blob: 8bb04f1651ad369f2dff454483414a05e0ef2103 [file] [log] [blame]
/**CFile****************************************************************
FileName [abcDec.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Procedures for testing and comparing decomposition algorithms.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcDec.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "misc/extra/extra.h"
#include "misc/vec/vec.h"
#include "bool/bdc/bdc.h"
#include "bool/dec/dec.h"
#include "bool/kit/kit.h"
#include "opt/dau/dau.h"
#include "misc/util/utilTruth.h"
#include "opt/dsc/dsc.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// decomposition type
// 0 - none
// 1 - factoring
// 2 - bi-decomposition
// 3 - DSD
// data-structure to store a bunch of truth tables
typedef struct Abc_TtStore_t_ Abc_TtStore_t;
struct Abc_TtStore_t_
{
int nVars;
int nWords;
int nFuncs;
word ** pFuncs;
};
// read/write/flip i-th bit of a bit string table:
static inline int Abc_TruthGetBit( word * p, int i ) { return (int)(p[i>>6] >> (i & 63)) & 1; }
static inline void Abc_TruthSetBit( word * p, int i ) { p[i>>6] |= (((word)1)<<(i & 63)); }
static inline void Abc_TruthXorBit( word * p, int i ) { p[i>>6] ^= (((word)1)<<(i & 63)); }
// read/write k-th digit d of a hexadecimal number:
static inline int Abc_TruthGetHex( word * p, int k ) { return (int)(p[k>>4] >> ((k<<2) & 63)) & 15; }
static inline void Abc_TruthSetHex( word * p, int k, int d ) { p[k>>4] |= (((word)d)<<((k<<2) & 63)); }
static inline void Abc_TruthXorHex( word * p, int k, int d ) { p[k>>4] ^= (((word)d)<<((k<<2) & 63)); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
// read one hex character
static inline int Abc_TruthReadHexDigit( char HexChar )
{
if ( HexChar >= '0' && HexChar <= '9' )
return HexChar - '0';
if ( HexChar >= 'A' && HexChar <= 'F' )
return HexChar - 'A' + 10;
if ( HexChar >= 'a' && HexChar <= 'f' )
return HexChar - 'a' + 10;
assert( 0 ); // not a hexadecimal symbol
return -1; // return value which makes no sense
}
// write one hex character
static inline void Abc_TruthWriteHexDigit( FILE * pFile, int HexDigit )
{
assert( HexDigit >= 0 && HexDigit < 16 );
if ( HexDigit < 10 )
fprintf( pFile, "%d", HexDigit );
else
fprintf( pFile, "%c", 'A' + HexDigit-10 );
}
// read one truth table in hexadecimal
void Abc_TruthReadHex( word * pTruth, char * pString, int nVars )
{
int nWords = (nVars < 7)? 1 : (1 << (nVars-6));
int k, Digit, nDigits = (nVars < 7) ? (1 << (nVars-2)) : (nWords << 4);
char EndSymbol;
// skip the first 2 symbols if they are "0x"
if ( pString[0] == '0' && pString[1] == 'x' )
pString += 2;
// get the last symbol
EndSymbol = pString[nDigits];
// the end symbol of the TT (the one immediately following hex digits)
// should be one of the following: space, a new-line, or a zero-terminator
// (note that on Windows symbols '\r' can be inserted before each '\n')
assert( EndSymbol == ' ' || EndSymbol == '\n' || EndSymbol == '\r' || EndSymbol == '\0' );
// read hexadecimal digits in the reverse order
// (the last symbol in the string is the least significant digit)
for ( k = 0; k < nDigits; k++ )
{
Digit = Abc_TruthReadHexDigit( pString[nDigits - 1 - k] );
assert( Digit >= 0 && Digit < 16 );
Abc_TruthSetHex( pTruth, k, Digit );
}
}
// write one truth table in hexadecimal (do not add end-of-line!)
void Abc_TruthWriteHex( FILE * pFile, word * pTruth, int nVars )
{
int nDigits, Digit, k;
nDigits = (1 << (nVars-2));
for ( k = 0; k < nDigits; k++ )
{
Digit = Abc_TruthGetHex( pTruth, k );
assert( Digit >= 0 && Digit < 16 );
Abc_TruthWriteHexDigit( pFile, Digit );
}
}
/**Function*************************************************************
Synopsis [Allocate/Deallocate storage for truth tables..]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_TtStore_t * Abc_TruthStoreAlloc( int nVars, int nFuncs )
{
Abc_TtStore_t * p;
int i;
p = (Abc_TtStore_t *)malloc( sizeof(Abc_TtStore_t) );
p->nVars = nVars;
p->nWords = (nVars < 7) ? 1 : (1 << (nVars-6));
p->nFuncs = nFuncs;
// alloc storage for 'nFuncs' truth tables as one chunk of memory
p->pFuncs = (word **)malloc( (sizeof(word *) + sizeof(word) * p->nWords) * p->nFuncs );
// assign and clean the truth table storage
p->pFuncs[0] = (word *)(p->pFuncs + p->nFuncs);
memset( p->pFuncs[0], 0, sizeof(word) * p->nWords * p->nFuncs );
// split it up into individual truth tables
for ( i = 1; i < p->nFuncs; i++ )
p->pFuncs[i] = p->pFuncs[i-1] + p->nWords;
return p;
}
Abc_TtStore_t * Abc_TruthStoreAlloc2( int nVars, int nFuncs, word * pBuffer )
{
Abc_TtStore_t * p;
int i;
p = (Abc_TtStore_t *)malloc( sizeof(Abc_TtStore_t) );
p->nVars = nVars;
p->nWords = (nVars < 7) ? 1 : (1 << (nVars-6));
p->nFuncs = nFuncs;
// alloc storage for 'nFuncs' truth tables as one chunk of memory
p->pFuncs = (word **)malloc( sizeof(word *) * p->nFuncs );
// assign and clean the truth table storage
p->pFuncs[0] = pBuffer;
// split it up into individual truth tables
for ( i = 1; i < p->nFuncs; i++ )
p->pFuncs[i] = p->pFuncs[i-1] + p->nWords;
return p;
}
void Abc_TtStoreFree( Abc_TtStore_t * p, int nVarNum )
{
if ( nVarNum >= 0 )
ABC_FREE( p->pFuncs[0] );
ABC_FREE( p->pFuncs );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Read file contents.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_FileSize( char * pFileName )
{
FILE * pFile;
int nFileSize;
pFile = fopen( pFileName, "rb" );
if ( pFile == NULL )
{
printf( "Cannot open file \"%s\" for reading.\n", pFileName );
return -1;
}
// get the file size, in bytes
fseek( pFile, 0, SEEK_END );
nFileSize = ftell( pFile );
fclose( pFile );
return nFileSize;
}
/**Function*************************************************************
Synopsis [Read file contents.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char * Abc_FileRead( char * pFileName )
{
FILE * pFile;
char * pBuffer;
int nFileSize, RetValue;
pFile = fopen( pFileName, "rb" );
if ( pFile == NULL )
{
printf( "Cannot open file \"%s\" for reading.\n", pFileName );
return NULL;
}
// get the file size, in bytes
fseek( pFile, 0, SEEK_END );
nFileSize = ftell( pFile );
// move the file current reading position to the beginning
rewind( pFile );
// load the contents of the file into memory
pBuffer = (char *)malloc( nFileSize + 3 );
RetValue = fread( pBuffer, nFileSize, 1, pFile );
// add several empty lines at the end
// (these will be used to signal the end of parsing)
pBuffer[ nFileSize + 0] = '\n';
pBuffer[ nFileSize + 1] = '\n';
// terminate the string with '\0'
pBuffer[ nFileSize + 2] = '\0';
fclose( pFile );
return pBuffer;
}
/**Function*************************************************************
Synopsis [Determine the number of variables by reading the first line.]
Description [Determine the number of functions by counting the lines.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthGetParams( char * pFileName, int * pnVars, int * pnTruths )
{
char * pContents;
int i, nVars, nLines;
// prepare the output
if ( pnVars )
*pnVars = 0;
if ( pnTruths )
*pnTruths = 0;
// read data from file
pContents = Abc_FileRead( pFileName );
if ( pContents == NULL )
return;
// count the number of symbols before the first space or new-line
// (note that on Windows symbols '\r' can be inserted before each '\n')
for ( i = 0; pContents[i]; i++ )
if ( pContents[i] == ' ' || pContents[i] == '\n' || pContents[i] == '\r' )
break;
if ( pContents[i] == 0 )
printf( "Strange, the input file does not have spaces and new-lines...\n" );
// acount for the fact that truth tables may have "0x" at the beginning of each line
if ( pContents[0] == '0' && pContents[1] == 'x' )
i = i - 2;
// determine the number of variables
for ( nVars = 0; nVars < 32; nVars++ )
if ( 4 * i == (1 << nVars) ) // the number of bits equal to the size of truth table
break;
if ( nVars < 2 || nVars > 16 )
{
printf( "Does not look like the input file contains truth tables...\n" );
return;
}
if ( pnVars )
*pnVars = nVars;
// determine the number of functions by counting the lines
nLines = 0;
for ( i = 0; pContents[i]; i++ )
nLines += (pContents[i] == '\n');
if ( pnTruths )
*pnTruths = nLines;
ABC_FREE( pContents );
}
/**Function*************************************************************
Synopsis [Read truth tables from file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthStoreRead( char * pFileName, Abc_TtStore_t * p )
{
char * pContents;
int i, nLines;
pContents = Abc_FileRead( pFileName );
if ( pContents == NULL )
return;
// here it is assumed (without checking!) that each line of the file
// begins with a string of hexadecimal chars followed by space
// the file will be read till the first empty line (pContents[i] == '\n')
// (note that Abc_FileRead() added several empty lines at the end of the file contents)
for ( nLines = i = 0; pContents[i] != '\n'; )
{
// read one line
Abc_TruthReadHex( p->pFuncs[nLines++], &pContents[i], p->nVars );
// skip till after the end-of-line symbol
// (note that end-of-line symbol is also skipped)
while ( pContents[i++] != '\n' );
}
// adjust the number of functions read
// (we may have allocated more storage because some lines in the file were empty)
assert( p->nFuncs >= nLines );
p->nFuncs = nLines;
ABC_FREE( pContents );
}
/**Function*************************************************************
Synopsis [Write truth tables into file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TtStoreWrite( char * pFileName, Abc_TtStore_t * p, int fBinary )
{
FILE * pFile;
char pBuffer[1000];
int i, nBytes = 8 * Abc_Truth6WordNum( p->nVars );
pFile = fopen( pFileName, "wb" );
if ( pFile == NULL )
{
printf( "Cannot open file \"%s\" for writing.\n", pFileName );
return;
}
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fBinary )
fwrite( p->pFuncs[i], nBytes, 1, pFile );
else
{
Abc_TruthWriteHex( pFile, p->pFuncs[i], p->nVars ), fprintf( pFile, " " );
Dau_DsdDecompose( p->pFuncs[i], p->nVars, 0, (int)(p->nVars <= 10), pBuffer );
fprintf( pFile, "%s\n", pBuffer );
}
}
fclose( pFile );
}
/**Function*************************************************************
Synopsis [Read truth tables from input file and write them into output file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_TtStore_t * Abc_TtStoreLoad( char * pFileName, int nVarNum )
{
Abc_TtStore_t * p;
if ( nVarNum < 0 )
{
int nVars, nTruths;
// figure out how many truth table and how many variables
Abc_TruthGetParams( pFileName, &nVars, &nTruths );
if ( nVars < 2 || nVars > 16 || nTruths == 0 )
return NULL;
// allocate data-structure
p = Abc_TruthStoreAlloc( nVars, nTruths );
// read info from file
Abc_TruthStoreRead( pFileName, p );
}
else
{
char * pBuffer;
int nFileSize = Abc_FileSize( pFileName );
int nBytes = (1 << (nVarNum-3));
int nTruths = nFileSize / nBytes;
if ( nFileSize == -1 )
return NULL;
assert( nVarNum >= 6 );
if ( nFileSize % nBytes != 0 )
Abc_Print( 0, "The file size (%d) is divided by the truth table size (%d) with remainder (%d).\n",
nFileSize, nBytes, nFileSize % nBytes );
// read file contents
pBuffer = Abc_FileRead( pFileName );
// allocate data-structure
p = Abc_TruthStoreAlloc2( nVarNum, nTruths, (word *)pBuffer );
}
return p;
}
/**Function*************************************************************
Synopsis [Read truth tables from input file and write them into output file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TtStoreTest( char * pFileName )
{
Abc_TtStore_t * p;
char * pFileInput = pFileName;
char * pFileOutput = "out.txt";
// read info from file
p = Abc_TtStoreLoad( pFileInput, -1 );
if ( p == NULL )
return;
// write into another file
Abc_TtStoreWrite( pFileOutput, p, 0 );
// delete data-structure
Abc_TtStoreFree( p, -1 );
printf( "Input file \"%s\" was copied into output file \"%s\".\n", pFileInput, pFileOutput );
}
/**Function*************************************************************
Synopsis [Apply decomposition to the truth table.]
Description [Returns the number of AIG nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthDecPerform( Abc_TtStore_t * p, int DecType, int fVerbose )
{
abctime clk = Abc_Clock();
int i, nNodes = 0;
char * pAlgoName = NULL;
if ( DecType == 1 )
pAlgoName = "factoring";
else if ( DecType == 2 )
pAlgoName = "bi-decomp";
else if ( DecType == 3 )
pAlgoName = "DSD";
else if ( DecType == 4 )
pAlgoName = "fast DSD";
else if ( DecType == 5 )
pAlgoName = "analysis";
else if ( DecType == 6 )
pAlgoName = "DSD ICCD'15";
if ( pAlgoName )
printf( "Applying %-10s to %8d func%s of %2d vars... ",
pAlgoName, p->nFuncs, (p->nFuncs == 1 ? "":"s"), p->nVars );
if ( fVerbose )
printf( "\n" );
if ( DecType == 1 )
{
// perform algebraic factoring and count AIG nodes
Dec_Graph_t * pFForm;
Vec_Int_t * vCover;
Vec_Str_t * vStr;
char * pSopStr;
vStr = Vec_StrAlloc( 10000 );
vCover = Vec_IntAlloc( 1 << 16 );
for ( i = 0; i < p->nFuncs; i++ )
{
// extern int Abc_IsopTest( word * pFunc, int nVars, Vec_Int_t * vCover );
// if ( i == 0 ) printf( "\n" );
// Abc_IsopTest( p->pFuncs[i], p->nVars, vCover );
// continue;
if ( fVerbose )
printf( "%7d : ", i );
pSopStr = Kit_PlaFromTruthNew( (unsigned *)p->pFuncs[i], p->nVars, vCover, vStr );
pFForm = Dec_Factor( pSopStr );
nNodes += Dec_GraphNodeNum( pFForm );
if ( fVerbose )
Dec_GraphPrint( stdout, pFForm, NULL, NULL );
Dec_GraphFree( pFForm );
}
Vec_IntFree( vCover );
Vec_StrFree( vStr );
}
else if ( DecType == 2 )
{
// perform bi-decomposition and count AIG nodes
Bdc_Man_t * pManDec;
Bdc_Par_t Pars = {0}, * pPars = &Pars;
pPars->nVarsMax = p->nVars;
pManDec = Bdc_ManAlloc( pPars );
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
Bdc_ManDecompose( pManDec, (unsigned *)p->pFuncs[i], NULL, p->nVars, NULL, 1000 );
nNodes += Bdc_ManAndNum( pManDec );
if ( fVerbose )
Bdc_ManDecPrint( pManDec );
}
Bdc_ManFree( pManDec );
}
else if ( DecType == 3 )
{
// perform disjoint-support decomposition and count AIG nodes
// (non-DSD blocks are decomposed into 2:1 MUXes, each counting as 3 AIG nodes)
Kit_DsdNtk_t * pNtk;
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
pNtk = Kit_DsdDecomposeMux( (unsigned *)p->pFuncs[i], p->nVars, 3 );
if ( fVerbose )
Kit_DsdPrintExpanded( pNtk ), printf( "\n" );
nNodes += Kit_DsdCountAigNodes( pNtk );
Kit_DsdNtkFree( pNtk );
}
}
else if ( DecType == 4 )
{
char pDsd[DAU_MAX_STR];
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
Dau_DsdDecompose( p->pFuncs[i], p->nVars, 0, 1, pDsd );
if ( fVerbose )
printf( "%s\n", pDsd );
nNodes += Dau_DsdCountAnds( pDsd );
}
}
else if ( DecType == 5 )
{
for ( i = 0; i < p->nFuncs; i++ )
{
extern void Dau_DecTrySets( word * pInit, int nVars, int fVerbose );
int nSuppSize = Abc_TtSupportSize( p->pFuncs[i], p->nVars );
if ( fVerbose )
printf( "%7d : ", i );
Dau_DecTrySets( p->pFuncs[i], nSuppSize, fVerbose );
if ( fVerbose )
printf( "\n" );
}
} else if ( DecType == 6 )
{
char pDsd[DSC_MAX_STR];
/* memory pool with a capacity of storing 3*nVars
truth-tables for negative and positive cofactors and
the boolean difference for each input variable */
word *mem_pool = Dsc_alloc_pool(p->nVars);
for ( i = 0; i < p->nFuncs; i++ )
{
if ( fVerbose )
printf( "%7d : ", i );
Dsc_Decompose(p->pFuncs[i], p->nVars, pDsd, mem_pool);
if ( fVerbose )
printf( "%s\n", pDsd[0] ? pDsd : "NULL");
nNodes += Dsc_CountAnds( pDsd );
}
Dsc_free_pool(mem_pool);
}
else assert( 0 );
printf( "AIG nodes =%9d ", nNodes );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
/**Function*************************************************************
Synopsis [Apply decomposition to truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_TruthDecTest( char * pFileName, int DecType, int nVarNum, int fVerbose )
{
Abc_TtStore_t * p;
// allocate data-structure
p = Abc_TtStoreLoad( pFileName, nVarNum );
if ( p == NULL ) return;
// consider functions from the file
Abc_TruthDecPerform( p, DecType, fVerbose );
// delete data-structure
Abc_TtStoreFree( p, nVarNum );
// printf( "Finished decomposing truth tables from file \"%s\".\n", pFileName );
}
/**Function*************************************************************
Synopsis [Testbench for decomposition algorithms.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_DecTest( char * pFileName, int DecType, int nVarNum, int fVerbose )
{
if ( fVerbose )
printf( "Using truth tables from file \"%s\"...\n", pFileName );
if ( DecType == 0 )
{ if ( nVarNum < 0 ) Abc_TtStoreTest( pFileName ); }
else if ( DecType >= 1 && DecType <= 6 )
Abc_TruthDecTest( pFileName, DecType, nVarNum, fVerbose );
else
printf( "Unknown decomposition type value (%d).\n", DecType );
fflush( stdout );
return 0;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END