blob: 78a935be4a54dacad33a311b4dad4f4584957897 [file] [log] [blame]
/**CFile****************************************************************
FileName [ivyDsd.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [And-Inverter Graph package.]
Synopsis [Disjoint-support decomposition.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - May 11, 2006.]
Revision [$Id: ivyDsd.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ivy.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// decomposition types
typedef enum {
IVY_DEC_PI, // 0: var
IVY_DEC_CONST1, // 1: CONST1
IVY_DEC_BUF, // 2: BUF
IVY_DEC_AND, // 3: AND
IVY_DEC_EXOR, // 4: EXOR
IVY_DEC_MUX, // 5: MUX
IVY_DEC_MAJ, // 6: MAJ
IVY_DEC_PRIME // 7: undecomposable
} Ivy_DecType_t;
typedef struct Ivy_Dec_t_ Ivy_Dec_t;
struct Ivy_Dec_t_
{
unsigned Type : 4; // the node type (PI, CONST1, AND, EXOR, MUX, PRIME)
unsigned fCompl : 1; // shows if node is complemented (root node only)
unsigned nFans : 3; // the number of fanins
unsigned Fan0 : 4; // fanin 0
unsigned Fan1 : 4; // fanin 1
unsigned Fan2 : 4; // fanin 2
unsigned Fan3 : 4; // fanin 3
unsigned Fan4 : 4; // fanin 4
unsigned Fan5 : 4; // fanin 5
};
static inline int Ivy_DecToInt( Ivy_Dec_t m ) { union { Ivy_Dec_t x; int y; } v; v.x = m; return v.y; }
static inline Ivy_Dec_t Ivy_IntToDec( int m ) { union { Ivy_Dec_t x; int y; } v; v.y = m; return v.x; }
static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *pNode = Ivy_IntToDec(0); }
//static inline int Ivy_DecToInt( Ivy_Dec_t Node ) { return *((int *)&Node); }
//static inline Ivy_Dec_t Ivy_IntToDec( int Node ) { return *((Ivy_Dec_t *)&Node); }
//static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *((int *)pNode) = 0; }
static unsigned s_Masks[6][2] = {
{ 0x55555555, 0xAAAAAAAA },
{ 0x33333333, 0xCCCCCCCC },
{ 0x0F0F0F0F, 0xF0F0F0F0 },
{ 0x00FF00FF, 0xFF00FF00 },
{ 0x0000FFFF, 0xFFFF0000 },
{ 0x00000000, 0xFFFFFFFF }
};
static inline int Ivy_TruthWordCountOnes( unsigned uWord )
{
uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555);
uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333);
uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F);
uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF);
return (uWord & 0x0000FFFF) + (uWord>>16);
}
static inline int Ivy_TruthCofactorIsConst( unsigned uTruth, int Var, int Cof, int Const )
{
if ( Const == 0 )
return (uTruth & s_Masks[Var][Cof]) == 0;
else
return (uTruth & s_Masks[Var][Cof]) == s_Masks[Var][Cof];
}
static inline int Ivy_TruthCofactorIsOne( unsigned uTruth, int Var )
{
return (uTruth & s_Masks[Var][0]) == 0;
}
static inline unsigned Ivy_TruthCofactor( unsigned uTruth, int Var )
{
unsigned uCofactor = uTruth & s_Masks[Var >> 1][(Var & 1) == 0];
int Shift = (1 << (Var >> 1));
if ( Var & 1 )
return uCofactor | (uCofactor << Shift);
return uCofactor | (uCofactor >> Shift);
}
static inline unsigned Ivy_TruthCofactor2( unsigned uTruth, int Var0, int Var1 )
{
return Ivy_TruthCofactor( Ivy_TruthCofactor(uTruth, Var0), Var1 );
}
// returns 1 if the truth table depends on this var (var is regular interger var)
static inline int Ivy_TruthDepends( unsigned uTruth, int Var )
{
return Ivy_TruthCofactor(uTruth, Var << 1) != Ivy_TruthCofactor(uTruth, (Var << 1) | 1);
}
static inline void Ivy_DecSetVar( Ivy_Dec_t * pNode, int iNum, unsigned Var )
{
assert( iNum >= 0 && iNum <= 5 );
switch( iNum )
{
case 0: pNode->Fan0 = Var; break;
case 1: pNode->Fan1 = Var; break;
case 2: pNode->Fan2 = Var; break;
case 3: pNode->Fan3 = Var; break;
case 4: pNode->Fan4 = Var; break;
case 5: pNode->Fan5 = Var; break;
}
}
static inline unsigned Ivy_DecGetVar( Ivy_Dec_t * pNode, int iNum )
{
assert( iNum >= 0 && iNum <= 5 );
switch( iNum )
{
case 0: return pNode->Fan0;
case 1: return pNode->Fan1;
case 2: return pNode->Fan2;
case 3: return pNode->Fan3;
case 4: return pNode->Fan4;
case 5: return pNode->Fan5;
}
return ~0;
}
static int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree );
static int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree );
//int nTruthDsd;
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes DSD of truth table of 5 variables or less.]
Description [Returns 1 if the function is a constant or is fully
DSD decomposable using AND/EXOR/MUX gates.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthDsd( unsigned uTruth, Vec_Int_t * vTree )
{
Ivy_Dec_t Node;
int i, RetValue;
// set the PI variables
Vec_IntClear( vTree );
for ( i = 0; i < 5; i++ )
Vec_IntPush( vTree, 0 );
// check if it is a constant
if ( uTruth == 0 || ~uTruth == 0 )
{
Ivy_DecClear( &Node );
Node.Type = IVY_DEC_CONST1;
Node.fCompl = (uTruth == 0);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return 1;
}
// perform the decomposition
RetValue = Ivy_TruthDecompose_rec( uTruth, vTree );
if ( RetValue == -1 )
return 0;
// get the topmost node
if ( (RetValue >> 1) < 5 )
{ // add buffer
Ivy_DecClear( &Node );
Node.Type = IVY_DEC_BUF;
Node.fCompl = (RetValue & 1);
Node.Fan0 = ((RetValue >> 1) << 1);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
}
else if ( RetValue & 1 )
{ // check if the topmost node has to be complemented
Node = Ivy_IntToDec( Vec_IntPop(vTree) );
assert( Node.fCompl == 0 );
Node.fCompl = (RetValue & 1);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
}
if ( uTruth != Ivy_TruthDsdCompute(vTree) )
printf( "Verification failed.\n" );
return 1;
}
/**Function*************************************************************
Synopsis [Computes DSD of truth table.]
Description [Returns the number of topmost decomposition node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree )
{
Ivy_Dec_t Node;
int Supp[5], Vars0[5], Vars1[5], Vars2[5], * pVars = NULL;
int nSupp, Count0, Count1, Count2, nVars = 0, RetValue, fCompl = 0, i;
unsigned uTruthCof, uCof0, uCof1;
// get constant confactors
Count0 = Count1 = Count2 = nSupp = 0;
for ( i = 0; i < 5; i++ )
{
if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 0) )
Vars0[Count0++] = (i << 1) | 0;
else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 0) )
Vars0[Count0++] = (i << 1) | 1;
else if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 1) )
Vars1[Count1++] = (i << 1) | 0;
else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 1) )
Vars1[Count1++] = (i << 1) | 1;
else
{
uCof0 = Ivy_TruthCofactor( uTruth, (i << 1) | 1 );
uCof1 = Ivy_TruthCofactor( uTruth, (i << 1) | 0 );
if ( uCof0 == ~uCof1 )
Vars2[Count2++] = (i << 1) | 0;
else if ( uCof0 != uCof1 )
Supp[nSupp++] = i;
}
}
assert( Count0 == 0 || Count1 == 0 );
assert( Count0 == 0 || Count2 == 0 );
assert( Count1 == 0 || Count2 == 0 );
// consider the case of a single variable
if ( Count0 == 1 && nSupp == 0 )
return Vars0[0];
// consider more complex decompositions
if ( Count0 == 0 && Count1 == 0 && Count2 == 0 )
return Ivy_TruthRecognizeMuxMaj( uTruth, Supp, nSupp, vTree );
// extract the nodes
Ivy_DecClear( &Node );
if ( Count0 > 0 )
nVars = Count0, pVars = Vars0, Node.Type = IVY_DEC_AND, fCompl = 0;
else if ( Count1 > 0 )
nVars = Count1, pVars = Vars1, Node.Type = IVY_DEC_AND, fCompl = 1, uTruth = ~uTruth;
else if ( Count2 > 0 )
nVars = Count2, pVars = Vars2, Node.Type = IVY_DEC_EXOR, fCompl = 0;
else
assert( 0 );
Node.nFans = nVars+(nSupp>0);
// compute cofactor
uTruthCof = uTruth;
for ( i = 0; i < nVars; i++ )
{
uTruthCof = Ivy_TruthCofactor( uTruthCof, pVars[i] );
Ivy_DecSetVar( &Node, i, pVars[i] );
}
if ( Node.Type == IVY_DEC_EXOR )
fCompl ^= ((Node.nFans & 1) == 0);
if ( nSupp > 0 )
{
assert( uTruthCof != 0 && ~uTruthCof != 0 );
// call recursively
RetValue = Ivy_TruthDecompose_rec( uTruthCof, vTree );
// quit if non-decomposable
if ( RetValue == -1 )
return -1;
// remove the complement from the child if the node is EXOR
if ( Node.Type == IVY_DEC_EXOR && (RetValue & 1) )
{
fCompl ^= 1;
RetValue ^= 1;
}
// set the new decomposition
Ivy_DecSetVar( &Node, nVars, RetValue );
}
else if ( Node.Type == IVY_DEC_EXOR )
fCompl ^= (uTruthCof == 0);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return ((Vec_IntSize(vTree)-1) << 1) | fCompl;
}
/**Function*************************************************************
Synopsis [Returns a non-negative number if the truth table is a MUX.]
Description [If the truth table is a MUX, returns the variable as follows:
first, control variable; second, positive cofactor; third, negative cofactor.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree )
{
Ivy_Dec_t Node;
int i, k, RetValue0, RetValue1;
unsigned uCof0, uCof1, Num;
char Count[3];
assert( nSupp >= 3 );
// start the node
Ivy_DecClear( &Node );
Node.Type = IVY_DEC_MUX;
Node.nFans = 3;
// try each of the variables
for ( i = 0; i < nSupp; i++ )
{
// get the cofactors with respect to these variables
uCof0 = Ivy_TruthCofactor( uTruth, (pSupp[i] << 1) | 1 );
uCof1 = Ivy_TruthCofactor( uTruth, pSupp[i] << 1 );
// go through all other variables and make sure
// each of them belongs to the support of one cofactor
for ( k = 0; k < nSupp; k++ )
{
if ( k == i )
continue;
if ( Ivy_TruthDepends(uCof0, pSupp[k]) && Ivy_TruthDepends(uCof1, pSupp[k]) )
break;
}
if ( k < nSupp )
continue;
// MUX decomposition exists
RetValue0 = Ivy_TruthDecompose_rec( uCof0, vTree );
if ( RetValue0 == -1 )
break;
RetValue1 = Ivy_TruthDecompose_rec( uCof1, vTree );
if ( RetValue1 == -1 )
break;
// both of them exist; create the node
Ivy_DecSetVar( &Node, 0, pSupp[i] << 1 );
Ivy_DecSetVar( &Node, 1, RetValue1 );
Ivy_DecSetVar( &Node, 2, RetValue0 );
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return ((Vec_IntSize(vTree)-1) << 1) | 0;
}
// check majority gate
if ( nSupp > 3 )
return -1;
if ( Ivy_TruthWordCountOnes(uTruth) != 16 )
return -1;
// this is a majority gate; determine polarity
Node.Type = IVY_DEC_MAJ;
Count[0] = Count[1] = Count[2] = 0;
for ( i = 0; i < 8; i++ )
{
Num = 0;
for ( k = 0; k < 3; k++ )
if ( i & (1 << k) )
Num |= (1 << pSupp[k]);
assert( Num < 32 );
if ( (uTruth & (1 << Num)) == 0 )
continue;
for ( k = 0; k < 3; k++ )
if ( i & (1 << k) )
Count[k]++;
}
assert( Count[0] == 1 || Count[0] == 3 );
assert( Count[1] == 1 || Count[1] == 3 );
assert( Count[2] == 1 || Count[2] == 3 );
Ivy_DecSetVar( &Node, 0, (pSupp[0] << 1)|(Count[0] == 1) );
Ivy_DecSetVar( &Node, 1, (pSupp[1] << 1)|(Count[1] == 1) );
Ivy_DecSetVar( &Node, 2, (pSupp[2] << 1)|(Count[2] == 1) );
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return ((Vec_IntSize(vTree)-1) << 1) | 0;
}
/**Function*************************************************************
Synopsis [Computes truth table of decomposition tree for verification.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Ivy_TruthDsdCompute_rec( int iNode, Vec_Int_t * vTree )
{
unsigned uTruthChild, uTruthTotal;
int Var, i;
// get the node
Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) );
// compute the node function
if ( Node.Type == IVY_DEC_CONST1 )
return s_Masks[5][ !Node.fCompl ];
if ( Node.Type == IVY_DEC_PI )
return s_Masks[iNode][ !Node.fCompl ];
if ( Node.Type == IVY_DEC_BUF )
{
uTruthTotal = Ivy_TruthDsdCompute_rec( Node.Fan0 >> 1, vTree );
return Node.fCompl? ~uTruthTotal : uTruthTotal;
}
if ( Node.Type == IVY_DEC_AND )
{
uTruthTotal = s_Masks[5][1];
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
uTruthChild = Ivy_TruthDsdCompute_rec( Var >> 1, vTree );
uTruthTotal = (Var & 1)? uTruthTotal & ~uTruthChild : uTruthTotal & uTruthChild;
}
return Node.fCompl? ~uTruthTotal : uTruthTotal;
}
if ( Node.Type == IVY_DEC_EXOR )
{
uTruthTotal = 0;
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
uTruthTotal ^= Ivy_TruthDsdCompute_rec( Var >> 1, vTree );
assert( (Var & 1) == 0 );
}
return Node.fCompl? ~uTruthTotal : uTruthTotal;
}
assert( Node.fCompl == 0 );
if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ )
{
unsigned uTruthChildC, uTruthChild1, uTruthChild0;
int VarC, Var1, Var0;
VarC = Ivy_DecGetVar( &Node, 0 );
Var1 = Ivy_DecGetVar( &Node, 1 );
Var0 = Ivy_DecGetVar( &Node, 2 );
uTruthChildC = Ivy_TruthDsdCompute_rec( VarC >> 1, vTree );
uTruthChild1 = Ivy_TruthDsdCompute_rec( Var1 >> 1, vTree );
uTruthChild0 = Ivy_TruthDsdCompute_rec( Var0 >> 1, vTree );
assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 );
uTruthChildC = (VarC & 1)? ~uTruthChildC : uTruthChildC;
uTruthChild1 = (Var1 & 1)? ~uTruthChild1 : uTruthChild1;
uTruthChild0 = (Var0 & 1)? ~uTruthChild0 : uTruthChild0;
if ( Node.Type == IVY_DEC_MUX )
return (uTruthChildC & uTruthChild1) | (~uTruthChildC & uTruthChild0);
else
return (uTruthChildC & uTruthChild1) | (uTruthChildC & uTruthChild0) | (uTruthChild1 & uTruthChild0);
}
assert( 0 );
return 0;
}
/**Function*************************************************************
Synopsis [Computes truth table of decomposition tree for verification.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Ivy_TruthDsdCompute( Vec_Int_t * vTree )
{
return Ivy_TruthDsdCompute_rec( Vec_IntSize(vTree)-1, vTree );
}
/**Function*************************************************************
Synopsis [Prints the decomposition tree.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthDsdPrint_rec( FILE * pFile, int iNode, Vec_Int_t * vTree )
{
int Var, i;
// get the node
Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) );
// compute the node function
if ( Node.Type == IVY_DEC_CONST1 )
fprintf( pFile, "Const1%s", (Node.fCompl? "\'" : "") );
else if ( Node.Type == IVY_DEC_PI )
fprintf( pFile, "%c%s", 'a' + iNode, (Node.fCompl? "\'" : "") );
else if ( Node.Type == IVY_DEC_BUF )
{
Ivy_TruthDsdPrint_rec( pFile, Node.Fan0 >> 1, vTree );
fprintf( pFile, "%s", (Node.fCompl? "\'" : "") );
}
else if ( Node.Type == IVY_DEC_AND )
{
fprintf( pFile, "AND(" );
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree );
fprintf( pFile, "%s", (Var & 1)? "\'" : "" );
if ( i != (int)Node.nFans-1 )
fprintf( pFile, "," );
}
fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") );
}
else if ( Node.Type == IVY_DEC_EXOR )
{
fprintf( pFile, "EXOR(" );
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree );
if ( i != (int)Node.nFans-1 )
fprintf( pFile, "," );
assert( (Var & 1) == 0 );
}
fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") );
}
else if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ )
{
int VarC, Var1, Var0;
assert( Node.fCompl == 0 );
VarC = Ivy_DecGetVar( &Node, 0 );
Var1 = Ivy_DecGetVar( &Node, 1 );
Var0 = Ivy_DecGetVar( &Node, 2 );
fprintf( pFile, "%s", (Node.Type == IVY_DEC_MUX)? "MUX(" : "MAJ(" );
Ivy_TruthDsdPrint_rec( pFile, VarC >> 1, vTree );
fprintf( pFile, "%s", (VarC & 1)? "\'" : "" );
fprintf( pFile, "," );
Ivy_TruthDsdPrint_rec( pFile, Var1 >> 1, vTree );
fprintf( pFile, "%s", (Var1 & 1)? "\'" : "" );
fprintf( pFile, "," );
Ivy_TruthDsdPrint_rec( pFile, Var0 >> 1, vTree );
fprintf( pFile, "%s", (Var0 & 1)? "\'" : "" );
fprintf( pFile, ")" );
}
else assert( 0 );
}
/**Function*************************************************************
Synopsis [Prints the decomposition tree.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthDsdPrint( FILE * pFile, Vec_Int_t * vTree )
{
fprintf( pFile, "F = " );
Ivy_TruthDsdPrint_rec( pFile, Vec_IntSize(vTree)-1, vTree );
fprintf( pFile, "\n" );
}
/**Function*************************************************************
Synopsis [Implement DSD in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_ManDsdConstruct_rec( Ivy_Man_t * p, Vec_Int_t * vFront, int iNode, Vec_Int_t * vTree )
{
Ivy_Obj_t * pResult, * pChild, * pNodes[16];
int Var, i;
// get the node
Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) );
// compute the node function
if ( Node.Type == IVY_DEC_CONST1 )
return Ivy_NotCond( Ivy_ManConst1(p), Node.fCompl );
if ( Node.Type == IVY_DEC_PI )
{
pResult = Ivy_ManObj( p, Vec_IntEntry(vFront, iNode) );
return Ivy_NotCond( pResult, Node.fCompl );
}
if ( Node.Type == IVY_DEC_BUF )
{
pResult = Ivy_ManDsdConstruct_rec( p, vFront, Node.Fan0 >> 1, vTree );
return Ivy_NotCond( pResult, Node.fCompl );
}
if ( Node.Type == IVY_DEC_AND || Node.Type == IVY_DEC_EXOR )
{
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
assert( Node.Type == IVY_DEC_AND || (Var & 1) == 0 );
pChild = Ivy_ManDsdConstruct_rec( p, vFront, Var >> 1, vTree );
pChild = Ivy_NotCond( pChild, (Var & 1) );
pNodes[i] = pChild;
}
// Ivy_MultiEval( pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR );
pResult = Ivy_Multi( p, pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR );
return Ivy_NotCond( pResult, Node.fCompl );
}
assert( Node.fCompl == 0 );
if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ )
{
int VarC, Var1, Var0;
VarC = Ivy_DecGetVar( &Node, 0 );
Var1 = Ivy_DecGetVar( &Node, 1 );
Var0 = Ivy_DecGetVar( &Node, 2 );
pNodes[0] = Ivy_ManDsdConstruct_rec( p, vFront, VarC >> 1, vTree );
pNodes[1] = Ivy_ManDsdConstruct_rec( p, vFront, Var1 >> 1, vTree );
pNodes[2] = Ivy_ManDsdConstruct_rec( p, vFront, Var0 >> 1, vTree );
assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 );
pNodes[0] = Ivy_NotCond( pNodes[0], (VarC & 1) );
pNodes[1] = Ivy_NotCond( pNodes[1], (Var1 & 1) );
pNodes[2] = Ivy_NotCond( pNodes[2], (Var0 & 1) );
if ( Node.Type == IVY_DEC_MUX )
return Ivy_Mux( p, pNodes[0], pNodes[1], pNodes[2] );
else
return Ivy_Maj( p, pNodes[0], pNodes[1], pNodes[2] );
}
assert( 0 );
return 0;
}
/**Function*************************************************************
Synopsis [Implement DSD in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_ManDsdConstruct( Ivy_Man_t * p, Vec_Int_t * vFront, Vec_Int_t * vTree )
{
int Entry, i;
// implement latches on the frontier (TEMPORARY!!!)
Vec_IntForEachEntry( vFront, Entry, i )
Vec_IntWriteEntry( vFront, i, Ivy_LeafId(Entry) );
// recursively construct the tree
return Ivy_ManDsdConstruct_rec( p, vFront, Vec_IntSize(vTree)-1, vTree );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthDsdComputePrint( unsigned uTruth )
{
static Vec_Int_t * vTree = NULL;
if ( vTree == NULL )
vTree = Vec_IntAlloc( 12 );
if ( Ivy_TruthDsd( uTruth, vTree ) )
Ivy_TruthDsdPrint( stdout, vTree );
else
printf( "Undecomposable\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTestOne( unsigned uTruth )
{
static int Counter = 0;
static Vec_Int_t * vTree = NULL;
// decompose
if ( vTree == NULL )
vTree = Vec_IntAlloc( 12 );
if ( !Ivy_TruthDsd( uTruth, vTree ) )
{
// printf( "Undecomposable\n" );
}
else
{
// nTruthDsd++;
printf( "%5d : ", Counter++ );
Extra_PrintBinary( stdout, &uTruth, 32 );
printf( " " );
Ivy_TruthDsdPrint( stdout, vTree );
if ( uTruth != Ivy_TruthDsdCompute(vTree) )
printf( "Verification failed.\n" );
}
// Vec_IntFree( vTree );
}
#if 0
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTest()
{
FILE * pFile;
char Buffer[100];
unsigned uTruth;
int i;
pFile = fopen( "npn4.txt", "r" );
for ( i = 0; i < 222; i++ )
// pFile = fopen( "npn5.txt", "r" );
// for ( i = 0; i < 616126; i++ )
{
fscanf( pFile, "%s", Buffer );
Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 );
// Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 );
uTruth |= (uTruth << 16);
// uTruth = ~uTruth;
Ivy_TruthTestOne( uTruth );
}
fclose( pFile );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTest3()
{
FILE * pFile;
char Buffer[100];
unsigned uTruth;
int i;
pFile = fopen( "npn3.txt", "r" );
for ( i = 0; i < 14; i++ )
{
fscanf( pFile, "%s", Buffer );
Extra_ReadHexadecimal( &uTruth, Buffer+2, 3 );
uTruth = uTruth | (uTruth << 8) | (uTruth << 16) | (uTruth << 24);
Ivy_TruthTestOne( uTruth );
}
fclose( pFile );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTest5()
{
FILE * pFile;
char Buffer[100];
unsigned uTruth;
int i;
// pFile = fopen( "npn4.txt", "r" );
// for ( i = 0; i < 222; i++ )
pFile = fopen( "npn5.txt", "r" );
for ( i = 0; i < 616126; i++ )
{
fscanf( pFile, "%s", Buffer );
// Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 );
Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 );
// uTruth |= (uTruth << 16);
// uTruth = ~uTruth;
Ivy_TruthTestOne( uTruth );
}
fclose( pFile );
}
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END