blob: 72dba1a06f0fd034e8777dd4f694a8084b595bc2 [file] [log] [blame]
/**CFile****************************************************************
FileName [abc_.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis []
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abc_.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "bool/kit/kit.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkPrintMeasures( unsigned * pTruth, int nVars )
{
unsigned uCofs[10][32];
int i, k, nOnes;
// total pairs
nOnes = Kit_TruthCountOnes( uCofs[0], nVars );
printf( "Total = %d.\n", nOnes * ((1 << nVars) - nOnes) );
// print measures for individual variables
for ( i = 0; i < nVars; i++ )
{
Kit_TruthUniqueNew( uCofs[0], pTruth, nVars, i );
nOnes = Kit_TruthCountOnes( uCofs[0], nVars );
printf( "%7d ", nOnes );
}
printf( "\n" );
// consider pairs
for ( i = 0; i < nVars; i++ )
for ( k = 0; k < nVars; k++ )
{
if ( i == k )
{
printf( " " );
continue;
}
Kit_TruthCofactor0New( uCofs[0], pTruth, nVars, i );
Kit_TruthCofactor1New( uCofs[1], pTruth, nVars, i );
Kit_TruthCofactor0New( uCofs[2], uCofs[0], nVars, k ); // 00
Kit_TruthCofactor1New( uCofs[3], uCofs[0], nVars, k ); // 01
Kit_TruthCofactor0New( uCofs[4], uCofs[1], nVars, k ); // 10
Kit_TruthCofactor1New( uCofs[5], uCofs[1], nVars, k ); // 11
Kit_TruthAndPhase( uCofs[6], uCofs[2], uCofs[5], nVars, 0, 1 ); // 00 & 11'
Kit_TruthAndPhase( uCofs[7], uCofs[2], uCofs[5], nVars, 1, 0 ); // 00' & 11
Kit_TruthAndPhase( uCofs[8], uCofs[3], uCofs[4], nVars, 0, 1 ); // 01 & 10'
Kit_TruthAndPhase( uCofs[9], uCofs[3], uCofs[4], nVars, 1, 0 ); // 01' & 10
nOnes = Kit_TruthCountOnes( uCofs[6], nVars ) +
Kit_TruthCountOnes( uCofs[7], nVars ) +
Kit_TruthCountOnes( uCofs[8], nVars ) +
Kit_TruthCountOnes( uCofs[9], nVars );
printf( "%7d ", nOnes );
if ( k == nVars - 1 )
printf( "\n" );
}
printf( "\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_Ntk4VarObjPrint_rec( Abc_Obj_t * pObj )
{
if ( pObj == Abc_AigConst1(pObj->pNtk) )
{
printf( "1" );
return;
}
if ( Abc_ObjIsPi(pObj) )
{
printf( "%c", pObj->Id - 1 + 'a' );
return;
}
printf( "(" );
Abc_Ntk4VarObjPrint_rec( Abc_ObjFanin0(pObj) );
if ( Abc_ObjFaninC0(pObj) )
printf( "\'" );
Abc_Ntk4VarObjPrint_rec( Abc_ObjFanin1(pObj) );
if ( Abc_ObjFaninC1(pObj) )
printf( "\'" );
printf( ")" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Abc_Ntk4VarObj( Vec_Ptr_t * vNodes )
{
Abc_Obj_t * pObj;
unsigned uTruth0, uTruth1;
int i;
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
{
uTruth0 = (unsigned)(Abc_ObjFanin0(pObj)->pCopy);
uTruth1 = (unsigned)(Abc_ObjFanin1(pObj)->pCopy);
if ( Abc_ObjFaninC0(pObj) )
uTruth0 = ~uTruth0;
if ( Abc_ObjFaninC1(pObj) )
uTruth1 = ~uTruth1;
pObj->pCopy = (Abc_Obj_t *)(uTruth0 & uTruth1);
}
return uTruth0 & uTruth1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_Ntk4VarTable( Abc_Ntk_t * pNtk )
{
static unsigned u4VarTruths[4] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00 };
static unsigned u4VarTts[222] = {
0x0000, 0x0001, 0x0003, 0x0006, 0x0007, 0x000f, 0x0016, 0x0017, 0x0018, 0x0019,
0x001b, 0x001e, 0x001f, 0x003c, 0x003d, 0x003f, 0x0069, 0x006b, 0x006f, 0x007e,
0x007f, 0x00ff, 0x0116, 0x0117, 0x0118, 0x0119, 0x011a, 0x011b, 0x011e, 0x011f,
0x012c, 0x012d, 0x012f, 0x013c, 0x013d, 0x013e, 0x013f, 0x0168, 0x0169, 0x016a,
0x016b, 0x016e, 0x016f, 0x017e, 0x017f, 0x0180, 0x0181, 0x0182, 0x0183, 0x0186,
0x0187, 0x0189, 0x018b, 0x018f, 0x0196, 0x0197, 0x0198, 0x0199, 0x019a, 0x019b,
0x019e, 0x019f, 0x01a8, 0x01a9, 0x01aa, 0x01ab, 0x01ac, 0x01ad, 0x01ae, 0x01af,
0x01bc, 0x01bd, 0x01be, 0x01bf, 0x01e8, 0x01e9, 0x01ea, 0x01eb, 0x01ee, 0x01ef,
0x01fe, 0x033c, 0x033d, 0x033f, 0x0356, 0x0357, 0x0358, 0x0359, 0x035a, 0x035b,
0x035e, 0x035f, 0x0368, 0x0369, 0x036a, 0x036b, 0x036c, 0x036d, 0x036e, 0x036f,
0x037c, 0x037d, 0x037e, 0x03c0, 0x03c1, 0x03c3, 0x03c5, 0x03c6, 0x03c7, 0x03cf,
0x03d4, 0x03d5, 0x03d6, 0x03d7, 0x03d8, 0x03d9, 0x03db, 0x03dc, 0x03dd, 0x03de,
0x03fc, 0x0660, 0x0661, 0x0662, 0x0663, 0x0666, 0x0667, 0x0669, 0x066b, 0x066f,
0x0672, 0x0673, 0x0676, 0x0678, 0x0679, 0x067a, 0x067b, 0x067e, 0x0690, 0x0691,
0x0693, 0x0696, 0x0697, 0x069f, 0x06b0, 0x06b1, 0x06b2, 0x06b3, 0x06b4, 0x06b5,
0x06b6, 0x06b7, 0x06b9, 0x06bd, 0x06f0, 0x06f1, 0x06f2, 0x06f6, 0x06f9, 0x0776,
0x0778, 0x0779, 0x077a, 0x077e, 0x07b0, 0x07b1, 0x07b4, 0x07b5, 0x07b6, 0x07bc,
0x07e0, 0x07e1, 0x07e2, 0x07e3, 0x07e6, 0x07e9, 0x07f0, 0x07f1, 0x07f2, 0x07f8,
0x0ff0, 0x1668, 0x1669, 0x166a, 0x166b, 0x166e, 0x167e, 0x1681, 0x1683, 0x1686,
0x1687, 0x1689, 0x168b, 0x168e, 0x1696, 0x1697, 0x1698, 0x1699, 0x169a, 0x169b,
0x169e, 0x16a9, 0x16ac, 0x16ad, 0x16bc, 0x16e9, 0x177e, 0x178e, 0x1796, 0x1798,
0x179a, 0x17ac, 0x17e8, 0x18e7, 0x19e1, 0x19e3, 0x19e6, 0x1bd8, 0x1be4, 0x1ee1,
0x3cc3, 0x6996
};
int Counters[222] = {0};
Vec_Ptr_t * vNodes;
Abc_Obj_t * pObj;
unsigned uTruth;
int i, k, Count = 0;
unsigned short * puCanons = NULL;
unsigned char * puMap = NULL;
Extra_Truth4VarNPN( &puCanons, NULL, NULL, &puMap );
// set elementary truth tables
assert( Abc_NtkPiNum(pNtk) == 4 );
Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)0xFFFFFFFF;
Abc_NtkForEachPi( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)u4VarTruths[i];
// create truth tables
Abc_NtkForEachPo( pNtk, pObj, i )
{
vNodes = Abc_NtkDfsNodes( pNtk, &pObj, 1 );
if ( Vec_PtrSize(vNodes) == 0 )
uTruth = (unsigned)Abc_ObjFanin0(pObj)->pCopy;
else
uTruth = Abc_Ntk4VarObj( vNodes );
if ( (uTruth & 0xFFFF) < (~uTruth & 0xFFFF) )
uTruth = uTruth & 0xFFFF;
else
uTruth = ~uTruth & 0xFFFF;
for ( k = 0; k < 222; k++ )
if ( u4VarTts[k] == uTruth )
break;
if ( k == 222 )
continue;
/*
// if ( uTruth == 1725 )
if ( k == 96 )
{
printf( "%d : ", Vec_PtrSize(vNodes) );
Abc_Ntk4VarObjPrint_rec( Abc_ObjFanin0(pObj) );
printf( "\n" );
}
*/
Counters[k]++;
// Counters[ puMap[uTruth & 0xFFFF] ]++;
Vec_PtrFree( vNodes );
}
ABC_FREE( puCanons );
ABC_FREE( puMap );
Count = 0;
for ( k = 0; k < 222; k++ )
{
printf( "%d/%x/%d ", k, u4VarTts[k], Counters[k] );
Count += Counters[k];
}
printf( " Total = %d\n", Count );
}
/**Function*************************************************************
Synopsis [Returns 1 if there are no more than 2 unique cofactors.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkPrintOneDecompCheckCofList( unsigned * uCofs, int nCofs )
{
int i, Ind = -1;
assert( nCofs > 2 );
for ( i = 1; i < nCofs; i++ )
{
if ( uCofs[i] == uCofs[0] )
continue;
if ( Ind == -1 )
{
Ind = i;
continue;
}
if ( uCofs[i] == uCofs[Ind] )
continue;
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Checks all cofactors with the given mask.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkPrintOneDecompCheck( unsigned * uCofs, int nCofs, unsigned uMask )
{
unsigned pCofs[32][32];
int nCofNums[32] = {0};
int uMasks[32];
int nGroups = 0;
int i, k;
for ( i = 0; i < nCofs; i++ )
{
// find group of this cof
for ( k = 0; k < nGroups; k++ )
if ( (int)(i & uMask) == uMasks[k] )
break;
if ( k == nGroups )
{
uMasks[k] = (i & uMask);
nGroups++;
}
// save cof in the group
pCofs[k][ nCofNums[k]++ ] = uCofs[i];
assert( nCofNums[k] <= 32 );
assert( nGroups <= 32 );
}
// check the groups
for ( i = 0; i < nGroups; i++ )
if ( !Abc_NtkPrintOneDecompCheckCofList(pCofs[i], nCofNums[i]) )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkPrintOneDecomp_rec( unsigned * uCofs, int nCofs, int nVars, unsigned uMask, int * pBestSize, unsigned * puBestMask )
{
unsigned uMaskNew;
int v, last, Counter = 0;
// find the last variable in the mask
for ( v = 0; v < nVars; v++ )
if ( uMask & (1<<v) )
{
last = v;
Counter++;
}
if ( Counter > 3 )
return;
// try adding one variable after the last
for ( v = last + 1; v < nVars; v++ )
{
uMaskNew = uMask | (1 << v);
if ( !Abc_NtkPrintOneDecompCheck( uCofs, nCofs, uMaskNew ) )
continue;
if ( *pBestSize < Counter + 1 )
{
*pBestSize = Counter + 1;
*puBestMask = uMaskNew;
}
// try other masks
Abc_NtkPrintOneDecomp_rec( uCofs, nCofs, nVars, uMaskNew, pBestSize, puBestMask );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkPrintOneDecomp( unsigned * pTruth, int nVars )
{
int BoundSet = 6;
unsigned uCofs[64], uMask, uBestMask = 0;
int i, nCofs, nMints, nMintShift, BestSize = 1;
assert( nVars > BoundSet );
assert( nVars <= BoundSet + 5 ); // at most 5 variable cofactors
// collect the cofactors
nCofs = (1 << BoundSet);
nMints = (1 << (nVars-BoundSet));
nMintShift = 0;
uMask = Kit_CubeMask( nMints );
for ( i = 0; i < nCofs; i++ )
{
uCofs[i] = (pTruth[nMintShift/32] >> (nMintShift % 32)) & uMask;
nMintShift += nMints;
}
// try removing variables
for ( i = 0; i < BoundSet; i++ )
Abc_NtkPrintOneDecomp_rec( uCofs, nCofs, nVars, (1 << i), &BestSize, &uBestMask );
printf( "Best size = %d ", BestSize );
printf( "Best mask = " );
Extra_PrintBinary( stdout, &uBestMask, nVars );
printf( "\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkPrintOneDec( unsigned * pTruth, int nVars )
{
unsigned uCof[(1<<11)], * pOut = uCof, * pIn = pTruth, * pTemp;
int nDiffs[16];
int Order[16];
int i, fChange, Temp, Counter;
// find the ordering
for ( i = 0; i < nVars; i++ )
{
Kit_TruthUniqueNew( uCof, pTruth, nVars, i );
nDiffs[i] = Kit_TruthCountOnes( uCof, nVars );
Order[i] = i;
}
// permute truth table to least active variable first
Counter = 0;
do {
fChange = 0;
for ( i = 0; i < nVars-1; i++ )
{
if ( nDiffs[i] <= nDiffs[i+1] )
continue;
fChange = 1;
Counter++;
Temp = nDiffs[i];
nDiffs[i] = nDiffs[i+1];
nDiffs[i+1] = Temp;
Temp = Order[i];
Order[i] = Order[i+1];
Order[i+1] = Temp;
Extra_TruthSwapAdjacentVars( pOut, pIn, nVars, i );
pTemp = pIn; pIn = pOut; pOut = pTemp;
}
} while ( fChange );
// swap if it was moved an even number of times
if ( Counter & 1 )
Extra_TruthCopy( pOut, pIn, nVars );
// call the decomposition
Abc_NtkPrintOneDecomp( pTruth, nVars );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END