blob: a4fda7d80a6b80816e9a5ea387b11952d6d4a7ec [file] [log] [blame]
/**CFile****************************************************************
FileName [ivyHaig.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [And-Inverter Graph package.]
Synopsis [HAIG management procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - May 11, 2006.]
Revision [$Id: ivyHaig.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ivy.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*
HAIGing rules in working AIG:
- Each node in the working AIG has a pointer to the corresponding node in HAIG
(this node is not necessarily the representative of the equivalence class of HAIG nodes)
- This pointer is complemented if the AIG node and its corresponding HAIG node have different phase
Choice node rules in HAIG:
- Equivalent nodes are linked into a ring
- Exactly one node in the ring has fanouts (this node is called the representative)
- The pointer going from a node to the next node in the ring is complemented
if the first node is complemented, compared to the representative node of the equivalence class
- (consequence of the above) The representative node always has non-complemented pointer to the next node
- New nodes are inserted into the ring immediately after the representative node
*/
// returns the representative node of the given HAIG node
static inline Ivy_Obj_t * Ivy_HaigObjRepr( Ivy_Obj_t * pObj )
{
Ivy_Obj_t * pTemp;
assert( !Ivy_IsComplement(pObj) );
// if the node has no equivalent node or has fanout, it is representative
if ( pObj->pEquiv == NULL || Ivy_ObjRefs(pObj) > 0 )
return pObj;
// the node belongs to a class and is not a representative
// complemented edge (pObj->pEquiv) tells if it is complemented w.r.t. the repr
for ( pTemp = Ivy_Regular(pObj->pEquiv); pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
if ( Ivy_ObjRefs(pTemp) > 0 )
break;
// return the representative node
assert( Ivy_ObjRefs(pTemp) > 0 );
return Ivy_NotCond( pTemp, Ivy_IsComplement(pObj->pEquiv) );
}
// counts the number of nodes in the equivalence class
static inline int Ivy_HaigObjCountClass( Ivy_Obj_t * pObj )
{
Ivy_Obj_t * pTemp;
int Counter;
assert( !Ivy_IsComplement(pObj) );
assert( Ivy_ObjRefs(pObj) > 0 );
if ( pObj->pEquiv == NULL )
return 1;
assert( !Ivy_IsComplement(pObj->pEquiv) );
Counter = 1;
for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
Counter++;
return Counter;
}
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Starts HAIG for the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigStart( Ivy_Man_t * p, int fVerbose )
{
Vec_Int_t * vLatches;
Ivy_Obj_t * pObj;
int i;
assert( p->pHaig == NULL );
p->pHaig = Ivy_ManDup( p );
if ( fVerbose )
{
printf( "Starting : " );
Ivy_ManPrintStats( p->pHaig );
}
// collect latches of design D and set their values to be DC
vLatches = Vec_IntAlloc( 100 );
Ivy_ManForEachLatch( p->pHaig, pObj, i )
{
pObj->Init = IVY_INIT_DC;
Vec_IntPush( vLatches, pObj->Id );
}
p->pHaig->pData = vLatches;
/*
{
int x;
Ivy_ManShow( p, 0, NULL );
Ivy_ManShow( p->pHaig, 1, NULL );
x = 0;
}
*/
}
/**Function*************************************************************
Synopsis [Transfers the HAIG to the newly created manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigTrasfer( Ivy_Man_t * p, Ivy_Man_t * pNew )
{
Ivy_Obj_t * pObj;
int i;
assert( p->pHaig != NULL );
Ivy_ManConst1(pNew)->pEquiv = Ivy_ManConst1(p)->pEquiv;
Ivy_ManForEachPi( pNew, pObj, i )
pObj->pEquiv = Ivy_ManPi( p, i )->pEquiv;
pNew->pHaig = p->pHaig;
}
/**Function*************************************************************
Synopsis [Stops HAIG for the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigStop( Ivy_Man_t * p )
{
Ivy_Obj_t * pObj;
int i;
assert( p->pHaig != NULL );
Vec_IntFree( (Vec_Int_t *)p->pHaig->pData );
Ivy_ManStop( p->pHaig );
p->pHaig = NULL;
// remove dangling pointers to the HAIG objects
Ivy_ManForEachObj( p, pObj, i )
pObj->pEquiv = NULL;
}
/**Function*************************************************************
Synopsis [Creates a new node in HAIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigCreateObj( Ivy_Man_t * p, Ivy_Obj_t * pObj )
{
Ivy_Obj_t * pEquiv0, * pEquiv1;
assert( p->pHaig != NULL );
assert( !Ivy_IsComplement(pObj) );
if ( Ivy_ObjType(pObj) == IVY_BUF )
pObj->pEquiv = Ivy_ObjChild0Equiv(pObj);
else if ( Ivy_ObjType(pObj) == IVY_LATCH )
{
// pObj->pEquiv = Ivy_Latch( p->pHaig, Ivy_ObjChild0Equiv(pObj), pObj->Init );
pEquiv0 = Ivy_ObjChild0Equiv(pObj);
pEquiv0 = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pEquiv0)), Ivy_IsComplement(pEquiv0) );
pObj->pEquiv = Ivy_Latch( p->pHaig, pEquiv0, (Ivy_Init_t)pObj->Init );
}
else if ( Ivy_ObjType(pObj) == IVY_AND )
{
// pObj->pEquiv = Ivy_And( p->pHaig, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) );
pEquiv0 = Ivy_ObjChild0Equiv(pObj);
pEquiv0 = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pEquiv0)), Ivy_IsComplement(pEquiv0) );
pEquiv1 = Ivy_ObjChild1Equiv(pObj);
pEquiv1 = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pEquiv1)), Ivy_IsComplement(pEquiv1) );
pObj->pEquiv = Ivy_And( p->pHaig, pEquiv0, pEquiv1 );
}
else assert( 0 );
// make sure the node points to the representative
// pObj->pEquiv = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pObj->pEquiv)), Ivy_IsComplement(pObj->pEquiv) );
}
/**Function*************************************************************
Synopsis [Checks if the old node is in the TFI of the new node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_ObjIsInTfi_rec( Ivy_Obj_t * pObjNew, Ivy_Obj_t * pObjOld, int Levels )
{
if ( pObjNew == pObjOld )
return 1;
if ( Levels == 0 || Ivy_ObjIsCi(pObjNew) || Ivy_ObjIsConst1(pObjNew) )
return 0;
if ( Ivy_ObjIsInTfi_rec( Ivy_ObjFanin0(pObjNew), pObjOld, Levels - 1 ) )
return 1;
if ( Ivy_ObjIsNode(pObjNew) && Ivy_ObjIsInTfi_rec( Ivy_ObjFanin1(pObjNew), pObjOld, Levels - 1 ) )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Sets the pair of equivalent nodes in HAIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigCreateChoice( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew )
{
Ivy_Obj_t * pObjOldHaig, * pObjNewHaig;
Ivy_Obj_t * pObjOldHaigR, * pObjNewHaigR;
int fCompl;
//printf( "\nCreating choice for %d and %d in AIG\n", pObjOld->Id, Ivy_Regular(pObjNew)->Id );
assert( p->pHaig != NULL );
assert( !Ivy_IsComplement(pObjOld) );
// get pointers to the representatives of pObjOld and pObjNew
pObjOldHaig = pObjOld->pEquiv;
pObjNewHaig = Ivy_NotCond( Ivy_Regular(pObjNew)->pEquiv, Ivy_IsComplement(pObjNew) );
// get the classes
pObjOldHaig = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pObjOldHaig)), Ivy_IsComplement(pObjOldHaig) );
pObjNewHaig = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pObjNewHaig)), Ivy_IsComplement(pObjNewHaig) );
// get regular pointers
pObjOldHaigR = Ivy_Regular(pObjOldHaig);
pObjNewHaigR = Ivy_Regular(pObjNewHaig);
// check if there is phase difference between them
fCompl = (Ivy_IsComplement(pObjOldHaig) != Ivy_IsComplement(pObjNewHaig));
// if the class is the same, nothing to do
if ( pObjOldHaigR == pObjNewHaigR )
return;
// if the second node belongs to a class, do not merge classes (for the time being)
if ( Ivy_ObjRefs(pObjOldHaigR) == 0 || pObjNewHaigR->pEquiv != NULL ||
Ivy_ObjRefs(pObjNewHaigR) > 0 ) //|| Ivy_ObjIsInTfi_rec(pObjNewHaigR, pObjOldHaigR, 10) )
{
/*
if ( pObjNewHaigR->pEquiv != NULL )
printf( "c" );
if ( Ivy_ObjRefs(pObjNewHaigR) > 0 )
printf( "f" );
printf( " " );
*/
p->pHaig->nClassesSkip++;
return;
}
// add this node to the class of pObjOldHaig
assert( Ivy_ObjRefs(pObjOldHaigR) > 0 );
assert( !Ivy_IsComplement(pObjOldHaigR->pEquiv) );
if ( pObjOldHaigR->pEquiv == NULL )
pObjNewHaigR->pEquiv = Ivy_NotCond( pObjOldHaigR, fCompl );
else
pObjNewHaigR->pEquiv = Ivy_NotCond( pObjOldHaigR->pEquiv, fCompl );
pObjOldHaigR->pEquiv = pObjNewHaigR;
//printf( "Setting choice node %d -> %d.\n", pObjOldHaigR->Id, pObjNewHaigR->Id );
// update the class of the new node
// Ivy_Regular(pObjNew)->pEquiv = Ivy_NotCond( pObjOldHaigR, fCompl ^ Ivy_IsComplement(pObjNew) );
//printf( "Creating choice for %d and %d in HAIG\n", pObjOldHaigR->Id, pObjNewHaigR->Id );
// if ( pObjOldHaigR->Id == 13 )
// {
// Ivy_ManShow( p, 0 );
// Ivy_ManShow( p->pHaig, 1 );
// }
// if ( !Ivy_ManIsAcyclic( p->pHaig ) )
// printf( "HAIG contains a cycle\n" );
}
/**Function*************************************************************
Synopsis [Count the number of choices and choice nodes in HAIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_ManHaigCountChoices( Ivy_Man_t * p, int * pnChoices )
{
Ivy_Obj_t * pObj;
int nChoices, nChoiceNodes, Counter, i;
assert( p->pHaig != NULL );
nChoices = nChoiceNodes = 0;
Ivy_ManForEachObj( p->pHaig, pObj, i )
{
if ( Ivy_ObjIsTerm(pObj) || i == 0 )
continue;
if ( Ivy_ObjRefs(pObj) == 0 )
continue;
Counter = Ivy_HaigObjCountClass( pObj );
nChoiceNodes += (int)(Counter > 1);
nChoices += Counter - 1;
// if ( Counter > 1 )
// printf( "Choice node %d %s\n", pObj->Id, Ivy_ObjIsLatch(pObj)? "(latch)": "" );
}
*pnChoices = nChoices;
return nChoiceNodes;
}
/**Function*************************************************************
Synopsis [Prints statistics of the HAIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigPostprocess( Ivy_Man_t * p, int fVerbose )
{
int nChoices, nChoiceNodes;
assert( p->pHaig != NULL );
if ( fVerbose )
{
printf( "Final : " );
Ivy_ManPrintStats( p );
printf( "HAIG : " );
Ivy_ManPrintStats( p->pHaig );
// print choice node stats
nChoiceNodes = Ivy_ManHaigCountChoices( p, &nChoices );
printf( "Total choice nodes = %d. Total choices = %d. Skipped classes = %d.\n",
nChoiceNodes, nChoices, p->pHaig->nClassesSkip );
}
if ( Ivy_ManIsAcyclic( p->pHaig ) )
{
if ( fVerbose )
printf( "HAIG is acyclic\n" );
}
else
printf( "HAIG contains a cycle\n" );
// if ( fVerbose )
// Ivy_ManHaigSimulate( p );
}
/**Function*************************************************************
Synopsis [Applies the simulation rules.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Ivy_Init_t Ivy_ManHaigSimulateAnd( Ivy_Init_t In0, Ivy_Init_t In1 )
{
assert( In0 != IVY_INIT_NONE && In1 != IVY_INIT_NONE );
if ( In0 == IVY_INIT_DC || In1 == IVY_INIT_DC )
return IVY_INIT_DC;
if ( In0 == IVY_INIT_1 && In1 == IVY_INIT_1 )
return IVY_INIT_1;
return IVY_INIT_0;
}
/**Function*************************************************************
Synopsis [Applies the simulation rules.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Ivy_Init_t Ivy_ManHaigSimulateChoice( Ivy_Init_t In0, Ivy_Init_t In1 )
{
assert( In0 != IVY_INIT_NONE && In1 != IVY_INIT_NONE );
if ( (In0 == IVY_INIT_0 && In1 == IVY_INIT_1) || (In0 == IVY_INIT_1 && In1 == IVY_INIT_0) )
{
printf( "Compatibility fails.\n" );
return IVY_INIT_0;
}
if ( In0 == IVY_INIT_DC && In1 == IVY_INIT_DC )
return IVY_INIT_DC;
if ( In0 != IVY_INIT_DC )
return In0;
return In1;
}
/**Function*************************************************************
Synopsis [Simulate HAIG using modified 3-valued simulation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_ManHaigSimulate( Ivy_Man_t * p )
{
Vec_Int_t * vNodes, * vLatches, * vLatchesD;
Ivy_Obj_t * pObj, * pTemp;
Ivy_Init_t In0, In1;
int i, k, Counter;
int fVerbose = 0;
// check choices
Ivy_ManCheckChoices( p );
// switch to HAIG
assert( p->pHaig != NULL );
p = p->pHaig;
if ( fVerbose )
Ivy_ManForEachPi( p, pObj, i )
printf( "Setting PI %d\n", pObj->Id );
// collect latches and nodes in the DFS order
vNodes = Ivy_ManDfsSeq( p, &vLatches );
if ( fVerbose )
Ivy_ManForEachNodeVec( p, vNodes, pObj, i )
printf( "Collected node %d with fanins %d and %d\n", pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id );
// set the PI values
Ivy_ManConst1(p)->Init = IVY_INIT_1;
Ivy_ManForEachPi( p, pObj, i )
pObj->Init = IVY_INIT_0;
// set the latch values
Ivy_ManForEachNodeVec( p, vLatches, pObj, i )
pObj->Init = IVY_INIT_DC;
// set the latches of D to be determinate
vLatchesD = (Vec_Int_t *)p->pData;
Ivy_ManForEachNodeVec( p, vLatchesD, pObj, i )
pObj->Init = IVY_INIT_0;
// perform several rounds of simulation
for ( k = 0; k < 10; k++ )
{
// count the number of non-determinate values
Counter = 0;
Ivy_ManForEachNodeVec( p, vLatches, pObj, i )
Counter += ( pObj->Init == IVY_INIT_DC );
printf( "Iter %d : Non-determinate = %d\n", k, Counter );
// simulate the internal nodes
Ivy_ManForEachNodeVec( p, vNodes, pObj, i )
{
if ( fVerbose )
printf( "Processing node %d with fanins %d and %d\n", pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id );
In0 = Ivy_InitNotCond( (Ivy_Init_t)Ivy_ObjFanin0(pObj)->Init, Ivy_ObjFaninC0(pObj) );
In1 = Ivy_InitNotCond( (Ivy_Init_t)Ivy_ObjFanin1(pObj)->Init, Ivy_ObjFaninC1(pObj) );
pObj->Init = Ivy_ManHaigSimulateAnd( In0, In1 );
// simulate the equivalence class if the node is a representative
if ( pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 )
{
if ( fVerbose )
printf( "Processing choice node %d\n", pObj->Id );
In0 = (Ivy_Init_t)pObj->Init;
assert( !Ivy_IsComplement(pObj->pEquiv) );
for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
{
if ( fVerbose )
printf( "Processing secondary node %d\n", pTemp->Id );
In1 = Ivy_InitNotCond( (Ivy_Init_t)pTemp->Init, Ivy_IsComplement(pTemp->pEquiv) );
In0 = Ivy_ManHaigSimulateChoice( In0, In1 );
}
pObj->Init = In0;
}
}
// simulate the latches
Ivy_ManForEachNodeVec( p, vLatches, pObj, i )
{
pObj->Level = Ivy_ObjFanin0(pObj)->Init;
if ( fVerbose )
printf( "Using latch %d with fanin %d\n", pObj->Id, Ivy_ObjFanin0(pObj)->Id );
}
Ivy_ManForEachNodeVec( p, vLatches, pObj, i )
pObj->Init = pObj->Level, pObj->Level = 0;
}
// free arrays
Vec_IntFree( vNodes );
Vec_IntFree( vLatches );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END