blob: 391ba482b9cf5ea264a97ec1d2ceafa611e06a4b [file] [log] [blame]
/**CFile****************************************************************
FileName [fra.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [[New FRAIG package.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 30, 2007.]
Revision [$Id: fra.h,v 1.00 2007/06/30 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__aig__fra__fra_h
#define ABC__aig__fra__fra_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "misc/vec/vec.h"
#include "aig/aig/aig.h"
#include "opt/dar/dar.h"
#include "sat/bsat/satSolver.h"
#include "aig/ioa/ioa.h"
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_HEADER_START
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
typedef struct Fra_Par_t_ Fra_Par_t;
typedef struct Fra_Ssw_t_ Fra_Ssw_t;
typedef struct Fra_Sec_t_ Fra_Sec_t;
typedef struct Fra_Man_t_ Fra_Man_t;
typedef struct Fra_Cla_t_ Fra_Cla_t;
typedef struct Fra_Sml_t_ Fra_Sml_t;
typedef struct Fra_Bmc_t_ Fra_Bmc_t;
// FRAIG parameters
struct Fra_Par_t_
{
int nSimWords; // the number of words in the simulation info
double dSimSatur; // the ratio of refined classes when saturation is reached
int fPatScores; // enables simulation pattern scoring
int MaxScore; // max score after which resimulation is used
double dActConeRatio; // the ratio of cone to be bumped
double dActConeBumpMax; // the largest bump in activity
int fChoicing; // enables choicing
int fSpeculate; // use speculative reduction
int fProve; // prove the miter outputs
int fVerbose; // verbose output
int fDoSparse; // skip sparse functions
int fConeBias; // bias variables in the cone (good for unsat runs)
int nBTLimitNode; // conflict limit at a node
int nBTLimitMiter; // conflict limit at an output
int nLevelMax; // the max level to consider seriously
int nFramesP; // the number of timeframes to in the prefix
int nFramesK; // the number of timeframes to unroll
int nMaxImps; // the maximum number of implications to consider
int nMaxLevs; // the maximum number of levels to consider
int fRewrite; // use rewriting for constraint reduction
int fLatchCorr; // computes latch correspondence only
int fUseImps; // use implications
int fUse1Hot; // use one-hotness conditions
int fWriteImps; // record implications
int fDontShowBar; // does not show progressbar during fraiging
};
// seq SAT sweeping parameters
struct Fra_Ssw_t_
{
int nPartSize; // size of the partition
int nOverSize; // size of the overlap between partitions
int nFramesP; // number of frames in the prefix
int nFramesK; // number of frames for induction (1=simple)
int nMaxImps; // max implications to consider
int nMaxLevs; // max levels to consider
int nMinDomSize; // min clock domain considered for optimization
int fUseImps; // use implications
int fRewrite; // enable rewriting of the specualatively reduced model
int fFraiging; // enable comb SAT sweeping as preprocessing
int fLatchCorr; // perform register correspondence
int fWriteImps; // write implications into a file
int fUse1Hot; // use one-hotness constraints
int fVerbose; // enable verbose output
int fSilent; // disable any output
int nIters; // the number of iterations performed
float TimeLimit; // the runtime budget for this call
};
// SEC parametesr
struct Fra_Sec_t_
{
int fTryComb; // try CEC call as a preprocessing step
int fTryBmc; // try BMC call as a preprocessing step
int nFramesMax; // the max number of frames used for induction
int nBTLimit; // the conflict limit at a node
int nBTLimitGlobal; // the global conflict limit
int nBTLimitInter; // the conflict limit for interpolation
int nBddVarsMax; // the state space limit for BDD reachability
int nBddMax; // the max number of BDD nodes
int nBddIterMax; // the limit on the number of BDD iterations
int nPdrTimeout; // the timeout for PDR in the end
int fPhaseAbstract; // enables phase abstraction
int fRetimeFirst; // enables most-forward retiming at the beginning
int fRetimeRegs; // enables min-register retiming at the beginning
int fFraiging; // enables fraiging at the beginning
int fInduction; // enable the use of induction
int fInterpolation; // enables interpolation
int fInterSeparate; // enables interpolation for each outputs separately
int fReachability; // enables BDD based reachability
int fReorderImage; // enables BDD reordering during image computation
int fStopOnFirstFail; // enables stopping after first output of a miter has failed to prove
int fUseNewProver; // the new prover
int fUsePdr; // the PDR
int fSilent; // disables all output
int fVerbose; // enables verbose reporting of statistics
int fVeryVerbose; // enables very verbose reporting
int TimeLimit; // enables the timeout
int fReadUnsolved; // inserts the unsolved model back
int nSMnumber; // the number of model written
// internal parameters
int fRecursive; // set to 1 when SEC is called recursively
int fReportSolution; // enables report solution in a special form
};
// FRAIG equivalence classes
struct Fra_Cla_t_
{
Aig_Man_t * pAig; // the original AIG manager
Aig_Obj_t ** pMemRepr; // pointers to representatives of each node
Vec_Ptr_t * vClasses; // equivalence classes
Vec_Ptr_t * vClasses1; // equivalence class of Const1 node
Vec_Ptr_t * vClassesTemp; // temporary storage for new classes
Aig_Obj_t ** pMemClasses; // memory allocated for equivalence classes
Aig_Obj_t ** pMemClassesFree; // memory allocated for equivalence classes to be used
Vec_Ptr_t * vClassOld; // old equivalence class after splitting
Vec_Ptr_t * vClassNew; // new equivalence class(es) after splitting
int nPairs; // the number of pairs of nodes
int fRefinement; // set to 1 when refinement has happened
Vec_Int_t * vImps; // implications
// procedures used for class refinement
int (*pFuncNodeHash) (Aig_Obj_t *, int); // returns has key of the node
int (*pFuncNodeIsConst) (Aig_Obj_t *); // returns 1 if the node is a constant
int (*pFuncNodesAreEqual)(Aig_Obj_t *, Aig_Obj_t *); // returns 1 if nodes are equal up to a complement
};
// simulation manager
struct Fra_Sml_t_
{
Aig_Man_t * pAig; // the original AIG manager
int nPref; // the number of times frames in the prefix
int nFrames; // the number of times frames
int nWordsFrame; // the number of words in each time frame
int nWordsTotal; // the total number of words at a node
int nWordsPref; // the number of word in the prefix
int fNonConstOut; // have seen a non-const-0 output during simulation
int nSimRounds; // statistics
int timeSim; // statistics
unsigned pData[0]; // simulation data for the nodes
};
// FRAIG manager
struct Fra_Man_t_
{
// high-level data
Fra_Par_t * pPars; // parameters governing fraiging
// AIG managers
Aig_Man_t * pManAig; // the starting AIG manager
Aig_Man_t * pManFraig; // the final AIG manager
// mapping AIG into FRAIG
int nFramesAll; // the number of timeframes used
Aig_Obj_t ** pMemFraig; // memory allocated for points to the fraig nodes
int nSizeAlloc; // allocated size of the arrays for timeframe nodes
// equivalence classes
Fra_Cla_t * pCla; // representation of (candidate) equivalent nodes
// simulation info
Fra_Sml_t * pSml; // simulation manager
// bounded model checking manager
Fra_Bmc_t * pBmc;
// counter example storage
int nPatWords; // the number of words in the counter example
unsigned * pPatWords; // the counter example
Vec_Int_t * vCex;
// one-hotness conditions
Vec_Int_t * vOneHots;
// satisfiability solving
sat_solver * pSat; // SAT solver
int nSatVars; // the number of variables currently used
Vec_Ptr_t * vPiVars; // the PIs of the cone used
ABC_INT64_T nBTLimitGlobal; // resource limit
ABC_INT64_T nInsLimitGlobal; // resource limit
Vec_Ptr_t ** pMemFanins; // the arrays of fanins for some FRAIG nodes
int * pMemSatNums; // the array of SAT numbers for some FRAIG nodes
int nMemAlloc; // allocated size of the arrays for FRAIG varnums and fanins
Vec_Ptr_t * vTimeouts; // the nodes, for which equivalence checking timed out
// statistics
int nSimRounds;
int nNodesMiter;
int nLitsBeg;
int nLitsEnd;
int nNodesBeg;
int nNodesEnd;
int nRegsBeg;
int nRegsEnd;
int nSatCalls;
int nSatCallsSat;
int nSatCallsUnsat;
int nSatProof;
int nSatFails;
int nSatFailsReal;
int nSpeculs;
int nChoices;
int nChoicesFake;
int nSatCallsRecent;
int nSatCallsSkipped;
// runtime
abctime timeSim;
abctime timeTrav;
abctime timeRwr;
abctime timeSat;
abctime timeSatUnsat;
abctime timeSatSat;
abctime timeSatFail;
abctime timeRef;
abctime timeTotal;
abctime time1;
abctime time2;
};
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
static inline unsigned * Fra_ObjSim( Fra_Sml_t * p, int Id ) { return p->pData + p->nWordsTotal * Id; }
static inline unsigned Fra_ObjRandomSim() { return Aig_ManRandom(0); }
static inline Aig_Obj_t * Fra_ObjFraig( Aig_Obj_t * pObj, int i ) { return ((Fra_Man_t *)pObj->pData)->pMemFraig[((Fra_Man_t *)pObj->pData)->nFramesAll*pObj->Id + i]; }
static inline void Fra_ObjSetFraig( Aig_Obj_t * pObj, int i, Aig_Obj_t * pNode ) { ((Fra_Man_t *)pObj->pData)->pMemFraig[((Fra_Man_t *)pObj->pData)->nFramesAll*pObj->Id + i] = pNode; }
static inline Vec_Ptr_t * Fra_ObjFaninVec( Aig_Obj_t * pObj ) { return ((Fra_Man_t *)pObj->pData)->pMemFanins[pObj->Id]; }
static inline void Fra_ObjSetFaninVec( Aig_Obj_t * pObj, Vec_Ptr_t * vFanins ) { ((Fra_Man_t *)pObj->pData)->pMemFanins[pObj->Id] = vFanins; }
static inline int Fra_ObjSatNum( Aig_Obj_t * pObj ) { return ((Fra_Man_t *)pObj->pData)->pMemSatNums[pObj->Id]; }
static inline void Fra_ObjSetSatNum( Aig_Obj_t * pObj, int Num ) { ((Fra_Man_t *)pObj->pData)->pMemSatNums[pObj->Id] = Num; }
static inline Aig_Obj_t * Fra_ClassObjRepr( Aig_Obj_t * pObj ) { return ((Fra_Man_t *)pObj->pData)->pCla->pMemRepr[pObj->Id]; }
static inline void Fra_ClassObjSetRepr( Aig_Obj_t * pObj, Aig_Obj_t * pNode ) { ((Fra_Man_t *)pObj->pData)->pCla->pMemRepr[pObj->Id] = pNode; }
static inline Aig_Obj_t * Fra_ObjChild0Fra( Aig_Obj_t * pObj, int i ) { assert( !Aig_IsComplement(pObj) ); return Aig_ObjFanin0(pObj)? Aig_NotCond(Fra_ObjFraig(Aig_ObjFanin0(pObj),i), Aig_ObjFaninC0(pObj)) : NULL; }
static inline Aig_Obj_t * Fra_ObjChild1Fra( Aig_Obj_t * pObj, int i ) { assert( !Aig_IsComplement(pObj) ); return Aig_ObjFanin1(pObj)? Aig_NotCond(Fra_ObjFraig(Aig_ObjFanin1(pObj),i), Aig_ObjFaninC1(pObj)) : NULL; }
static inline int Fra_ImpLeft( int Imp ) { return Imp & 0xFFFF; }
static inline int Fra_ImpRight( int Imp ) { return Imp >> 16; }
static inline int Fra_ImpCreate( int Left, int Right ) { return (Right << 16) | Left; }
////////////////////////////////////////////////////////////////////////
/// ITERATORS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*=== fraCec.c ========================================================*/
extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int nLearnedStart, int nLearnedDelta, int nLearnedPerce, int fFlipBits, int fAndOuts, int fNewSolver, int fVerbose );
extern int Fra_FraigCec( Aig_Man_t ** ppAig, int nConfLimit, int fVerbose );
extern int Fra_FraigCecPartitioned( Aig_Man_t * pMan1, Aig_Man_t * pMan2, int nConfLimit, int nPartSize, int fSmart, int fVerbose );
/*=== fraClass.c ========================================================*/
extern int Fra_BmcNodeIsConst( Aig_Obj_t * pObj );
extern int Fra_BmcNodesAreEqual( Aig_Obj_t * pObj0, Aig_Obj_t * pObj1 );
extern void Fra_BmcStop( Fra_Bmc_t * p );
extern void Fra_BmcPerform( Fra_Man_t * p, int nPref, int nDepth );
extern void Fra_BmcPerformSimple( Aig_Man_t * pAig, int nFrames, int nBTLimit, int fRewrite, int fVerbose );
/*=== fraClass.c ========================================================*/
extern Fra_Cla_t * Fra_ClassesStart( Aig_Man_t * pAig );
extern void Fra_ClassesStop( Fra_Cla_t * p );
extern void Fra_ClassesCopyReprs( Fra_Cla_t * p, Vec_Ptr_t * vFailed );
extern void Fra_ClassesPrint( Fra_Cla_t * p, int fVeryVerbose );
extern void Fra_ClassesPrepare( Fra_Cla_t * p, int fLatchCorr, int nMaxLevs );
extern int Fra_ClassesRefine( Fra_Cla_t * p );
extern int Fra_ClassesRefine1( Fra_Cla_t * p, int fRefineNewClass, int * pSkipped );
extern int Fra_ClassesCountLits( Fra_Cla_t * p );
extern int Fra_ClassesCountPairs( Fra_Cla_t * p );
extern void Fra_ClassesTest( Fra_Cla_t * p, int Id1, int Id2 );
extern void Fra_ClassesLatchCorr( Fra_Man_t * p );
extern void Fra_ClassesPostprocess( Fra_Cla_t * p );
extern void Fra_ClassesSelectRepr( Fra_Cla_t * p );
extern Aig_Man_t * Fra_ClassesDeriveAig( Fra_Cla_t * p, int nFramesK );
/*=== fraCnf.c ========================================================*/
extern void Fra_CnfNodeAddToSolver( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew );
/*=== fraCore.c ========================================================*/
extern void Fra_FraigSweep( Fra_Man_t * pManAig );
extern int Fra_FraigMiterStatus( Aig_Man_t * p );
extern int Fra_FraigMiterAssertedOutput( Aig_Man_t * p );
extern Aig_Man_t * Fra_FraigPerform( Aig_Man_t * pManAig, Fra_Par_t * pPars );
extern Aig_Man_t * Fra_FraigChoice( Aig_Man_t * pManAig, int nConfMax, int nLevelMax );
extern Aig_Man_t * Fra_FraigEquivence( Aig_Man_t * pManAig, int nConfMax, int fProve );
/*=== fraHot.c ========================================================*/
extern Vec_Int_t * Fra_OneHotCompute( Fra_Man_t * p, Fra_Sml_t * pSim );
extern void Fra_OneHotAssume( Fra_Man_t * p, Vec_Int_t * vOneHots );
extern void Fra_OneHotCheck( Fra_Man_t * p, Vec_Int_t * vOneHots );
extern int Fra_OneHotRefineUsingCex( Fra_Man_t * p, Vec_Int_t * vOneHots );
extern int Fra_OneHotCount( Fra_Man_t * p, Vec_Int_t * vOneHots );
extern void Fra_OneHotEstimateCoverage( Fra_Man_t * p, Vec_Int_t * vOneHots );
extern Aig_Man_t * Fra_OneHotCreateExdc( Fra_Man_t * p, Vec_Int_t * vOneHots );
extern void Fra_OneHotAddKnownConstraint( Fra_Man_t * p, Vec_Ptr_t * vOnehots );
/*=== fraImp.c ========================================================*/
extern Vec_Int_t * Fra_ImpDerive( Fra_Man_t * p, int nImpMaxLimit, int nImpUseLimit, int fLatchCorr );
extern void Fra_ImpAddToSolver( Fra_Man_t * p, Vec_Int_t * vImps, int * pSatVarNums );
extern int Fra_ImpCheckForNode( Fra_Man_t * p, Vec_Int_t * vImps, Aig_Obj_t * pNode, int Pos );
extern int Fra_ImpRefineUsingCex( Fra_Man_t * p, Vec_Int_t * vImps );
extern void Fra_ImpCompactArray( Vec_Int_t * vImps );
extern double Fra_ImpComputeStateSpaceRatio( Fra_Man_t * p );
extern int Fra_ImpVerifyUsingSimulation( Fra_Man_t * p );
extern void Fra_ImpRecordInManager( Fra_Man_t * p, Aig_Man_t * pNew );
/*=== fraInd.c ========================================================*/
extern Aig_Man_t * Fra_FraigInduction( Aig_Man_t * p, Fra_Ssw_t * pPars );
/*=== fraIndVer.c =====================================================*/
extern int Fra_InvariantVerify( Aig_Man_t * p, int nFrames, Vec_Int_t * vClauses, Vec_Int_t * vLits );
/*=== fraLcr.c ========================================================*/
extern Aig_Man_t * Fra_FraigLatchCorrespondence( Aig_Man_t * pAig, int nFramesP, int nConfMax, int fProve, int fVerbose, int * pnIter, float TimeLimit );
/*=== fraMan.c ========================================================*/
extern void Fra_ParamsDefault( Fra_Par_t * pParams );
extern void Fra_ParamsDefaultSeq( Fra_Par_t * pParams );
extern Fra_Man_t * Fra_ManStart( Aig_Man_t * pManAig, Fra_Par_t * pParams );
extern void Fra_ManClean( Fra_Man_t * p, int nNodesMax );
extern Aig_Man_t * Fra_ManPrepareComb( Fra_Man_t * p );
extern void Fra_ManFinalizeComb( Fra_Man_t * p );
extern void Fra_ManStop( Fra_Man_t * p );
extern void Fra_ManPrint( Fra_Man_t * p );
/*=== fraSat.c ========================================================*/
extern int Fra_NodesAreEquiv( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew );
extern int Fra_NodesAreImp( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew, int fComplL, int fComplR );
extern int Fra_NodesAreClause( Fra_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew, int fComplL, int fComplR );
extern int Fra_NodeIsConst( Fra_Man_t * p, Aig_Obj_t * pNew );
/*=== fraSec.c ========================================================*/
extern void Fra_SecSetDefaultParams( Fra_Sec_t * p );
extern int Fra_FraigSec( Aig_Man_t * p, Fra_Sec_t * pParSec, Aig_Man_t ** ppResult );
/*=== fraSim.c ========================================================*/
extern int Fra_SmlNodeHash( Aig_Obj_t * pObj, int nTableSize );
extern int Fra_SmlNodeIsConst( Aig_Obj_t * pObj );
extern int Fra_SmlNodesAreEqual( Aig_Obj_t * pObj0, Aig_Obj_t * pObj1 );
extern int Fra_SmlNodeNotEquWeight( Fra_Sml_t * p, int Left, int Right );
extern int Fra_SmlNodeCountOnes( Fra_Sml_t * p, Aig_Obj_t * pObj );
extern int Fra_SmlCheckOutput( Fra_Man_t * p );
extern void Fra_SmlSavePattern( Fra_Man_t * p );
extern void Fra_SmlSimulate( Fra_Man_t * p, int fInit );
extern void Fra_SmlResimulate( Fra_Man_t * p );
extern Fra_Sml_t * Fra_SmlStart( Aig_Man_t * pAig, int nPref, int nFrames, int nWordsFrame );
extern void Fra_SmlStop( Fra_Sml_t * p );
extern Fra_Sml_t * Fra_SmlSimulateComb( Aig_Man_t * pAig, int nWords, int fCheckMiter );
extern Fra_Sml_t * Fra_SmlSimulateCombGiven( Aig_Man_t * pAig, char * pFileName, int fCheckMiter, int fVerbose );
extern Fra_Sml_t * Fra_SmlSimulateSeq( Aig_Man_t * pAig, int nPref, int nFrames, int nWords, int fCheckMiter );
extern Abc_Cex_t * Fra_SmlGetCounterExample( Fra_Sml_t * p );
extern Abc_Cex_t * Fra_SmlCopyCounterExample( Aig_Man_t * pAig, Aig_Man_t * pFrames, int * pModel );
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////