCut->nLeaves; i++ )
if ( Kf_HashLookup(p, pCut->pLeaves[i]) >= 0 )
return 0;
return 1;
}
static inline int Kf_SetRemoveDuplicates( Kf_Set_t * p, int nLeaves, word Sign )
{
Kf_Cut_t * pCut;
Kf_ListForEachCut( p, nLeaves, pCut )
if ( pCut->Sign == Sign && Kf_SetCutDominatedByThis(p, pCut) )
return 1;
return 0;
}
static inline void Kf_SetFilter( Kf_Set_t * p )
{
Kf_Cut_t * pCut0, * pCut1;
int i, k, * pPlace;
assert( p->nCuts > 0 );
for ( i = 0; i <= p->nLutSize; i++ )
Kf_ListForEachCutP( p, i, pCut0, pPlace )
{
Kf_HashPopulate( p, pCut0 );
for ( k = 0; k < pCut0->nLeaves; k++ )
Kf_ListForEachCut( p, k, pCut1 )
if ( (pCut0->Sign & pCut1->Sign) == pCut1->Sign && Kf_SetCutDominatedByThis(p, pCut1) )
{ k = pCut0->nLeaves; p->nCuts--; break; }
if ( k == pCut0->nLeaves + 1 ) // remove pCut0
*pPlace = pCut0->iNext;
else
pPlace = &pCut0->iNext;
Kf_HashCleanup( p, 0 );
}
assert( p->nCuts > 0 );
}
static inline void Kf_SetMergePairs( Kf_Set_t * p, Kf_Cut_t * pCut0, Kf_Cut_t * pCuts, int nCuts, int fArea )
{
Kf_Cut_t * pCut1, * pCutR; int i;
Kf_HashPopulate( p, pCut0 );
for ( pCut1 = pCuts; pCut1 < pCuts + nCuts; pCut1++ )
{
if ( pCut0->nLeaves + pCut1->nLeaves > p->nLutSize && Kf_SetCountBits(pCut0->Sign | pCut1->Sign) > p->nLutSize )
continue;
Kf_HashCleanup( p, pCut0->nLeaves );
for ( i = 0; i < pCut1->nLeaves; i++ )
if ( Kf_HashFindOrAdd(p, pCut1->pLeaves[i]) )
break;
if ( i < pCut1->nLeaves )
continue;
p->CutCount[1]++;
if ( Kf_SetRemoveDuplicates(p, p->nTEntries, pCut0->Sign | pCut1->Sign) )
continue;
// create new cut
pCutR = p->pCutsR + p->nCuts++;
pCutR->nLeaves = p->nTEntries;
for ( i = 0; i < p->nTEntries; i++ )
pCutR->pLeaves[i] = p->pTable[p->pPlace[i]];
pCutR->Sign = pCut0->Sign | pCut1->Sign;
pCutR->Delay = Abc_MaxInt(pCut0->Delay, pCut1->Delay);
pCutR->Area = pCut0->Area + pCut1->Area;
// add new cut
Kf_SetAddToList( p, pCutR, 0 );
}
Kf_HashCleanup( p, 0 );
}
static inline void Kf_SetMerge( Kf_Set_t * p, int * pCuts0, int * pCuts1, int fArea, int fCutMin )
{
int c0, c1;
Kf_SetPrepare( p, pCuts0, pCuts1 );
p->CutCount[0] += p->nCuts0 * p->nCuts1;
// for ( c0 = 1; c0 < p->nCuts0; c0++ )
// assert( p->pCuts0[c0-1].nLeaves >= p->pCuts0[c0].nLeaves );
for ( c0 = c1 = 0; c0 < p->nCuts0 && c1 < p->nCuts1; )
{
if ( p->pCuts0[c0].nLeaves >= p->pCuts1[c1].nLeaves )
Kf_SetMergePairs( p, p->pCuts0 + c0++, p->pCuts1 + c1, p->nCuts1 - c1, fArea );
else
Kf_SetMergePairs( p, p->pCuts1 + c1++, p->pCuts0 + c0, p->nCuts0 - c0, fArea );
}
p->CutCount[2] += p->nCuts;
Kf_SetFilter( p );
// Kf_CheckCuts( p );
p->CutCount[3] += Abc_MinInt( p->nCuts, p->nCutNum-1 );
Kf_SetSelectBest( p, fArea, 1 );
}
/**Function*************************************************************
Synopsis [Cut merging with fixed order.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_SetCutIsContainedSimple( Kf_Cut_t * pBase, Kf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int * pB = pBase->pLeaves;
int * pC = pCut->pLeaves;
int i, k;
assert( nSizeB >= nSizeC );
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Kf_SetMergeSimpleOne( Kf_Cut_t * pCut0, Kf_Cut_t * pCut1, Kf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int * pC0 = pCut0->pLeaves;
int * pC1 = pCut1->pLeaves;
int * pC = pCut->pLeaves;
int i, k, c;
// compare two cuts with different numbers
c = nSize0;
for ( i = 0; i < nSize1; i++ )
{
for ( k = 0; k < nSize0; k++ )
if ( pC1[i] == pC0[k] )
break;
if ( k < nSize0 )
continue;
if ( c == nLutSize )
return 0;
pC[c++] = pC1[i];
}
for ( i = 0; i < nSize0; i++ )
pC[i] = pC0[i];
pCut->nLeaves = c;
return 1;
}
static inline int Kf_SetRemoveDuplicatesSimple( Kf_Set_t * p, Kf_Cut_t * pCutNew )
{
Kf_Cut_t * pCut;
Kf_ListForEachCut( p, pCutNew->nLeaves, pCut )
if ( pCut->Sign == pCutNew->Sign && Kf_SetCutIsContainedSimple(pCut, pCutNew) )
return 1;
return 0;
}
static inline void Kf_SetFilterSimple( Kf_Set_t * p )
{
Kf_Cut_t * pCut0, * pCut1;
int i, k, * pPlace;
assert( p->nCuts > 0 );
for ( i = 0; i <= p->nLutSize; i++ )
Kf_ListForEachCutP( p, i, pCut0, pPlace )
{
for ( k = 0; k < pCut0->nLeaves; k++ )
Kf_ListForEachCut( p, k, pCut1 )
if ( (pCut0->Sign & pCut1->Sign) == pCut1->Sign && Kf_SetCutIsContainedSimple(pCut0, pCut1) )
{ k = pCut0->nLeaves; p->nCuts--; break; }
if ( k == pCut0->nLeaves + 1 ) // remove pCut0
*pPlace = pCut0->iNext;
else
pPlace = &pCut0->iNext;
}
assert( p->nCuts > 0 );
}
static inline void Kf_SetMergeSimple( Kf_Set_t * p, int * pCuts0, int * pCuts1, int fArea, int fCutMin )
{
Kf_Cut_t * pCut0, * pCut1, * pCutR;
Kf_SetPrepare( p, pCuts0, pCuts1 );
p->CutCount[0] += p->nCuts0 * p->nCuts1;
for ( pCut0 = p->pCuts0; pCut0 < p->pCuts0 + p->nCuts0; pCut0++ )
for ( pCut1 = p->pCuts1; pCut1 < p->pCuts1 + p->nCuts1; pCut1++ )
{
if ( pCut0->nLeaves + pCut1->nLeaves > p->nLutSize && Kf_SetCountBits(pCut0->Sign | pCut1->Sign) > p->nLutSize )
continue;
p->CutCount[1]++;
pCutR = p->pCutsR + p->nCuts;
if ( !Kf_SetMergeSimpleOne(pCut0, pCut1, pCutR, p->nLutSize) )
continue;
p->CutCount[2]++;
pCutR->Sign = pCut0->Sign | pCut1->Sign;
if ( Kf_SetRemoveDuplicatesSimple(p, pCutR) )
continue;
p->nCuts++;
if ( fCutMin )
{
int nOldSupp = pCutR->nLeaves;
// pCutR->iFunc = Kf_SetComputeTruth( p, pCut0->iFunc, pCut1->iFunc, pCut0, pCut1, pCutR );
assert( pCutR->nLeaves <= nOldSupp );
if ( pCutR->nLeaves < nOldSupp )
pCutR->Sign = Kf_SetCutGetSign( pCutR );
// delay and area are inaccurate
}
assert( pCutR->nLeaves > 1 );
pCutR->Delay = Abc_MaxInt(pCut0->Delay, pCut1->Delay);
pCutR->Area = pCut0->Area + pCut1->Area;
// add new cut
Kf_SetAddToList( p, pCutR, 0 );
}
Kf_SetFilterSimple( p );
// Kf_CheckCuts( p );
p->CutCount[3] += Abc_MinInt( p->nCuts, p->nCutNum-1 );
Kf_SetSelectBest( p, fArea, 1 );
}
/**Function*************************************************************
Synopsis [Cut merging with fixed order.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_SetCutIsContainedOrder( Kf_Cut_t * pBase, Kf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, k;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Kf_SetMergeOrderOne( Kf_Cut_t * pCut0, Kf_Cut_t * pCut1, Kf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int * pC0 = pCut0->pLeaves;
int * pC1 = pCut1->pLeaves;
int * pC = pCut->pLeaves;
int i, k, c;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
return 1;
}
static inline int Kf_SetRemoveDuplicatesOrder( Kf_Set_t * p, Kf_Cut_t * pCutNew )
{
Kf_Cut_t * pCut;
Kf_ListForEachCut( p, pCutNew->nLeaves, pCut )
if ( pCut->Sign == pCutNew->Sign && Kf_SetCutIsContainedOrder(pCut, pCutNew) )
return 1;
return 0;
}
static inline void Kf_SetFilterOrder( Kf_Set_t * p )
{
Kf_Cut_t * pCut0, * pCut1;
int i, k, * pPlace;
assert( p->nCuts > 0 );
for ( i = 0; i <= p->nLutSize; i++ )
Kf_ListForEachCutP( p, i, pCut0, pPlace )
{
for ( k = 0; k < pCut0->nLeaves; k++ )
Kf_ListForEachCut( p, k, pCut1 )
if ( (pCut0->Sign & pCut1->Sign) == pCut1->Sign && Kf_SetCutIsContainedOrder(pCut0, pCut1) )
{ k = pCut0->nLeaves; p->nCuts--; break; }
if ( k == pCut0->nLeaves + 1 ) // remove pCut0
*pPlace = pCut0->iNext;
else
pPlace = &pCut0->iNext;
}
assert( p->nCuts > 0 );
}
/*
int Kf_SetComputeTruth( Kf_Man_t * p, int iFuncLit0, int iFuncLit1, int * pCut0, int * pCut1, int * pCutOut )
{
word uTruth[JF_WORD_MAX], uTruth0[JF_WORD_MAX], uTruth1[JF_WORD_MAX];
int fCompl, truthId;
int LutSize = p->pPars->nLutSize;
int nWords = Abc_Truth6WordNum(p->pPars->nLutSize);
word * pTruth0 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(iFuncLit0));
word * pTruth1 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(iFuncLit1));
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(iFuncLit0) );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(iFuncLit1) );
Abc_TtExpand( uTruth0, LutSize, pCut0 + 1, Kf_CutSize(pCut0), pCutOut + 1, Kf_CutSize(pCutOut) );
Abc_TtExpand( uTruth1, LutSize, pCut1 + 1, Kf_CutSize(pCut1), pCutOut + 1, Kf_CutSize(pCutOut) );
fCompl = (int)(uTruth0[0] & uTruth1[0] & 1);
Abc_TtAnd( uTruth, uTruth0, uTruth1, nWords, fCompl );
pCutOut[0] = Abc_TtMinBase( uTruth, pCutOut + 1, pCutOut[0], LutSize );
assert( (uTruth[0] & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
return Abc_Var2Lit( truthId, fCompl );
}
*/
static inline void Kf_SetMergeOrder( Kf_Set_t * p, int * pCuts0, int * pCuts1, int fArea, int fCutMin )
{
Kf_Cut_t * pCut0, * pCut1, * pCutR;
Kf_SetPrepare( p, pCuts0, pCuts1 );
p->CutCount[0] += p->nCuts0 * p->nCuts1;
for ( pCut0 = p->pCuts0; pCut0 < p->pCuts0 + p->nCuts0; pCut0++ )
for ( pCut1 = p->pCuts1; pCut1 < p->pCuts1 + p->nCuts1; pCut1++ )
{
if ( pCut0->nLeaves + pCut1->nLeaves > p->nLutSize && Kf_SetCountBits(pCut0->Sign | pCut1->Sign) > p->nLutSize )
continue;
p->CutCount[1]++;
pCutR = p->pCutsR + p->nCuts;
if ( !Kf_SetMergeOrderOne(pCut0, pCut1, pCutR, p->nLutSize) )
continue;
p->CutCount[2]++;
pCutR->Sign = pCut0->Sign | pCut1->Sign;
if ( Kf_SetRemoveDuplicatesOrder(p, pCutR) )
continue;
p->nCuts++;
if ( fCutMin )
{
int nOldSupp = pCutR->nLeaves;
// pCutR->iFunc = Kf_SetComputeTruth( p, pCut0->iFunc, pCut1->iFunc, pCut0, pCut1, pCutR );
assert( pCutR->nLeaves <= nOldSupp );
if ( pCutR->nLeaves < nOldSupp )
pCutR->Sign = Kf_SetCutGetSign( pCutR );
// delay and area are inaccurate
}
assert( pCutR->nLeaves > 1 );
pCutR->Delay = Abc_MaxInt(pCut0->Delay, pCut1->Delay);
pCutR->Area = pCut0->Area + pCut1->Area;
// add new cut
Kf_SetAddToList( p, pCutR, 0 );
}
Kf_SetFilterOrder( p );
// Kf_CheckCuts( p );
p->CutCount[3] += Abc_MinInt( p->nCuts, p->nCutNum-1 );
Kf_SetSelectBest( p, fArea, 1 );
}
/**Function*************************************************************
Synopsis [Cut operations.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Kf_CutSize( int * pCut ) { return pCut[0]; }
static inline int Kf_CutFunc( int * pCut ) { return pCut[pCut[0] + 1]; }
static inline int Kf_CutLeaf( int * pCut, int i ) { assert(i); return Abc_Lit2Var(pCut[i]); }
static inline int Kf_CutTime( Kf_Man_t * p, int * pCut )
{
int i, Time = 0;
for ( i = 1; i <= Kf_CutSize(pCut); i++ )
Time = Abc_MaxInt( Time, Kf_ObjTime(p, Kf_CutLeaf(pCut, i)) );
return Time + 1;
}
static inline void Kf_CutRef( Kf_Man_t * p, int * pCut )
{
int i;
for ( i = 1; i <= Kf_CutSize(pCut); i++ )
Gia_ObjRefIncId( p->pGia, Kf_CutLeaf(pCut, i) );
}
static inline void Kf_CutDeref( Kf_Man_t * p, int * pCut )
{
int i;
for ( i = 1; i <= Kf_CutSize(pCut); i++ )
Gia_ObjRefDecId( p->pGia, Kf_CutLeaf(pCut, i) );
}
static inline void Kf_CutPrint( int * pCut )
{
int i;
printf( "%d {", Kf_CutSize(pCut) );
for ( i = 1; i <= Kf_CutSize(pCut); i++ )
printf( " %d", Kf_CutLeaf(pCut, i) );
printf( " } Func = %d\n", Kf_CutFunc(pCut) );
}
static inline void Gia_CutSetPrint( int * pCuts )
{
int i, * pCut;
Kf_ObjForEachCutInt( pCuts, pCut, i )
Kf_CutPrint( pCut );
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Computing delay/area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kf_ManComputeDelay( Kf_Man_t * p, int fEval )
{
Gia_Obj_t * pObj;
int i, Delay = 0;
if ( fEval )
{
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjRefNum(p->pGia, pObj) > 0 )
Vec_IntWriteEntry( &p->vTime, i, Kf_CutTime(p, Kf_ObjCutBest(p, i)) );
}
Gia_ManForEachCoDriver( p->pGia, pObj, i )
{
assert( Gia_ObjRefNum(p->pGia, pObj) > 0 );
Delay = Abc_MaxInt( Delay, Kf_ObjTime(p, Gia_ObjId(p->pGia, pObj)) );
}
return Delay;
}
int Kf_ManComputeRefs( Kf_Man_t * p )
{
Gia_Obj_t * pObj;
float nRefsNew; int i, * pCut;
float * pRefs = Vec_FltArray(&p->vRefs);
float * pFlow = Vec_FltArray(&p->vArea);
assert( p->pGia->pRefs != NULL );
memset( p->pGia->pRefs, 0, sizeof(int) * Gia_ManObjNum(p->pGia) );
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachObjReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsCo(pObj) || Gia_ObjIsBuf(pObj) )
Gia_ObjRefInc( p->pGia, Gia_ObjFanin0(pObj) );
else if ( Gia_ObjIsAnd(pObj) && Gia_ObjRefNum(p->pGia, pObj) > 0 )
{
pCut = Kf_ObjCutBest(p, i);
Kf_CutRef( p, pCut );
p->pPars->Edge += Kf_CutSize(pCut);
p->pPars->Area++;
}
}
// blend references and normalize flow
for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ )
{
if ( p->pPars->fOptEdge )
nRefsNew = Abc_MaxFloat( 1, 0.8 * pRefs[i] + 0.2 * p->pGia->pRefs[i] );
else
nRefsNew = Abc_MaxFloat( 1, 0.2 * pRefs[i] + 0.8 * p->pGia->pRefs[i] );
pFlow[i] = pFlow[i] * pRefs[i] / nRefsNew;
pRefs[i] = nRefsNew;
assert( pFlow[i] >= 0 );
}
// compute delay
p->pPars->Delay = Kf_ManComputeDelay( p, 1 );
return p->pPars->Area;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
#define PAR_THR_MAX 100
typedef struct Kf_ThData_t_
{
Kf_Set_t * pSett;
int Id;
int Status;
abctime clkUsed;
} Kf_ThData_t;
void * Kf_WorkerThread( void * pArg )
{
Kf_ThData_t * pThData = (Kf_ThData_t *)pArg;
Kf_Man_t * pMan = pThData->pSett->pMan;
int fAreaOnly = pThData->pSett->pMan->pPars->fAreaOnly;
int fCutMin = pThData->pSett->pMan->pPars->fCutMin;
volatile int * pPlace = &pThData->Status;
abctime clk;
while ( 1 )
{
while ( *pPlace == 0 );
assert( pThData->Status == 1 );
if ( pThData->Id == -1 )
{
pthread_exit( NULL );
assert( 0 );
return NULL;
}
assert( pThData->Id >= 0 );
clk = Abc_Clock();
Kf_SetMergeOrder( pThData->pSett, Kf_ObjCuts0(pMan, pThData->Id), Kf_ObjCuts1(pMan, pThData->Id), fAreaOnly, fCutMin );
pThData->clkUsed += Abc_Clock() - clk;
pThData->Status = 0;
// printf( "Finished object %d\n", pThData->Id );
}
assert( 0 );
return NULL;
}
Vec_Int_t * Kf_ManCreateFaninCounts( Gia_Man_t * p )
{
Vec_Int_t * vCounts;
Gia_Obj_t * pObj; int i;
vCounts = Vec_IntAlloc( Gia_ManObjNum(p) );
Gia_ManForEachObj( p, pObj, i )
{
if ( Gia_ObjIsAnd(pObj) )
Vec_IntPush( vCounts, 2 - Gia_ObjIsCi(Gia_ObjFanin0(pObj)) - Gia_ObjIsCi(Gia_ObjFanin1(pObj)) );
else
Vec_IntPush( vCounts, 0 );
}
assert( Vec_IntSize(vCounts) == Gia_ManObjNum(p) );
return vCounts;
}
void Kf_ManComputeCuts( Kf_Man_t * p )
{
pthread_t WorkerThread[PAR_THR_MAX];
Kf_ThData_t ThData[PAR_THR_MAX];
Vec_Int_t * vStack, * vFanins;
Gia_Obj_t * pObj;
int nProcs = p->pPars->nProcNum;
int i, k, iFan, status, nCountFanins, fRunning;
abctime clk, clkUsed = 0;
assert( nProcs <= PAR_THR_MAX );
// start fanins
vFanins = Kf_ManCreateFaninCounts( p->pGia );
Gia_ManStaticFanoutStart( p->pGia );
// start the stack
vStack = Vec_IntAlloc( 1000 );
Gia_ManForEachObjReverse( p->pGia, pObj, k )
if ( Gia_ObjIsAnd(pObj) && Vec_IntEntry(vFanins, k) == 0 )
Vec_IntPush( vStack, k );
// start the threads
for ( i = 0; i < nProcs; i++ )
{
ThData[i].pSett = p->pSett + i;
ThData[i].Id = -1;
ThData[i].Status = 0;
ThData[i].clkUsed = 0;
status = pthread_create( WorkerThread + i, NULL, Kf_WorkerThread, (void *)(ThData + i) ); assert( status == 0 );
}
nCountFanins = Vec_IntSum(vFanins);
fRunning = 1;
while ( nCountFanins > 0 || Vec_IntSize(vStack) > 0 || fRunning )
{
for ( i = 0; i < nProcs; i++ )
{
if ( ThData[i].Status )
continue;
assert( ThData[i].Status == 0 );
if ( ThData[i].Id >= 0 )
{
int iObj = ThData[i].Id;
Kf_Set_t * pSett = p->pSett + i;
//printf( "Closing obj %d with Thread %d:\n", iObj, i );
clk = Abc_Clock();
// finalize the results
Kf_ManSaveResults( pSett->ppCuts, pSett->nCuts, pSett->pCutBest, p->vTemp );
Vec_IntWriteEntry( &p->vTime, iObj, pSett->pCutBest->Delay + 1 );
Vec_FltWriteEntry( &p->vArea, iObj, (pSett->pCutBest->Area + 1)/Kf_ObjRefs(p, iObj) );
if ( pSett->pCutBest->nLeaves > 1 )
Kf_ManStoreAddUnit( p->vTemp, iObj, Kf_ObjTime(p, iObj), Kf_ObjArea(p, iObj) );
Kf_ObjSetCuts( p, iObj, p->vTemp );
//Gia_CutSetPrint( Kf_ObjCuts(p, iObj) );
clkUsed += Abc_Clock() - clk;
// schedule other nodes
Gia_ObjForEachFanoutStaticId( p->pGia, iObj, iFan, k )
{
if ( !Gia_ObjIsAnd(Gia_ManObj(p->pGia, iFan)) )
continue;
assert( Vec_IntEntry(vFanins, iFan) > 0 );
if ( Vec_IntAddToEntry(vFanins, iFan, -1) == 0 )
Vec_IntPush( vStack, iFan );
assert( nCountFanins > 0 );
nCountFanins--;
}
ThData[i].Id = -1;
}
if ( Vec_IntSize(vStack) > 0 )
{
ThData[i].Id = Vec_IntPop( vStack );
ThData[i].Status = 1;
//printf( "Scheduling %d for Thread %d\n", ThData[i].Id, i );
}
}
fRunning = 0;
for ( i = 0; i < nProcs; i++ )
if ( ThData[i].Status == 1 || (ThData[i].Status == 0 && ThData[i].Id >= 0) )
fRunning = 1;
// printf( "fRunning %d\n", fRunning );
}
Vec_IntForEachEntry( vFanins, iFan, k )
if ( iFan != 0 )
{
printf( "%d -> %d ", k, iFan );
Gia_ObjPrint( p->pGia, Gia_ManObj(p->pGia, k) );
}
assert( Vec_IntSum(vFanins) == 0 );
// stop the threads
for ( i = 0; i < nProcs; i++ )
{
assert( ThData[i].Status == 0 );
ThData[i].Id = -1;
ThData[i].Status = 1;
}
Gia_ManStaticFanoutStop( p->pGia );
Vec_IntFree( vStack );
Vec_IntFree( vFanins );
if ( !p->pPars->fVerbose )
return;
// print runtime statistics
printf( "Main : " );
Abc_PrintTime( 1, "Time", clkUsed );
for ( i = 0; i < nProcs; i++ )
{
printf( "Thread %d : ", i );
Abc_PrintTime( 1, "Time", ThData[i].clkUsed );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kf_ManPrintStats( Kf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Level =%6lu ", (long)p->pPars->Delay );
printf( "Area =%9lu ", (long)p->pPars->Area );
printf( "Edge =%9lu ", (long)p->pPars->Edge );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Kf_ManComputeMapping( Kf_Man_t * p )
{
Gia_Obj_t * pObj; int i, iPi;
if ( p->pPars->fVerbose )
{
printf( "Aig: CI = %d CO = %d AND = %d ", Gia_ManCiNum(p->pGia), Gia_ManCoNum(p->pGia), Gia_ManAndNum(p->pGia) );
printf( "LutSize = %d CutMax = %d Threads = %d\n", p->pPars->nLutSize, p->pPars->nCutNum, p->pPars->nProcNum );
printf( "Computing cuts...\r" );
fflush( stdout );
}
Gia_ManForEachCi( p->pGia, pObj, iPi )
{
i = Gia_ObjId(p->pGia, pObj);
Kf_ManStoreStart( p->vTemp, 0 );
Kf_ManStoreAddUnit( p->vTemp, i, 0, 0 );
assert( Vec_IntSize(p->vTemp) == 1 + KF_ADD_ON1 + KF_ADD_ON2 );
Kf_ObjSetCuts( p, i, p->vTemp );
}
if ( p->pPars->nProcNum > 0 )
Kf_ManComputeCuts( p );
else
{
Gia_ManForEachAnd( p->pGia, pObj, i )
{
if ( p->pPars->fCutHashing )
Kf_SetMerge( p->pSett, Kf_ObjCuts0(p, i), Kf_ObjCuts1(p, i), p->pPars->fAreaOnly, p->pPars->fCutMin );
else if ( p->pPars->fCutSimple )
Kf_SetMergeSimple( p->pSett, Kf_ObjCuts0(p, i), Kf_ObjCuts1(p, i), p->pPars->fAreaOnly, p->pPars->fCutMin );
else
Kf_SetMergeOrder( p->pSett, Kf_ObjCuts0(p, i), Kf_ObjCuts1(p, i), p->pPars->fAreaOnly, p->pPars->fCutMin );
Kf_ManSaveResults( p->pSett->ppCuts, p->pSett->nCuts, p->pSett->pCutBest, p->vTemp );
Vec_IntWriteEntry( &p->vTime, i, p->pSett->pCutBest->Delay + 1 );
Vec_FltWriteEntry( &p->vArea, i, (p->pSett->pCutBest->Area + 1)/Kf_ObjRefs(p, i) );
if ( p->pSett->pCutBest->nLeaves > 1 )
Kf_ManStoreAddUnit( p->vTemp, i, Kf_ObjTime(p, i), Kf_ObjArea(p, i) );
Kf_ObjSetCuts( p, i, p->vTemp );
//Gia_CutSetPrint( Kf_ObjCuts(p, i) );
}
}
Kf_ManComputeRefs( p );
if ( p->pPars->fVerbose )
{
printf( "CutPair = %lu ", (long)p->pSett->CutCount[0] );
printf( "Merge = %lu ", (long)p->pSett->CutCount[1] );
printf( "Eval = %lu ", (long)p->pSett->CutCount[2] );
printf( "Cut = %lu ", (long)p->pSett->CutCount[3] );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
printf( "Memory: " );
printf( "Gia = %.2f MB ", Gia_ManMemory(p->pGia) / (1<<20) );
printf( "Man = %.2f MB ", 4.0 * sizeof(int) * Gia_ManObjNum(p->pGia) / (1<<20) );
printf( "Cuts = %.2f MB ",Vec_ReportMemory(&p->pMem) / (1<<20) );
printf( "Set = %.2f KB ", 1.0 * sizeof(Kf_Set_t) / (1<<10) );
printf( "\n" );
fflush( stdout );
Kf_ManPrintStats( p, "Start" );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kf_ManSetInitRefs( Gia_Man_t * p, Vec_Flt_t * vRefs )
{
Gia_Obj_t * pObj, * pCtrl, * pData0, * pData1; int i;
Vec_FltFill( vRefs, Gia_ManObjNum(p), 0 );
Gia_ManForEachAnd( p, pObj, i )
{
Vec_FltAddToEntry( vRefs, Gia_ObjFaninId0(pObj, i), 1 );
Vec_FltAddToEntry( vRefs, Gia_ObjFaninId1(pObj, i), 1 );
if ( !Gia_ObjIsMuxType(pObj) )
continue;
// discount XOR/MUX
pCtrl = Gia_ObjRecognizeMux( pObj, &pData1, &pData0 );
Vec_FltAddToEntry( vRefs, Gia_ObjId(p, Gia_Regular(pCtrl)), -1 );
if ( Gia_Regular(pData0) == Gia_Regular(pData1) )
Vec_FltAddToEntry( vRefs, Gia_ObjId(p, Gia_Regular(pData0)), -1 );
}
Gia_ManForEachCo( p, pObj, i )
Vec_FltAddToEntry( vRefs, Gia_ObjFaninId0(pObj, Gia_ObjId(p, pObj)), 1 );
for ( i = 0; i < Gia_ManObjNum(p); i++ )
Vec_FltUpdateEntry( vRefs, i, 1 );
}
Kf_Man_t * Kf_ManAlloc( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Kf_Man_t * p; int i;
assert( pPars->nLutSize <= KF_LEAF_MAX );
assert( pPars->nCutNum <= KF_CUT_MAX );
assert( pPars->nProcNum <= KF_PROC_MAX );
Vec_IntFreeP( &pGia->vMapping );
p = ABC_CALLOC( Kf_Man_t, 1 );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
Vec_SetAlloc_( &p->pMem, 20 );
Vec_IntFill( &p->vCuts, Gia_ManObjNum(pGia), 0 );
Vec_IntFill( &p->vTime, Gia_ManObjNum(pGia), 0 );
Vec_FltFill( &p->vArea, Gia_ManObjNum(pGia), 0 );
Kf_ManSetInitRefs( pGia, &p->vRefs );
p->vTemp = Vec_IntAlloc( 1000 );
pGia->pRefs = ABC_CALLOC( int, Gia_ManObjNum(pGia) );
// prepare cut sets
for ( i = 0; i < Abc_MaxInt(1, pPars->nProcNum); i++ )
{
(p->pSett + i)->pMan = p;
(p->pSett + i)->nLutSize = (unsigned short)pPars->nLutSize;
(p->pSett + i)->nCutNum = (unsigned short)pPars->nCutNum;
(p->pSett + i)->TableMask = (1 << KF_LOG_TABLE) - 1;
}
return p;
}
void Kf_ManFree( Kf_Man_t * p )
{
ABC_FREE( p->pGia->pRefs );
ABC_FREE( p->vCuts.pArray );
ABC_FREE( p->vTime.pArray );
ABC_FREE( p->vArea.pArray );
ABC_FREE( p->vRefs.pArray );
Vec_IntFreeP( &p->vTemp );
Vec_SetFree_( &p->pMem );
ABC_FREE( p );
}
Gia_Man_t * Kf_ManDerive( Kf_Man_t * p )
{
Vec_Int_t * vMapping;
Gia_Obj_t * pObj;
int i, k, * pCut;
assert( !p->pPars->fCutMin );
vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 );
Gia_ManForEachAnd( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) || Gia_ObjRefNum(p->pGia, pObj) == 0 )
continue;
pCut = Kf_ObjCutBest( p, i );
Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, Kf_CutSize(pCut) );
for ( k = 1; k <= Kf_CutSize(pCut); k++ )
Vec_IntPush( vMapping, Kf_CutLeaf(pCut, k) );
Vec_IntPush( vMapping, i );
}
assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vMapping = vMapping;
// Gia_ManMappingVerify( p->pGia );
return p->pGia;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kf_ManSetDefaultPars( Jf_Par_t * pPars )
{
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 8;
pPars->nProcNum = 0;
pPars->nRounds = 1;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 0;
pPars->fCutMin = 0;
pPars->fFuncDsd = 0;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fCutHashing = 0;
pPars->fCutSimple = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = KF_LEAF_MAX;
pPars->nCutNumMax = KF_CUT_MAX;
pPars->nProcNumMax = KF_PROC_MAX;
}
Gia_Man_t * Kf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Kf_Man_t * p;
Gia_Man_t * pNew;
p = Kf_ManAlloc( pGia, pPars );
Kf_ManComputeMapping( p );
pNew = Kf_ManDerive( p );
Kf_ManFree( p );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
#endif // pthreads are used
ABC_NAMESPACE_IMPL_END