blob: 3cc6d79360a9dca7ffa5415e024e85dd5c4d3252 [file] [log] [blame]
/**CFile****************************************************************
FileName [abcRefactor.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Resynthesis based on collapsing and refactoring.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcRefactor.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "bool/dec/dec.h"
#include "bool/kit/kit.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Abc_ManRef_t_ Abc_ManRef_t;
struct Abc_ManRef_t_
{
// user specified parameters
int nNodeSizeMax; // the limit on the size of the supernode
int nConeSizeMax; // the limit on the size of the containing cone
int fVerbose; // the verbosity flag
// internal data structures
Vec_Ptr_t * vVars; // truth tables
Vec_Ptr_t * vFuncs; // functions
Vec_Int_t * vMemory; // memory
Vec_Str_t * vCube; // temporary
Vec_Int_t * vForm; // temporary
Vec_Ptr_t * vVisited; // temporary
Vec_Ptr_t * vLeaves; // temporary
// node statistics
int nLastGain;
int nNodesConsidered;
int nNodesRefactored;
int nNodesGained;
int nNodesBeg;
int nNodesEnd;
// runtime statistics
abctime timeCut;
abctime timeTru;
abctime timeDcs;
abctime timeSop;
abctime timeFact;
abctime timeEval;
abctime timeRes;
abctime timeNtk;
abctime timeTotal;
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Returns function of the cone.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
word * Abc_NodeConeTruth( Vec_Ptr_t * vVars, Vec_Ptr_t * vFuncs, int nWordsMax, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vVisited )
{
Abc_Obj_t * pNode;
word * pTruth0, * pTruth1, * pTruth = NULL;
int i, k, nWords = Abc_Truth6WordNum( Vec_PtrSize(vLeaves) );
// get nodes in the cut without fanins in the DFS order
Abc_NodeConeCollect( &pRoot, 1, vLeaves, vVisited, 0 );
// set elementary functions
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pNode, i )
pNode->pCopy = (Abc_Obj_t *)Vec_PtrEntry( vVars, i );
// prepare functions
for ( i = Vec_PtrSize(vFuncs); i < Vec_PtrSize(vVisited); i++ )
Vec_PtrPush( vFuncs, ABC_ALLOC(word, nWordsMax) );
// compute functions for the collected nodes
Vec_PtrForEachEntry( Abc_Obj_t *, vVisited, pNode, i )
{
assert( !Abc_ObjIsPi(pNode) );
pTruth0 = (word *)Abc_ObjFanin0(pNode)->pCopy;
pTruth1 = (word *)Abc_ObjFanin1(pNode)->pCopy;
pTruth = (word *)Vec_PtrEntry( vFuncs, i );
if ( Abc_ObjFaninC0(pNode) )
{
if ( Abc_ObjFaninC1(pNode) )
for ( k = 0; k < nWords; k++ )
pTruth[k] = ~pTruth0[k] & ~pTruth1[k];
else
for ( k = 0; k < nWords; k++ )
pTruth[k] = ~pTruth0[k] & pTruth1[k];
}
else
{
if ( Abc_ObjFaninC1(pNode) )
for ( k = 0; k < nWords; k++ )
pTruth[k] = pTruth0[k] & ~pTruth1[k];
else
for ( k = 0; k < nWords; k++ )
pTruth[k] = pTruth0[k] & pTruth1[k];
}
pNode->pCopy = (Abc_Obj_t *)pTruth;
}
return pTruth;
}
int Abc_NodeConeIsConst0( word * pTruth, int nVars )
{
int k, nWords = Abc_Truth6WordNum( nVars );
for ( k = 0; k < nWords; k++ )
if ( pTruth[k] )
return 0;
return 1;
}
int Abc_NodeConeIsConst1( word * pTruth, int nVars )
{
int k, nWords = Abc_Truth6WordNum( nVars );
for ( k = 0; k < nWords; k++ )
if ( ~pTruth[k] )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Resynthesizes the node using refactoring.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Dec_Graph_t * Abc_NodeRefactor( Abc_ManRef_t * p, Abc_Obj_t * pNode, Vec_Ptr_t * vFanins, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose )
{
extern int Dec_GraphToNetworkCount( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax );
int fVeryVerbose = 0;
int nVars = Vec_PtrSize(vFanins);
int nWordsMax = Abc_Truth6WordNum(p->nNodeSizeMax);
Dec_Graph_t * pFForm;
Abc_Obj_t * pFanin;
word * pTruth;
abctime clk;
int i, nNodesSaved, nNodesAdded, Required;
p->nNodesConsidered++;
Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;
// get the function of the cut
clk = Abc_Clock();
pTruth = Abc_NodeConeTruth( p->vVars, p->vFuncs, nWordsMax, pNode, vFanins, p->vVisited );
p->timeTru += Abc_Clock() - clk;
if ( pTruth == NULL )
return NULL;
// always accept the case of constant node
if ( Abc_NodeConeIsConst0(pTruth, nVars) || Abc_NodeConeIsConst1(pTruth, nVars) )
{
p->nLastGain = Abc_NodeMffcSize( pNode );
p->nNodesGained += p->nLastGain;
p->nNodesRefactored++;
return Abc_NodeConeIsConst0(pTruth, nVars) ? Dec_GraphCreateConst0() : Dec_GraphCreateConst1();
}
// get the factored form
clk = Abc_Clock();
pFForm = (Dec_Graph_t *)Kit_TruthToGraph( (unsigned *)pTruth, nVars, p->vMemory );
p->timeFact += Abc_Clock() - clk;
// mark the fanin boundary
// (can mark only essential fanins, belonging to bNodeFunc!)
Vec_PtrForEachEntry( Abc_Obj_t *, vFanins, pFanin, i )
pFanin->vFanouts.nSize++;
// label MFFC with current traversal ID
Abc_NtkIncrementTravId( pNode->pNtk );
nNodesSaved = Abc_NodeMffcLabelAig( pNode );
// unmark the fanin boundary and set the fanins as leaves in the form
Vec_PtrForEachEntry( Abc_Obj_t *, vFanins, pFanin, i )
{
pFanin->vFanouts.nSize--;
Dec_GraphNode(pFForm, i)->pFunc = pFanin;
}
// detect how many new nodes will be added (while taking into account reused nodes)
clk = Abc_Clock();
nNodesAdded = Dec_GraphToNetworkCount( pNode, pFForm, nNodesSaved, Required );
p->timeEval += Abc_Clock() - clk;
// quit if there is no improvement
if ( nNodesAdded == -1 || (nNodesAdded == nNodesSaved && !fUseZeros) )
{
Dec_GraphFree( pFForm );
return NULL;
}
// compute the total gain in the number of nodes
p->nLastGain = nNodesSaved - nNodesAdded;
p->nNodesGained += p->nLastGain;
p->nNodesRefactored++;
// report the progress
if ( fVeryVerbose )
{
printf( "Node %6s : ", Abc_ObjName(pNode) );
printf( "Cone = %2d. ", vFanins->nSize );
printf( "FF = %2d. ", 1 + Dec_GraphNodeNum(pFForm) );
printf( "MFFC = %2d. ", nNodesSaved );
printf( "Add = %2d. ", nNodesAdded );
printf( "GAIN = %2d. ", p->nLastGain );
printf( "\n" );
}
return pFForm;
}
/**Function*************************************************************
Synopsis [Starts the resynthesis manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_ManRef_t * Abc_NtkManRefStart( int nNodeSizeMax, int nConeSizeMax, int fUseDcs, int fVerbose )
{
Abc_ManRef_t * p;
p = ABC_ALLOC( Abc_ManRef_t, 1 );
memset( p, 0, sizeof(Abc_ManRef_t) );
p->vCube = Vec_StrAlloc( 100 );
p->vVisited = Vec_PtrAlloc( 100 );
p->nNodeSizeMax = nNodeSizeMax;
p->nConeSizeMax = nConeSizeMax;
p->fVerbose = fVerbose;
p->vVars = Vec_PtrAllocTruthTables( Abc_MaxInt(nNodeSizeMax, 6) );
p->vFuncs = Vec_PtrAlloc( 100 );
p->vMemory = Vec_IntAlloc( 1 << 16 );
return p;
}
/**Function*************************************************************
Synopsis [Stops the resynthesis manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkManRefStop( Abc_ManRef_t * p )
{
Vec_PtrFreeFree( p->vFuncs );
Vec_PtrFree( p->vVars );
Vec_IntFree( p->vMemory );
Vec_PtrFree( p->vVisited );
Vec_StrFree( p->vCube );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Stops the resynthesis manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkManRefPrintStats( Abc_ManRef_t * p )
{
printf( "Refactoring statistics:\n" );
printf( "Nodes considered = %8d.\n", p->nNodesConsidered );
printf( "Nodes refactored = %8d.\n", p->nNodesRefactored );
printf( "Gain = %8d. (%6.2f %%).\n", p->nNodesBeg-p->nNodesEnd, 100.0*(p->nNodesBeg-p->nNodesEnd)/p->nNodesBeg );
ABC_PRT( "Cuts ", p->timeCut );
ABC_PRT( "Resynthesis", p->timeRes );
ABC_PRT( " BDD ", p->timeTru );
ABC_PRT( " DCs ", p->timeDcs );
ABC_PRT( " SOP ", p->timeSop );
ABC_PRT( " FF ", p->timeFact );
ABC_PRT( " Eval ", p->timeEval );
ABC_PRT( "AIG update ", p->timeNtk );
ABC_PRT( "TOTAL ", p->timeTotal );
}
/**Function*************************************************************
Synopsis [Performs incremental resynthesis of the AIG.]
Description [Starting from each node, computes a reconvergence-driven cut,
derives BDD of the cut function, constructs ISOP, factors the ISOP,
and replaces the current implementation of the MFFC of the node by the
new factored form, if the number of AIG nodes is reduced and the total
number of levels of the AIG network is not increated. Returns the
number of AIG nodes saved.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRefactor( Abc_Ntk_t * pNtk, int nNodeSizeMax, int nConeSizeMax, int fUpdateLevel, int fUseZeros, int fUseDcs, int fVerbose )
{
extern void Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain );
ProgressBar * pProgress;
Abc_ManRef_t * pManRef;
Abc_ManCut_t * pManCut;
Dec_Graph_t * pFForm;
Vec_Ptr_t * vFanins;
Abc_Obj_t * pNode;
abctime clk, clkStart = Abc_Clock();
int i, nNodes;
assert( Abc_NtkIsStrash(pNtk) );
// cleanup the AIG
Abc_AigCleanup((Abc_Aig_t *)pNtk->pManFunc);
// start the managers
pManCut = Abc_NtkManCutStart( nNodeSizeMax, nConeSizeMax, 2, 1000 );
pManRef = Abc_NtkManRefStart( nNodeSizeMax, nConeSizeMax, fUseDcs, fVerbose );
pManRef->vLeaves = Abc_NtkManCutReadCutLarge( pManCut );
// compute the reverse levels if level update is requested
if ( fUpdateLevel )
Abc_NtkStartReverseLevels( pNtk, 0 );
// resynthesize each node once
pManRef->nNodesBeg = Abc_NtkNodeNum(pNtk);
nNodes = Abc_NtkObjNumMax(pNtk);
pProgress = Extra_ProgressBarStart( stdout, nNodes );
Abc_NtkForEachNode( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
// skip the constant node
// if ( Abc_NodeIsConst(pNode) )
// continue;
// skip persistant nodes
if ( Abc_NodeIsPersistant(pNode) )
continue;
// skip the nodes with many fanouts
if ( Abc_ObjFanoutNum(pNode) > 1000 )
continue;
// stop if all nodes have been tried once
if ( i >= nNodes )
break;
// compute a reconvergence-driven cut
clk = Abc_Clock();
vFanins = Abc_NodeFindCut( pManCut, pNode, fUseDcs );
pManRef->timeCut += Abc_Clock() - clk;
// evaluate this cut
clk = Abc_Clock();
pFForm = Abc_NodeRefactor( pManRef, pNode, vFanins, fUpdateLevel, fUseZeros, fUseDcs, fVerbose );
pManRef->timeRes += Abc_Clock() - clk;
if ( pFForm == NULL )
continue;
// acceptable replacement found, update the graph
clk = Abc_Clock();
Dec_GraphUpdateNetwork( pNode, pFForm, fUpdateLevel, pManRef->nLastGain );
pManRef->timeNtk += Abc_Clock() - clk;
Dec_GraphFree( pFForm );
}
Extra_ProgressBarStop( pProgress );
pManRef->timeTotal = Abc_Clock() - clkStart;
pManRef->nNodesEnd = Abc_NtkNodeNum(pNtk);
// print statistics of the manager
if ( fVerbose )
Abc_NtkManRefPrintStats( pManRef );
// delete the managers
Abc_NtkManCutStop( pManCut );
Abc_NtkManRefStop( pManRef );
// put the nodes into the DFS order and reassign their IDs
Abc_NtkReassignIds( pNtk );
// Abc_AigCheckFaninOrder( pNtk->pManFunc );
// fix the levels
if ( fUpdateLevel )
Abc_NtkStopReverseLevels( pNtk );
else
Abc_NtkLevel( pNtk );
// check
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_NtkRefactor: The network check has failed.\n" );
return 0;
}
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END