blob: 9fce00f88b895d587d18480e7c011656de8f7c58 [file] [log] [blame]
/**CFile****************************************************************
FileName [abcMfs.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Hierarchical word-level netlist.]
Synopsis [Optimization with don't-cares.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - July 21, 2015.]
Revision [$Id: abcMfs.c,v 1.00 2014/11/29 00:00:00 alanmi Exp $]
***********************************************************************/
#include "acb.h"
#include "bool/kit/kit.h"
#include "sat/bsat/satSolver.h"
#include "sat/cnf/cnf.h"
#include "misc/util/utilTruth.h"
#include "acbPar.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static inline int Acb_ObjIsDelayCriticalFanin( Acb_Ntk_t * p, int i, int f ) { return !Acb_ObjIsCi(p, f) && Acb_ObjLevelR(p, i) + Acb_ObjLevelD(p, f) == p->LevelMax; }
static inline int Acb_ObjIsAreaCritical( Acb_Ntk_t * p, int f ) { return !Acb_ObjIsCi(p, f) && Acb_ObjFanoutNum(p, f) == 1; }
static inline int Acb_ObjIsCritical( Acb_Ntk_t * p, int i, int f, int fDel ) { return fDel ? Acb_ObjIsDelayCriticalFanin(p, i, f) : Acb_ObjIsAreaCritical(p, f); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Derive CNF for nodes in the window.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Acb_DeriveCnfFromTruth( word Truth, int nVars, Vec_Int_t * vCover, Vec_Str_t * vCnf )
{
Vec_StrClear( vCnf );
if ( Truth == 0 || ~Truth == 0 )
{
// assert( nVars == 0 );
Vec_StrPush( vCnf, (char)(Truth == 0) );
Vec_StrPush( vCnf, (char)-1 );
return 1;
}
else
{
int i, k, c, RetValue, Literal, Cube, nCubes = 0;
assert( nVars > 0 );
for ( c = 0; c < 2; c ++ )
{
Truth = c ? ~Truth : Truth;
RetValue = Kit_TruthIsop( (unsigned *)&Truth, nVars, vCover, 0 );
assert( RetValue == 0 );
nCubes += Vec_IntSize( vCover );
Vec_IntForEachEntry( vCover, Cube, i )
{
for ( k = 0; k < nVars; k++ )
{
Literal = 3 & (Cube >> (k << 1));
if ( Literal == 1 ) // '0' -> pos lit
Vec_StrPush( vCnf, (char)Abc_Var2Lit(k, 0) );
else if ( Literal == 2 ) // '1' -> neg lit
Vec_StrPush( vCnf, (char)Abc_Var2Lit(k, 1) );
else if ( Literal != 0 )
assert( 0 );
}
Vec_StrPush( vCnf, (char)Abc_Var2Lit(nVars, c) );
Vec_StrPush( vCnf, (char)-1 );
}
}
return nCubes;
}
}
void Acb_DeriveCnfForWindowOne( Acb_Ntk_t * p, int iObj )
{
Vec_Wec_t * vCnfs = &p->vCnfs;
Vec_Str_t * vCnfBase = Acb_ObjCnfs( p, iObj );
assert( Vec_StrSize(vCnfBase) == 0 ); // unassigned
assert( Vec_WecSize(vCnfs) == Acb_NtkObjNumMax(p) );
Acb_DeriveCnfFromTruth( Acb_ObjTruth(p, iObj), Acb_ObjFaninNum(p, iObj), &p->vCover, &p->vCnf );
Vec_StrGrow( vCnfBase, Vec_StrSize(&p->vCnf) );
memcpy( Vec_StrArray(vCnfBase), Vec_StrArray(&p->vCnf), Vec_StrSize(&p->vCnf) );
vCnfBase->nSize = Vec_StrSize(&p->vCnf);
}
Vec_Wec_t * Acb_DeriveCnfForWindow( Acb_Ntk_t * p, Vec_Int_t * vWin, int PivotVar )
{
Vec_Wec_t * vCnfs = &p->vCnfs;
Vec_Str_t * vCnfBase; int i, iObj;
assert( Vec_WecSize(vCnfs) == Acb_NtkObjNumMax(p) );
Vec_IntForEachEntry( vWin, iObj, i )
{
if ( Abc_LitIsCompl(iObj) && i < PivotVar )
continue;
iObj = Abc_Lit2Var(iObj);
vCnfBase = Acb_ObjCnfs( p, iObj );
if ( Vec_StrSize(vCnfBase) > 0 )
continue;
Acb_DeriveCnfForWindowOne( p, iObj );
}
return vCnfs;
}
/**Function*************************************************************
Synopsis [Constructs CNF for the window.]
Description [The window for the pivot node is represented as a DFS ordered array
of objects (vWinObjs) whose indexes are used as SAT variable IDs (stored in p->vCopies).
PivotVar is the index of the pivot node in array vWinObjs.
The nodes before (after) PivotVar are TFI (TFO) nodes.
The leaf (root) nodes are labeled with Abc_LitIsCompl().
If fQbf is 1, returns the instance meant for QBF solving. It uses the last
variable (LastVar) as the placeholder for the second copy of the pivot node.]
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_TranslateCnf( Vec_Int_t * vClas, Vec_Int_t * vLits, Vec_Str_t * vCnf, Vec_Int_t * vSatVars, int iPivotVar )
{
signed char Entry;
int i, Lit;
Vec_StrForEachEntry( vCnf, Entry, i )
{
if ( (int)Entry == -1 )
{
Vec_IntPush( vClas, Vec_IntSize(vLits) );
continue;
}
Lit = Abc_Lit2LitV( Vec_IntArray(vSatVars), (int)Entry );
Lit = Abc_LitNotCond( Lit, Abc_Lit2Var(Lit) == iPivotVar );
Vec_IntPush( vLits, Lit );
}
}
int Acb_NtkCountRoots( Vec_Int_t * vWinObjs, int PivotVar )
{
int i, iObjLit, nRoots = 0;
Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, PivotVar + 1 )
nRoots += Abc_LitIsCompl(iObjLit);
return nRoots;
}
void Acb_DeriveCnfForNode( Acb_Ntk_t * p, int iObj, sat_solver * pSat, int OutVar )
{
Vec_Wec_t * vCnfs = &p->vCnfs;
Vec_Int_t * vFaninVars = &p->vCover;
Vec_Int_t * vClas = Vec_IntAlloc( 100 );
Vec_Int_t * vLits = Vec_IntAlloc( 100 );
int k, iFanin, * pFanins, Prev, This;
// collect SAT variables
Vec_IntClear( vFaninVars );
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
{
assert( Acb_ObjFunc(p, iFanin) >= 0 );
Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iFanin) );
}
Vec_IntPush( vFaninVars, OutVar );
// derive CNF for the node
Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, -1 );
// add clauses
Prev = 0;
Vec_IntForEachEntry( vClas, This, k )
{
if ( !sat_solver_addclause( pSat, Vec_IntArray(vLits) + Prev, Vec_IntArray(vLits) + This ) )
printf( "Error: SAT solver became UNSAT at a wrong place (while adding new CNF).\n" );
Prev = This;
}
Vec_IntFree( vClas );
Vec_IntFree( vLits );
}
Cnf_Dat_t * Acb_NtkWindow2Cnf( Acb_Ntk_t * p, Vec_Int_t * vWinObjs, int Pivot )
{
Cnf_Dat_t * pCnf;
Vec_Int_t * vFaninVars = Vec_IntAlloc( 8 );
int PivotVar = Vec_IntFind(vWinObjs, Abc_Var2Lit(Pivot, 0));
int nRoots = Acb_NtkCountRoots(vWinObjs, PivotVar);
int TfoStart = PivotVar + 1;
int nTfoSize = Vec_IntSize(vWinObjs) - TfoStart;
int nVarsAll = Vec_IntSize(vWinObjs) + nTfoSize + nRoots;
int i, k, iObj, iObjLit, iFanin, * pFanins, Entry;
Vec_Wec_t * vCnfs = Acb_DeriveCnfForWindow( p, vWinObjs, PivotVar );
Vec_Int_t * vClas = Vec_IntAlloc( 100 );
Vec_Int_t * vLits = Vec_IntAlloc( 1000 );
// mark new SAT variables
Vec_IntForEachEntry( vWinObjs, iObj, i )
Acb_ObjSetFunc( p, Abc_Lit2Var(iObj), i );
// add clauses for all nodes
Vec_IntPush( vClas, Vec_IntSize(vLits) );
Vec_IntForEachEntry( vWinObjs, iObjLit, i )
{
if ( Abc_LitIsCompl(iObjLit) && i < PivotVar )
continue;
iObj = Abc_Lit2Var(iObjLit);
assert( !Acb_ObjIsCio(p, iObj) );
// collect SAT variables
Vec_IntClear( vFaninVars );
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iFanin) );
Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iObj) );
// derive CNF for the node
Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, -1 );
}
// add second clauses for the TFO
Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, TfoStart )
{
iObj = Abc_Lit2Var(iObjLit);
assert( !Acb_ObjIsCio(p, iObj) );
// collect SAT variables
Vec_IntClear( vFaninVars );
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iFanin) + (Acb_ObjFunc(p, iFanin) > PivotVar) * nTfoSize );
Vec_IntPush( vFaninVars, Acb_ObjFunc(p, iObj) + nTfoSize );
// derive CNF for the node
Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, PivotVar );
}
if ( nRoots > 0 )
{
// create XOR clauses for the roots
int nVars = Vec_IntSize(vWinObjs) + nTfoSize;
Vec_IntClear( vFaninVars );
Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, TfoStart )
{
if ( !Abc_LitIsCompl(iObjLit) )
continue;
iObj = Abc_Lit2Var(iObjLit);
// add clauses
Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 1), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 0), Abc_Var2Lit(nVars, 0) );
Vec_IntPush( vClas, Vec_IntSize(vLits) );
Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 0), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 1), Abc_Var2Lit(nVars, 0) );
Vec_IntPush( vClas, Vec_IntSize(vLits) );
Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 0), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 0), Abc_Var2Lit(nVars, 1) );
Vec_IntPush( vClas, Vec_IntSize(vLits) );
Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjFunc(p, iObj), 1), Abc_Var2Lit(Acb_ObjFunc(p, iObj) + nTfoSize, 1), Abc_Var2Lit(nVars, 1) );
Vec_IntPush( vClas, Vec_IntSize(vLits) );
Vec_IntPush( vFaninVars, Abc_Var2Lit(nVars++, 0) );
}
Vec_IntAppend( vLits, vFaninVars );
Vec_IntPush( vClas, Vec_IntSize(vLits) );
assert( nRoots == Vec_IntSize(vFaninVars) );
assert( nVars == nVarsAll );
}
Vec_IntFree( vFaninVars );
// create CNF structure
pCnf = ABC_CALLOC( Cnf_Dat_t, 1 );
pCnf->nVars = nVarsAll;
pCnf->nClauses = Vec_IntSize(vClas)-1;
pCnf->nLiterals = Vec_IntSize(vLits);
pCnf->pClauses = ABC_ALLOC( int *, Vec_IntSize(vClas) );
pCnf->pClauses[0] = Vec_IntReleaseArray(vLits);
Vec_IntForEachEntry( vClas, Entry, i )
pCnf->pClauses[i] = pCnf->pClauses[0] + Entry;
// cleanup
Vec_IntFree( vClas );
Vec_IntFree( vLits );
//Cnf_DataPrint( pCnf, 1 );
return pCnf;
}
void Acb_NtkWindowUndo( Acb_Ntk_t * p, Vec_Int_t * vWin )
{
int i, iObj;
Vec_IntForEachEntry( vWin, iObj, i )
{
assert( Vec_IntEntry(&p->vObjFunc, Abc_Lit2Var(iObj)) != -1 );
Vec_IntWriteEntry( &p->vObjFunc, Abc_Lit2Var(iObj), -1 );
}
}
/**Function*************************************************************
Synopsis [Creates SAT solver containing several copies of the window.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Acb_NtkWindow2Solver( sat_solver * pSat, Cnf_Dat_t * pCnf, Vec_Int_t * vFlip, int PivotVar, int nDivs, int nTimes )
{
int n, i, RetValue, Test = pCnf->pClauses[0][0];
int nGroups = nTimes <= 2 ? nTimes-1 : 2;
int nRounds = nTimes <= 2 ? nTimes-1 : nTimes;
assert( sat_solver_nvars(pSat) == 0 );
sat_solver_setnvars( pSat, nTimes * pCnf->nVars + nGroups * nDivs + 2 );
assert( nTimes == 1 || nTimes == 2 || nTimes == 6 );
for ( n = 0; n < nTimes; n++ )
{
if ( n & 1 )
Cnf_DataLiftAndFlipLits( pCnf, -pCnf->nVars, vFlip );
for ( i = 0; i < pCnf->nClauses; i++ )
if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
printf( "Error: SAT solver became UNSAT at a wrong place.\n" );
if ( n & 1 )
Cnf_DataLiftAndFlipLits( pCnf, pCnf->nVars, vFlip );
if ( n < nTimes - 1 )
Cnf_DataLift( pCnf, pCnf->nVars );
else if ( n ) // if ( n == nTimes - 1 )
Cnf_DataLift( pCnf, -(nTimes - 1) * pCnf->nVars );
}
assert( Test == pCnf->pClauses[0][0] );
// add conditional buffers
for ( n = 0; n < nRounds; n++ )
{
int BaseA = n * pCnf->nVars;
int BaseB = ((n + 1) % nTimes) * pCnf->nVars;
int BaseC = nTimes * pCnf->nVars + (n & 1) * nDivs;
for ( i = 0; i < nDivs; i++ )
sat_solver_add_buffer_enable( pSat, BaseA + i, BaseB + i, BaseC + i, 0 );
}
// finalize
RetValue = sat_solver_simplify( pSat );
if ( !RetValue ) printf( "Error: SAT solver became UNSAT at a wrong place.\n" );
return 1;
}
/**Function*************************************************************
Synopsis [Computes function of the node]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
word Acb_ComputeFunction( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDivVars, int fCompl )
{
int fExpand = 0;
word uCube, uTruth = 0;
Vec_Int_t * vTempLits = Vec_IntAlloc( 100 );
int status, i, iVar, iLit, nFinal, * pFinal, pLits[2];
assert( FreeVar < sat_solver_nvars(pSat) );
// if ( fCompl )
// pLits[0] = Abc_Var2Lit( sat_solver_nvars(pSat)-2, 0 ); // F = 1
// else
pLits[0] = Abc_Var2Lit( PivotVar, fCompl ); // F = 1
pLits[1] = Abc_Var2Lit( FreeVar, 0 ); // iNewLit
while ( 1 )
{
// find onset minterm
status = sat_solver_solve( pSat, pLits, pLits + 2, 0, 0, 0, 0 );
if ( status == l_False )
{
Vec_IntFree( vTempLits );
return uTruth;
}
assert( status == l_True );
if ( fExpand )
{
// collect divisor literals
Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[0]) ); // F = 0
Vec_IntForEachEntry( vDivVars, iVar, i )
Vec_IntPush( vTempLits, sat_solver_var_literal(pSat, iVar) );
// check against offset
status = sat_solver_solve( pSat, Vec_IntArray(vTempLits), Vec_IntLimit(vTempLits), 0, 0, 0, 0 );
if ( status != l_False )
printf( "Failed internal check during function comptutation.\n" );
assert( status == l_False );
// compute cube and add clause
nFinal = sat_solver_final( pSat, &pFinal );
Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[1]) ); // NOT(iNewLit)
for ( i = 0; i < nFinal; i++ )
if ( pFinal[i] != pLits[0] )
Vec_IntPush( vTempLits, pFinal[i] );
}
else
{
// collect divisor literals
Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[1]) );// NOT(iNewLit)
Vec_IntForEachEntry( vDivVars, iVar, i )
Vec_IntPush( vTempLits, Abc_LitNot(sat_solver_var_literal(pSat, iVar)) );
}
uCube = ~(word)0;
Vec_IntForEachEntryStart( vTempLits, iLit, i, 1 )
{
iVar = Vec_IntFind( vDivVars, Abc_Lit2Var(iLit) ); assert( iVar >= 0 );
uCube &= Abc_LitIsCompl(iLit) ? s_Truths6[iVar] : ~s_Truths6[iVar];
}
uTruth |= uCube;
status = sat_solver_addclause( pSat, Vec_IntArray(vTempLits), Vec_IntLimit(vTempLits) );
if ( status == 0 )
{
Vec_IntFree( vTempLits );
return uTruth;
}
}
Vec_IntFree( vTempLits );
assert( 0 );
return ~(word)0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_NtkPrintVec( Acb_Ntk_t * p, Vec_Int_t * vVec, char * pName )
{
int i;
printf( "%s: ", pName );
for ( i = 0; i < vVec->nSize; i++ )
printf( "%d ", vVec->pArray[i] );
printf( "\n" );
}
void Acb_NtkPrintVec2( Acb_Ntk_t * p, Vec_Int_t * vVec, char * pName )
{
int i;
printf( "%s: \n", pName );
for ( i = 0; i < vVec->nSize; i++ )
Acb_NtkPrintNode( p, vVec->pArray[i] );
printf( "\n" );
}
void Acb_NtkPrintVecWin( Acb_Ntk_t * p, Vec_Int_t * vVec, char * pName )
{
int i;
printf( "%s: \n", pName );
for ( i = 0; i < vVec->nSize; i++ )
Acb_NtkPrintNode( p, Abc_Lit2Var(vVec->pArray[i]) );
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Collects divisors in a non-topo order.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_NtkDivisors_rec( Acb_Ntk_t * p, int iObj, int nTfiLevMin, Vec_Int_t * vDivs )
{
int k, iFanin, * pFanins;
// if ( !Acb_ObjIsCi(p, iObj) && Acb_ObjLevelD(p, iObj) < nTfiLevMin )
if ( !Acb_ObjIsCi(p, iObj) && nTfiLevMin < 0 )
return;
if ( Acb_ObjSetTravIdCur(p, iObj) )
return;
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
Acb_NtkDivisors_rec( p, iFanin, nTfiLevMin-1, vDivs );
Vec_IntPush( vDivs, iObj );
}
Vec_Int_t * Acb_NtkDivisors( Acb_Ntk_t * p, int Pivot, int nTfiLevMin, int fDelay )
{
int k, iFanin, * pFanins;
Vec_Int_t * vDivs = Vec_IntAlloc( 100 );
Acb_NtkIncTravId( p );
// if ( fDelay ) // delay-oriented
if ( 0 ) // delay-oriented
{
// start from critical fanins
assert( Acb_ObjLevelD( p, Pivot ) > 1 );
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) )
Acb_NtkDivisors_rec( p, iFanin, nTfiLevMin, vDivs );
// add non-critical fanins
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( !Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) )
if ( !Acb_ObjSetTravIdCur(p, iFanin) )
Vec_IntPush( vDivs, iFanin );
}
else
{
Acb_NtkDivisors_rec( p, Pivot, nTfiLevMin, vDivs );
assert( Vec_IntEntryLast(vDivs) == Pivot );
Vec_IntPop( vDivs );
// add remaining fanins of the node
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( !Acb_ObjSetTravIdCur(p, iFanin) )
Vec_IntPush( vDivs, iFanin );
/*
// start from critical fanins
assert( Acb_ObjLevelD( p, Pivot ) > 1 );
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( Acb_ObjIsAreaCritical( p, iFanin ) )
Acb_NtkDivisors_rec( p, iFanin, nTfiLevMin, vDivs );
// add non-critical fanins
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( !Acb_ObjIsAreaCritical( p, iFanin ) )
if ( !Acb_ObjSetTravIdCur(p, iFanin) )
Vec_IntPush( vDivs, iFanin );
*/
}
return vDivs;
}
/**Function*************************************************************
Synopsis [Marks TFO of divisors.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_ObjMarkTfo_rec( Acb_Ntk_t * p, int iObj, int nTfoLevMax, int nFanMax, Vec_Int_t * vMarked )
{
int iFanout, i;
if ( Acb_ObjSetTravIdCur(p, iObj) )
return;
Vec_IntPush( vMarked, iObj );
if ( Acb_ObjLevelD(p, iObj) > nTfoLevMax || Acb_ObjFanoutNum(p, iObj) > nFanMax )
return;
Acb_ObjForEachFanout( p, iObj, iFanout, i )
Acb_ObjMarkTfo_rec( p, iFanout, nTfoLevMax, nFanMax, vMarked );
}
Vec_Int_t * Acb_ObjMarkTfo( Acb_Ntk_t * p, Vec_Int_t * vDivs, int Pivot, int nTfoLevMax, int nFanMax )
{
Vec_Int_t * vMarked = Vec_IntAlloc( 1000 );
int i, iObj;
Acb_NtkIncTravId( p );
Acb_ObjSetTravIdCur( p, Pivot );
Vec_IntPush( vMarked, Pivot );
Vec_IntForEachEntry( vDivs, iObj, i )
Acb_ObjMarkTfo_rec( p, iObj, nTfoLevMax, nFanMax, vMarked );
return vMarked;
}
void Acb_ObjMarkTfo2( Acb_Ntk_t * p, Vec_Int_t * vMarked )
{
int i, Node;
Acb_NtkIncTravId( p );
Vec_IntForEachEntry( vMarked, Node, i )
Acb_ObjSetTravIdCur( p, Node );
}
/**Function*************************************************************
Synopsis [Labels TFO nodes with {none, root, inner} based on their type.]
Description [Assuming TFO of TFI is marked with the current trav ID.]
SideEffects []
SeeAlso []
***********************************************************************/
int Acb_ObjLabelTfo_rec( Acb_Ntk_t * p, int iObj, int nTfoLevMax, int nFanMax, int fFirst )
{
int iFanout, i, Diff, fHasNone = 0;
if ( (Diff = Acb_ObjTravIdDiff(p, iObj)) <= 2 )
return Diff;
Acb_ObjSetTravIdDiff( p, iObj, 2 );
if ( Acb_ObjIsCo(p, iObj) || Acb_ObjLevelD(p, iObj) > nTfoLevMax )
return 2;
if ( Acb_ObjLevelD(p, iObj) == nTfoLevMax || Acb_ObjFanoutNum(p, iObj) > nFanMax )
{
if ( Diff == 3 ) // belongs to TFO of TFI
Acb_ObjSetTravIdDiff( p, iObj, 1 ); // root
return Acb_ObjTravIdDiff(p, iObj);
}
Acb_ObjForEachFanout( p, iObj, iFanout, i )
if ( !fFirst || Acb_ObjIsDelayCriticalFanin(p, iFanout, iObj) )
fHasNone |= 2 == Acb_ObjLabelTfo_rec( p, iFanout, nTfoLevMax, nFanMax, 0 );
if ( fHasNone && Diff == 3 ) // belongs to TFO of TFI
Acb_ObjSetTravIdDiff( p, iObj, 1 ); // root
else if ( !fHasNone )
Acb_ObjSetTravIdDiff( p, iObj, 0 ); // inner
return Acb_ObjTravIdDiff(p, iObj);
}
int Acb_ObjLabelTfo( Acb_Ntk_t * p, int Root, int nTfoLevMax, int nFanMax, int fDelay )
{
Acb_NtkIncTravId( p ); // none (2) marked (3) unmarked (4)
Acb_NtkIncTravId( p ); // root (1)
Acb_NtkIncTravId( p ); // inner (0)
assert( Acb_ObjTravIdDiff(p, Root) > 2 );
return Acb_ObjLabelTfo_rec( p, Root, nTfoLevMax, nFanMax, fDelay );
}
/**Function*************************************************************
Synopsis [Collects labeled TFO.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_ObjDeriveTfo_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfo, Vec_Int_t * vRoots, int fFirst )
{
int iFanout, i, Diff = Acb_ObjTravIdDiff(p, iObj);
if ( Acb_ObjSetTravIdCur(p, iObj) )
return;
if ( Diff == 2 ) // root
{
Vec_IntPush( vRoots, iObj );
Vec_IntPush( vTfo, iObj );
return;
}
assert( Diff == 1 );
Acb_ObjForEachFanout( p, iObj, iFanout, i )
if ( !fFirst || Acb_ObjIsDelayCriticalFanin(p, iFanout, iObj) )
Acb_ObjDeriveTfo_rec( p, iFanout, vTfo, vRoots, 0 );
Vec_IntPush( vTfo, iObj );
}
void Acb_ObjDeriveTfo( Acb_Ntk_t * p, int Pivot, int nTfoLevMax, int nFanMax, Vec_Int_t ** pvTfo, Vec_Int_t ** pvRoots, int fDelay )
{
int Res = Acb_ObjLabelTfo( p, Pivot, nTfoLevMax, nFanMax, fDelay );
Vec_Int_t * vTfo = *pvTfo = Vec_IntAlloc( 10 );
Vec_Int_t * vRoots = *pvRoots = Vec_IntAlloc( 10 );
if ( Res ) // none or root
return;
Acb_NtkIncTravId( p ); // root (2) inner (1) visited (0)
Acb_ObjDeriveTfo_rec( p, Pivot, vTfo, vRoots, fDelay );
assert( Vec_IntEntryLast(vTfo) == Pivot );
Vec_IntPop( vTfo );
assert( Vec_IntEntryLast(vRoots) != Pivot );
Vec_IntReverseOrder( vTfo );
Vec_IntReverseOrder( vRoots );
}
/**Function*************************************************************
Synopsis [Collect side-inputs of the TFO, except the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Acb_NtkCollectTfoSideInputs( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vTfo )
{
Vec_Int_t * vSide = Vec_IntAlloc( 100 );
int i, k, Node, iFanin, * pFanins;
Acb_NtkIncTravId( p );
Vec_IntPush( vTfo, Pivot );
Vec_IntForEachEntry( vTfo, Node, i )
Acb_ObjSetTravIdCur( p, Node );
Vec_IntForEachEntry( vTfo, Node, i )
Acb_ObjForEachFaninFast( p, Node, pFanins, iFanin, k )
if ( !Acb_ObjSetTravIdCur(p, iFanin) && iFanin != Pivot )
Vec_IntPush( vSide, iFanin );
Vec_IntPop( vTfo );
return vSide;
}
/**Function*************************************************************
Synopsis [From side inputs, collect marked nodes and their unmarked fanins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_NtkCollectNewTfi1_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfiNew )
{
int i, iFanin, * pFanins;
if ( !Acb_ObjIsTravIdPrev(p, iObj) )
return;
if ( Acb_ObjSetTravIdCur(p, iObj) )
return;
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, i )
Acb_NtkCollectNewTfi1_rec( p, iFanin, vTfiNew );
Vec_IntPush( vTfiNew, iObj );
}
void Acb_NtkCollectNewTfi2_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfiNew )
{
int i, iFanin, * pFanins;
int fTravIdPrev = Acb_ObjIsTravIdPrev(p, iObj);
if ( Acb_ObjSetTravIdCur(p, iObj) )
return;
if ( fTravIdPrev && !Acb_ObjIsCi(p, iObj) )
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, i )
Acb_NtkCollectNewTfi2_rec( p, iFanin, vTfiNew );
Vec_IntPush( vTfiNew, iObj );
}
Vec_Int_t * Acb_NtkCollectNewTfi( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vDivs, Vec_Int_t * vSide, int * pnDivs )
{
Vec_Int_t * vTfiNew = Vec_IntAlloc( 100 );
int i, Node;
Acb_NtkIncTravId( p );
//Acb_NtkPrintVec( p, vDivs, "vDivs" );
Vec_IntForEachEntry( vDivs, Node, i )
Acb_NtkCollectNewTfi1_rec( p, Node, vTfiNew );
//Acb_NtkPrintVec( p, vTfiNew, "vTfiNew" );
Acb_NtkCollectNewTfi1_rec( p, Pivot, vTfiNew );
//Acb_NtkPrintVec( p, vTfiNew, "vTfiNew" );
assert( Vec_IntEntryLast(vTfiNew) == Pivot );
Vec_IntPop( vTfiNew );
/*
Vec_IntForEachEntry( vDivs, Node, i )
{
Acb_ObjSetTravIdCur( p, Node );
Vec_IntPush( vTfiNew, Node );
}
*/
*pnDivs = Vec_IntSize(vTfiNew);
Vec_IntForEachEntry( vSide, Node, i )
Acb_NtkCollectNewTfi2_rec( p, Node, vTfiNew );
Vec_IntPush( vTfiNew, Pivot );
return vTfiNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Acb_NtkCollectWindow( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vTfi, Vec_Int_t * vTfo, Vec_Int_t * vRoots )
{
Vec_Int_t * vWin = Vec_IntAlloc( 100 );
int i, k, iObj, iFanin, * pFanins;
assert( Vec_IntEntryLast(vTfi) == Pivot );
// mark nodes
Acb_NtkIncTravId( p );
Vec_IntForEachEntry( vTfi, iObj, i )
Acb_ObjSetTravIdCur(p, iObj);
// add TFI
Vec_IntForEachEntry( vTfi, iObj, i )
{
int fIsTfiInput = 0;
Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
if ( !Acb_ObjIsTravIdCur(p, iFanin) ) // fanin is not in TFI
fIsTfiInput = 1; // mark as leaf
Vec_IntPush( vWin, Abc_Var2Lit(iObj, Acb_ObjIsCi(p, iObj) || fIsTfiInput) );
}
// mark roots
Acb_NtkIncTravId( p );
Vec_IntForEachEntry( vRoots, iObj, i )
Acb_ObjSetTravIdCur(p, iObj);
// add TFO
Vec_IntForEachEntry( vTfo, iObj, i )
{
assert( !Acb_ObjIsCo(p, iObj) );
Vec_IntPush( vWin, Abc_Var2Lit(iObj, Acb_ObjIsTravIdCur(p, iObj)) );
}
return vWin;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Acb_NtkWindow( Acb_Ntk_t * p, int Pivot, int nTfiLevs, int nTfoLevs, int nFanMax, int fDelay, int * pnDivs )
{
int fVerbose = 0;
//int nTfiLevMin = Acb_ObjLevelD(p, Pivot) - nTfiLevs;
int nTfoLevMax = Acb_ObjLevelD(p, Pivot) + nTfoLevs;
Vec_Int_t * vWin, * vDivs, * vMarked, * vTfo, * vRoots, * vSide, * vTfi;
// collect divisors by traversing limited TFI
vDivs = Acb_NtkDivisors( p, Pivot, nTfiLevs, fDelay );
if ( fVerbose ) Acb_NtkPrintVec( p, vDivs, "vDivs" );
// mark limited TFO of the divisors
vMarked = Acb_ObjMarkTfo( p, vDivs, Pivot, nTfoLevMax, nFanMax );
// collect TFO and roots
Acb_ObjDeriveTfo( p, Pivot, nTfoLevMax, nFanMax, &vTfo, &vRoots, 0 );//fDelay );
if ( fVerbose ) Acb_NtkPrintVec( p, vTfo, "vTfo" );
if ( fVerbose ) Acb_NtkPrintVec( p, vRoots, "vRoots" );
// collect side inputs of the TFO
vSide = Acb_NtkCollectTfoSideInputs( p, Pivot, vTfo );
if ( fVerbose ) Acb_NtkPrintVec( p, vSide, "vSide" );
// mark limited TFO of the divisors
//Acb_ObjMarkTfo( p, vDivs, Pivot, nTfoLevMax, nFanMax );
Acb_ObjMarkTfo2( p, vMarked );
Vec_IntFree( vMarked );
// collect new TFI
vTfi = Acb_NtkCollectNewTfi( p, Pivot, vDivs, vSide, pnDivs );
if ( fVerbose ) Acb_NtkPrintVec( p, vTfi, "vTfi" );
Vec_IntFree( vSide );
Vec_IntFree( vDivs );
// collect all nodes
vWin = Acb_NtkCollectWindow( p, Pivot, vTfi, vTfo, vRoots );
// cleanup
Vec_IntFree( vTfi );
Vec_IntFree( vTfo );
Vec_IntFree( vRoots );
return vWin;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Vec_IntVars2Vars( Vec_Int_t * p, int Shift )
{
int i;
for ( i = 0; i < p->nSize; i++ )
p->pArray[i] += Shift;
}
static inline void Vec_IntVars2Lits( Vec_Int_t * p, int Shift, int fCompl )
{
int i;
for ( i = 0; i < p->nSize; i++ )
p->pArray[i] = Abc_Var2Lit( p->pArray[i] + Shift, fCompl );
}
static inline void Vec_IntLits2Vars( Vec_Int_t * p, int Shift )
{
int i;
for ( i = 0; i < p->nSize; i++ )
p->pArray[i] = Abc_Lit2Var( p->pArray[i] ) + Shift;
}
static inline void Vec_IntRemap( Vec_Int_t * p, Vec_Int_t * vMap )
{
int i;
for ( i = 0; i < p->nSize; i++ )
p->pArray[i] = Vec_IntEntry(vMap, p->pArray[i]);
}
static inline void Acb_WinPrint( Acb_Ntk_t * p, Vec_Int_t * vWin, int Pivot, int nDivs )
{
int i, Node;
printf( "Window for node %d with %d divisors:\n", Pivot, nDivs );
Vec_IntForEachEntry( vWin, Node, i )
{
if ( i == nDivs )
printf( " | " );
if ( Abc_Lit2Var(Node) == Pivot )
printf( "(%d) ", Pivot );
else
printf( "%s%d ", Abc_LitIsCompl(Node) ? "*":"", Abc_Lit2Var(Node) );
}
printf( "\n" );
}
static inline void Acb_NtkOrderByRefCount( Acb_Ntk_t * p, Vec_Int_t * vSupp )
{
int i, j, best_i, nSize = Vec_IntSize(vSupp);
int * pArray = Vec_IntArray(vSupp);
for ( i = 0; i < nSize-1; i++ )
{
best_i = i;
for ( j = i+1; j < nSize; j++ )
if ( Acb_ObjFanoutNum(p, pArray[j]) > Acb_ObjFanoutNum(p, pArray[best_i]) )
best_i = j;
ABC_SWAP( int, pArray[i], pArray[best_i] );
}
}
static inline void Acb_NtkRemapIntoSatVariables( Acb_Ntk_t * p, Vec_Int_t * vSupp )
{
int k, iFanin;
Vec_IntForEachEntry( vSupp, iFanin, k )
{
assert( Acb_ObjFunc(p, iFanin) >= 0 );
Vec_IntWriteEntry( vSupp, k, Acb_ObjFunc(p, iFanin) );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Acb_NtkFindSupp1( Acb_Ntk_t * p, int Pivot, sat_solver * pSat, int nVars, int nDivs, Vec_Int_t * vWin, Vec_Int_t * vSupp )
{
int nSuppNew, status, k, iFanin, * pFanins;
Vec_IntClear( vSupp );
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
Vec_IntPush( vSupp, iFanin );
Acb_NtkOrderByRefCount( p, vSupp );
Acb_NtkRemapIntoSatVariables( p, vSupp );
Vec_IntVars2Lits( vSupp, 2*nVars, 0 );
status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 );
if ( status != l_False )
printf( "Failed internal check at node %d.\n", Pivot );
assert( status == l_False );
nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 );
Vec_IntShrink( vSupp, nSuppNew );
Vec_IntLits2Vars( vSupp, -2*nVars );
return Vec_IntSize(vSupp) < Acb_ObjFaninNum(p, Pivot);
}
static int StrCount = 0;
int Acb_NtkFindSupp2( Acb_Ntk_t * p, int Pivot, sat_solver * pSat, int nVars, int nDivs, Vec_Int_t * vWin, Vec_Int_t * vSupp, int nLutSize, int fDelay )
{
int nSuppNew, status, k, iFanin, * pFanins, k2, iFanin2, * pFanins2;
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
assert( Acb_ObjFunc(p, iFanin) >= 0 && Acb_ObjFunc(p, iFanin) < nDivs );
if ( fDelay )
{
// add non-timing-critical fanins
int nNonCrits, k2, iFanin2 = 0, * pFanins2;
assert( Acb_ObjLevelD( p, Pivot ) > 1 );
Vec_IntClear( vSupp );
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( !Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) )
Vec_IntPush( vSupp, iFanin );
nNonCrits = Vec_IntSize(vSupp);
// add fanins of timing critical fanins
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
if ( Acb_ObjIsDelayCriticalFanin( p, Pivot, iFanin ) )
Acb_ObjForEachFaninFast( p, iFanin, pFanins2, iFanin2, k2 )
Vec_IntPushUnique( vSupp, iFanin2 );
assert( nNonCrits < Vec_IntSize(vSupp) );
// sort additional fanins by level
Vec_IntSelectSortCost( Vec_IntArray(vSupp) + nNonCrits, Vec_IntSize(vSupp) - nNonCrits, &p->vLevelD );
// translate to SAT vars
Vec_IntForEachEntry( vSupp, iFanin, k )
{
assert( Acb_ObjFunc(p, iFanin) >= 0 );
Vec_IntWriteEntry( vSupp, k, Acb_ObjFunc(p, iFanin) );
}
// solve for these fanins
Vec_IntVars2Lits( vSupp, 2*nVars, 0 );
status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 );
if ( status != l_False )
printf( "Failed internal check at node %d.\n", Pivot );
assert( status == l_False );
nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 );
Vec_IntShrink( vSupp, nSuppNew );
Vec_IntLits2Vars( vSupp, -2*nVars );
return Vec_IntSize(vSupp) <= nLutSize;
}
// iterate through different fanout free cones
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
{
if ( !Acb_ObjIsAreaCritical(p, iFanin) )
continue;
// collect fanins of the root node
Vec_IntClear( vSupp );
Acb_ObjForEachFaninFast( p, Pivot, pFanins2, iFanin2, k2 )
if ( iFanin != iFanin2 )
Vec_IntPush( vSupp, iFanin2 );
// collect fanins of the selected node
Acb_ObjForEachFaninFast( p, iFanin, pFanins2, iFanin2, k2 )
Vec_IntPushUnique( vSupp, iFanin2 );
// sort fanins by level
Vec_IntSelectSortCost( Vec_IntArray(vSupp), Vec_IntSize(vSupp), &p->vLevelD );
//Acb_NtkOrderByRefCount( p, vSupp );
Acb_NtkRemapIntoSatVariables( p, vSupp );
// solve for these fanins
Vec_IntVars2Lits( vSupp, 2*nVars, 0 );
status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 );
if ( status != l_False )
printf( "Failed internal check at node %d.\n", Pivot );
assert( status == l_False );
nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 );
Vec_IntShrink( vSupp, nSuppNew );
Vec_IntLits2Vars( vSupp, -2*nVars );
if ( Vec_IntSize(vSupp) <= nLutSize )
return 1;
}
return 0;
}
int Acb_NtkFindSupp3( Acb_Ntk_t * p, int Pivot, sat_solver * pSat, int nVars, int nDivs, Vec_Int_t * vWin, Vec_Int_t * vSupp, int nLutSize, int fDelay )
{
int nSuppNew, status, k, iFanin, * pFanins, k2, iFanin2, * pFanins2, k3, iFanin3, * pFanins3, NodeMark;
if ( fDelay )
return 0;
// iterate through pairs of fanins with one fanouts
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
{
if ( !Acb_ObjIsAreaCritical(p, iFanin) )
continue;
Acb_ObjForEachFaninFast( p, Pivot, pFanins2, iFanin2, k2 )
{
if ( !Acb_ObjIsAreaCritical(p, iFanin2) || k2 == k )
continue;
// iFanin and iFanin2 have 1 fanout
assert( iFanin != iFanin2 );
// collect fanins of the root node
Vec_IntClear( vSupp );
Acb_ObjForEachFaninFast( p, Pivot, pFanins3, iFanin3, k3 )
if ( iFanin3 != iFanin && iFanin3 != iFanin2 )
{
assert( Acb_ObjFunc(p, iFanin3) >= 0 );
Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars, 0) );
}
NodeMark = Vec_IntSize(vSupp);
// collect fanins of the second node
Acb_ObjForEachFaninFast( p, iFanin, pFanins3, iFanin3, k3 )
{
assert( Acb_ObjFunc(p, iFanin3) >= 0 );
Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) );
}
// collect fanins of the third node
Acb_ObjForEachFaninFast( p, iFanin2, pFanins3, iFanin3, k3 )
{
assert( Acb_ObjFunc(p, iFanin3) >= 0 );
Vec_IntPushUnique( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) );
}
assert( Vec_IntCheckUniqueSmall(vSupp) );
// sort fanins by level
//Vec_IntSelectSortCost( Vec_IntArray(vSupp) + NodeMark, Vec_IntSize(vSupp) - NodeMark, &p->vLevelD );
// solve for these fanins
status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 );
if ( status != l_False )
continue;
assert( status == l_False );
nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 );
Vec_IntShrink( vSupp, nSuppNew );
Vec_IntLits2Vars( vSupp, -6*nVars );
Vec_IntSort( vSupp, 1 );
// count how many belong to H; the rest belong to G
NodeMark = 0;
Vec_IntForEachEntry( vSupp, iFanin3, k3 )
if ( iFanin3 >= nDivs )
Vec_IntWriteEntry( vSupp, k3, iFanin3 - nDivs );
else
NodeMark++;
if ( NodeMark == 0 )
{
//printf( "Obj %d: Special case 1 (vars = %d)\n", Pivot, Vec_IntSize(vSupp) );
continue;
}
assert( NodeMark > 0 );
if ( Vec_IntSize(vSupp) - NodeMark <= nLutSize )
return NodeMark;
}
}
// iterate through fanins with one fanout and their fanins with one fanout
Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
{
if ( !Acb_ObjIsAreaCritical(p, iFanin) )
continue;
Acb_ObjForEachFaninFast( p, iFanin, pFanins2, iFanin2, k2 )
{
if ( !Acb_ObjIsAreaCritical(p, iFanin2) )
continue;
// iFanin and iFanin2 have 1 fanout
assert( iFanin != iFanin2 );
// collect fanins of the root node
Vec_IntClear( vSupp );
Acb_ObjForEachFaninFast( p, Pivot, pFanins3, iFanin3, k3 )
if ( iFanin3 != iFanin && iFanin3 != iFanin2 )
Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars, 0) );
NodeMark = Vec_IntSize(vSupp);
// collect fanins of the second node
Acb_ObjForEachFaninFast( p, iFanin, pFanins3, iFanin3, k3 )
if ( iFanin3 != iFanin2 )
Vec_IntPush( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) );
// collect fanins of the third node
Acb_ObjForEachFaninFast( p, iFanin2, pFanins3, iFanin3, k3 )
{
assert( Acb_ObjFunc(p, iFanin3) >= 0 );
Vec_IntPushUnique( vSupp, Abc_Var2Lit(Acb_ObjFunc(p, iFanin3) + 6*nVars + nDivs, 0) );
}
assert( Vec_IntCheckUniqueSmall(vSupp) );
// sort fanins by level
//Vec_IntSelectSortCost( Vec_IntArray(vSupp) + NodeMark, Vec_IntSize(vSupp) - NodeMark, &p->vLevelD );
//Sat_SolverWriteDimacs( pSat, NULL, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0 );
// solve for these fanins
status = sat_solver_solve( pSat, Vec_IntArray(vSupp), Vec_IntLimit(vSupp), 0, 0, 0, 0 );
if ( status != l_False )
printf( "Failed internal check at node %d.\n", Pivot );
assert( status == l_False );
nSuppNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 );
Vec_IntShrink( vSupp, nSuppNew );
Vec_IntLits2Vars( vSupp, -6*nVars );
Vec_IntSort( vSupp, 1 );
// count how many belong to H; the rest belong to G
NodeMark = 0;
Vec_IntForEachEntry( vSupp, iFanin3, k3 )
if ( iFanin3 >= nDivs )
Vec_IntWriteEntry( vSupp, k3, iFanin3 - nDivs );
else
NodeMark++;
if ( NodeMark == 0 )
{
//printf( "Obj %d: Special case 2 (vars = %d)\n", Pivot, Vec_IntSize(vSupp) );
continue;
}
assert( NodeMark > 0 );
if ( Vec_IntSize(vSupp) - NodeMark <= nLutSize )
return NodeMark;
}
}
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
typedef struct Acb_Mfs_t_ Acb_Mfs_t;
struct Acb_Mfs_t_
{
Acb_Ntk_t * pNtk; // network
Acb_Par_t * pPars; // parameters
sat_solver * pSat[3]; // SAT solvers
Vec_Int_t * vSupp; // support
Vec_Int_t * vFlip; // support
Vec_Int_t * vValues; // support
int nNodes; // nodes
int nWins; // windows
int nWinsAll; // windows
int nDivsAll; // windows
int nChanges[8]; // changes
int nOvers; // overflows
int nTwoNodes; // two nodes
abctime timeTotal;
abctime timeCnf;
abctime timeSol;
abctime timeWin;
abctime timeSat;
abctime timeSatU;
abctime timeSatS;
};
Acb_Mfs_t * Acb_MfsStart( Acb_Ntk_t * pNtk, Acb_Par_t * pPars )
{
Acb_Mfs_t * p = ABC_CALLOC( Acb_Mfs_t, 1 );
p->pNtk = pNtk;
p->pPars = pPars;
p->timeTotal = Abc_Clock();
p->pSat[0] = sat_solver_new();
p->pSat[1] = sat_solver_new();
p->pSat[2] = sat_solver_new();
p->vSupp = Vec_IntAlloc(100);
p->vFlip = Vec_IntAlloc(100);
p->vValues = Vec_IntAlloc(100);
return p;
}
void Acb_MfsStop( Acb_Mfs_t * p )
{
Vec_IntFree( p->vFlip );
Vec_IntFree( p->vSupp );
Vec_IntFree( p->vValues );
sat_solver_delete( p->pSat[0] );
sat_solver_delete( p->pSat[1] );
sat_solver_delete( p->pSat[2] );
ABC_FREE( p );
}
static inline int Acb_NtkObjMffcEstimate( Acb_Ntk_t * pNtk, int iObj )
{
int k, iFanin, * pFanins, Count = 0, iFaninCrit = -1;
Acb_ObjForEachFaninFast( pNtk, iObj, pFanins, iFanin, k )
if ( Acb_ObjIsAreaCritical(pNtk, iFanin) )
iFaninCrit = iFanin, Count++;
if ( Count != 1 )
return Count;
Acb_ObjForEachFaninFast( pNtk, iFaninCrit, pFanins, iFanin, k )
if ( Acb_ObjIsAreaCritical(pNtk, iFanin) )
Count++;
return Count;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_NtkOptNodeAnalyze( Acb_Mfs_t * p, int PivotVar, int nDivs, int nValues, int * pValues, Vec_Int_t * vSupp )
{
word OnSet[64] = {0};
word OffSet[64] = {0};
word Diffs[64] = {0};
int s, nScope = 1 + 2*nDivs, d, i;
int f, nFrames = nValues / nScope;
int start = nDivs < 64 ? 0 : nDivs - 64;
int stop = nDivs < 64 ? nDivs : 64;
assert( nValues % nScope == 0 );
assert( nFrames <= 16 );
for ( f = 0; f < nFrames; f++ )
{
int * pStart = pValues + f * nScope;
int * pOnSet = pStart + 1 + (pStart[0] ? 0 : nDivs);
int * pOffSet = pStart + 1 + (pStart[0] ? nDivs : 0);
printf( "%2d:", f );
for ( s = start; s < stop; s++ )
printf( "%d", pOnSet[s] );
printf( "\n" );
printf( "%2d:", f );
for ( s = start; s < stop; s++ )
printf( "%d", pOffSet[s] );
printf( "\n" );
for ( s = start; s < stop; s++ )
{
if ( pOnSet[s] ) OnSet[f] |= (((word)1) << (s-start));
if ( pOffSet[s] ) OffSet[f] |= (((word)1) << (s-start));
}
}
d = 0;
for ( f = 0; f < nFrames; f++ )
for ( s = 0; s < nFrames; s++ )
{
for ( i = 0; i < d; i++ )
if ( Diffs[i] == (OnSet[f] ^ OffSet[s]) )
break;
if ( i < d )
continue;
if ( d < 64 )
Diffs[d++] = OnSet[f] ^ OffSet[s];
}
printf( "Divisors = %d. Frames = %d. Patterns = %d.\n", nDivs, nFrames, d );
printf( " " );
for ( s = start; s < stop; s++ )
printf( "%d", s / 10 );
printf( "\n" );
printf( " " );
for ( s = start; s < stop; s++ )
printf( "%d", s % 10 );
printf( "\n" );
printf( " " );
for ( s = start; s < stop; s++ )
printf( "%c", Vec_IntFind(vSupp, s) >= 0 ? 'a' + Vec_IntFind(vSupp, s) : ' ' );
printf( "\n" );
for ( s = 0; s < d; s++ )
{
printf( "%2d:", s );
for ( f = 0; f < stop; f++ )
printf( "%c", ((Diffs[s] >> f) & 1) ? '*' : ' ' );
printf( "\n" );
}
}
int Acb_NtkOptNode( Acb_Mfs_t * p, int Pivot )
{
Cnf_Dat_t * pCnf = NULL; abctime clk;
Vec_Int_t * vWin = NULL; word uTruth;
int Result, PivotVar, nDivs = 0, RetValue = 0, c;
assert( Acb_ObjFanoutNum(p->pNtk, Pivot) > 0 );
p->nWins++;
// compute divisors and window for this target node with these taboo nodes
clk = Abc_Clock();
vWin = Acb_NtkWindow( p->pNtk, Pivot, p->pPars->nTfiLevMax, p->pPars->nTfoLevMax, p->pPars->nFanoutMax, !p->pPars->fArea, &nDivs );
p->nWinsAll += Vec_IntSize(vWin);
p->nDivsAll += nDivs;
p->timeWin += Abc_Clock() - clk;
PivotVar = Vec_IntFind( vWin, Abc_Var2Lit(Pivot, 0) );
if ( p->pPars->fVerbose )
printf( "Node %d: Window contains %d objects and %d divisors. ", Pivot, Vec_IntSize(vWin), nDivs );
// Acb_WinPrint( p->pNtk, vWin, Pivot, nDivs );
// Acb_NtkPrintVecWin( p->pNtk, vWin, "Win" );
if ( Vec_IntSize(vWin) > p->pPars->nWinNodeMax )
{
p->nOvers++;
if ( p->pPars->fVerbose )
printf( "Too many divisors.\n" );
goto cleanup;
}
// derive CNF
clk = Abc_Clock();
pCnf = Acb_NtkWindow2Cnf( p->pNtk, vWin, Pivot );
assert( PivotVar == Acb_ObjFunc(p->pNtk, Pivot) );
Cnf_DataCollectFlipLits( pCnf, PivotVar, p->vFlip );
p->timeCnf += Abc_Clock() - clk;
// derive SAT solver
clk = Abc_Clock();
Acb_NtkWindow2Solver( p->pSat[0], pCnf, p->vFlip, PivotVar, nDivs, 1 );
p->timeSol += Abc_Clock() - clk;
// check constants
for ( c = 0; c < 2; c++ )
{
int Lit = Abc_Var2Lit( PivotVar, c );
int status = sat_solver_solve( p->pSat[0], &Lit, &Lit + 1, 0, 0, 0, 0 );
if ( status == l_False )
{
p->nChanges[0]++;
if ( p->pPars->fVerbose )
printf( "Found constant %d.\n", c );
Acb_NtkUpdateNode( p->pNtk, Pivot, c ? ~(word)0 : 0, NULL );
RetValue = 1;
goto cleanup;
}
assert( status == l_True );
}
// derive SAT solver
clk = Abc_Clock();
Acb_NtkWindow2Solver( p->pSat[1], pCnf, p->vFlip, PivotVar, nDivs, 2 );
p->timeSol += Abc_Clock() - clk;
// try to remove useless fanins
if ( p->pPars->fArea )
{
int fEnableProfile = 0;
if ( fEnableProfile )
{
// alloc
if ( p->pSat[1]->user_values.cap == 0 )
veci_new(&p->pSat[1]->user_values);
else
p->pSat[1]->user_values.size = 0;
if ( p->pSat[1]->user_vars.cap == 0 )
veci_new(&p->pSat[1]->user_vars);
else
p->pSat[1]->user_vars.size = 0;
// set variables
veci_push(&p->pSat[1]->user_vars, PivotVar);
for ( c = 0; c < nDivs; c++ )
veci_push(&p->pSat[1]->user_vars, c);
for ( c = 0; c < nDivs; c++ )
veci_push(&p->pSat[1]->user_vars, c+pCnf->nVars);
}
// perform solving
clk = Abc_Clock();
Result = Acb_NtkFindSupp1( p->pNtk, Pivot, p->pSat[1], pCnf->nVars, nDivs, vWin, p->vSupp );
p->timeSat += Abc_Clock() - clk;
// undo variables
p->pSat[1]->user_vars.size = 0;
if ( Result )
{
if ( Vec_IntSize(p->vSupp) == 0 )
p->nChanges[0]++;
else
p->nChanges[1]++;
assert( Vec_IntSize(p->vSupp) < p->pPars->nLutSize );
if ( p->pPars->fVerbose )
printf( "Found %d inputs: ", Vec_IntSize(p->vSupp) );
uTruth = Acb_ComputeFunction( p->pSat[0], PivotVar, sat_solver_nvars(p->pSat[0])-1, p->vSupp, 0 );
if ( p->pPars->fVerbose )
Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) );
if ( p->pPars->fVerbose )
printf( "\n" );
// create support in terms of nodes
Vec_IntRemap( p->vSupp, vWin );
Vec_IntLits2Vars( p->vSupp, 0 );
Acb_NtkUpdateNode( p->pNtk, Pivot, uTruth, p->vSupp );
RetValue = 1;
goto cleanup;
}
if ( fEnableProfile )
{
// analyze the resulting values
Acb_NtkOptNodeAnalyze( p, PivotVar, nDivs, p->pSat[1]->user_values.size, p->pSat[1]->user_values.ptr, p->vSupp );
p->pSat[1]->user_values.size = 0;
}
}
if ( Acb_NtkObjMffcEstimate(p->pNtk, Pivot) >= 1 )
{
// check for one-node implementation
clk = Abc_Clock();
Result = Acb_NtkFindSupp2( p->pNtk, Pivot, p->pSat[1], pCnf->nVars, nDivs, vWin, p->vSupp, p->pPars->nLutSize, !p->pPars->fArea );
p->timeSat += Abc_Clock() - clk;
if ( Result )
{
p->nChanges[2]++;
assert( Vec_IntSize(p->vSupp) <= p->pPars->nLutSize );
if ( p->pPars->fVerbose )
printf( "Found %d inputs: ", Vec_IntSize(p->vSupp) );
uTruth = Acb_ComputeFunction( p->pSat[0], PivotVar, sat_solver_nvars(p->pSat[0])-1, p->vSupp, 0 );
if ( p->pPars->fVerbose )
Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) );
if ( p->pPars->fVerbose )
printf( "\n" );
// create support in terms of nodes
Vec_IntRemap( p->vSupp, vWin );
Vec_IntLits2Vars( p->vSupp, 0 );
Acb_NtkUpdateNode( p->pNtk, Pivot, uTruth, p->vSupp );
RetValue = 1;
goto cleanup;
}
}
//#if 0
if ( p->pPars->fUseAshen && Acb_NtkObjMffcEstimate(p->pNtk, Pivot) >= 2 )// && Pivot != 70 )
{
p->nTwoNodes++;
// derive SAT solver
clk = Abc_Clock();
Acb_NtkWindow2Solver( p->pSat[2], pCnf, p->vFlip, PivotVar, nDivs, 6 );
p->timeSol += Abc_Clock() - clk;
// check for two-node implementation
clk = Abc_Clock();
Result = Acb_NtkFindSupp3( p->pNtk, Pivot, p->pSat[2], pCnf->nVars, nDivs, vWin, p->vSupp, p->pPars->nLutSize, !p->pPars->fArea );
p->timeSat += Abc_Clock() - clk;
if ( Result )
{
int fVerbose = 1;
int i, k, Lit, Var, Var2, status, NodeNew, fBecameUnsat = 0, fCompl = 0;
assert( Result < p->pPars->nLutSize );
assert( Vec_IntSize(p->vSupp)-Result <= p->pPars->nLutSize );
if ( fVerbose || p->pPars->fVerbose )
printf( "Obj %5d: Found %d Hvars and %d Gvars: ", Pivot, Result, Vec_IntSize(p->vSupp)-Result );
// p->vSupp contains G variables (Vec_IntSize(p->vSupp)-Result) followed by H variables (Result)
//sat_solver_restart( p->pSat[1] );
//Acb_NtkWindow2Solver( p->pSat[1], pCnf, p->vFlip, PivotVar, nDivs, 2 );
// constrain H-variables to be equal
Vec_IntForEachEntryStart( p->vSupp, Var, i, Vec_IntSize(p->vSupp)-Result ) // H variables
{
assert( Var >= 0 && Var < nDivs );
assert( Var + 2*pCnf->nVars < sat_solver_nvars(p->pSat[1]) );
Lit = Abc_Var2Lit( Var + 2*pCnf->nVars, 0 ); // HVars are the same
if ( !sat_solver_addclause( p->pSat[1], &Lit, &Lit + 1 ) )
{ if ( fVerbose || p->pPars->fVerbose ) printf( "Error: SAT solver became UNSAT at a wrong place (place 2). " ); fBecameUnsat = 1; }
}
// find one satisfying assighment
status = sat_solver_solve( p->pSat[1], NULL, NULL, 0, 0, 0, 0 );
assert( status == l_True );
// get assignment of the function
fCompl = !sat_solver_var_value( p->pSat[1], PivotVar );
// constrain second set of G-vars to have values equal to the assignment
Vec_IntForEachEntryStop( p->vSupp, Var, i, Vec_IntSize(p->vSupp)-Result ) // G variables
{
// check if this is a C-var
Vec_IntForEachEntryStart( p->vSupp, Var2, k, Vec_IntSize(p->vSupp)-Result ) // G variables
if ( Var == Var2 )
break;
if ( k < Vec_IntSize(p->vSupp) ) // do not constrain a C-var
{
if ( fVerbose || p->pPars->fVerbose )
printf( "Found C-var in object %d. ", Pivot );
continue;
}
assert( Var >= 0 && Var < nDivs );
Lit = sat_solver_var_literal( p->pSat[1], Var + pCnf->nVars );
if ( !sat_solver_addclause( p->pSat[1], &Lit, &Lit + 1 ) )
{ if ( fVerbose || p->pPars->fVerbose ) printf( "Error: SAT solver became UNSAT at a wrong place (place 1). " ); fBecameUnsat = 1; }
}
if ( fBecameUnsat )
{
StrCount++;
if ( fVerbose || p->pPars->fVerbose )
printf( " Quitting.\n" );
goto cleanup;
}
// consider only G variables
p->vSupp->nSize -= Result;
// truth table
uTruth = Acb_ComputeFunction( p->pSat[1], PivotVar, sat_solver_nvars(p->pSat[1])-1, p->vSupp, fCompl );
if ( fVerbose || p->pPars->fVerbose )
Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) );
if ( uTruth == 0 || ~uTruth == 0 )
{
if ( fVerbose || p->pPars->fVerbose )
printf( " Quitting.\n" );
goto cleanup;
}
p->nChanges[3]++;
// create new node
Vec_IntRemap( p->vSupp, vWin );
Vec_IntLits2Vars( p->vSupp, 0 );
NodeNew = Acb_NtkCreateNode( p->pNtk, uTruth, p->vSupp );
Acb_DeriveCnfForWindowOne( p->pNtk, NodeNew );
Acb_DeriveCnfForNode( p->pNtk, NodeNew, p->pSat[0], sat_solver_nvars(p->pSat[0])-2 );
p->vSupp->nSize += Result;
// collect new variables
Vec_IntForEachEntryStart( p->vSupp, Var, i, Vec_IntSize(p->vSupp)-Result )
Vec_IntWriteEntry( p->vSupp, i-(Vec_IntSize(p->vSupp)-Result), Var );
Vec_IntShrink( p->vSupp, Result );
Vec_IntPush( p->vSupp, sat_solver_nvars(p->pSat[0])-2 );
// truth table
uTruth = Acb_ComputeFunction( p->pSat[0], PivotVar, sat_solver_nvars(p->pSat[0])-1, p->vSupp, 0 );
// create new fanins of the node
if ( fVerbose || p->pPars->fVerbose )
printf( " " );
if ( fVerbose || p->pPars->fVerbose )
Extra_PrintHex( stdout, (unsigned *)&uTruth, Vec_IntSize(p->vSupp) );
if ( fVerbose || p->pPars->fVerbose )
printf( "\n" );
// create support in terms of nodes
Vec_IntPop( p->vSupp );
Vec_IntRemap( p->vSupp, vWin );
Vec_IntLits2Vars( p->vSupp, 0 );
Vec_IntPush( p->vSupp, NodeNew );
Acb_NtkUpdateNode( p->pNtk, Pivot, uTruth, p->vSupp );
RetValue = 2;
goto cleanup;
}
}
//#endif
if ( p->pPars->fVerbose )
printf( "\n" );
cleanup:
sat_solver_restart( p->pSat[0] );
sat_solver_restart( p->pSat[1] );
sat_solver_restart( p->pSat[2] );
if ( pCnf )
{
Cnf_DataFree( pCnf );
Acb_NtkWindowUndo( p->pNtk, vWin );
}
Vec_IntFreeP( &vWin );
return RetValue;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Acb_NtkOpt( Acb_Ntk_t * pNtk, Acb_Par_t * pPars )
{
Acb_Mfs_t * pMan = Acb_MfsStart( pNtk, pPars );
if ( pPars->fVerbose )
printf( "%s-optimization parameters: TfiLev(I) = %d TfoLev(O) = %d WinMax(W) = %d LutSize = %d\n",
pMan->pPars->fArea ? "Area" : "Delay", pMan->pPars->nTfiLevMax, pMan->pPars->nTfoLevMax, pMan->pPars->nWinNodeMax, pMan->pPars->nLutSize );
Acb_NtkCreateFanout( pNtk ); // fanout data structure
Acb_NtkCleanObjFuncs( pNtk ); // SAT variables
Acb_NtkCleanObjCnfs( pNtk ); // CNF representations
if ( pMan->pPars->fArea )
{
int n = 0, iObj, RetValue, nNodes = Acb_NtkObjNumMax(pNtk);
Vec_Bit_t * vVisited = Vec_BitStart( Acb_NtkObjNumMax(pNtk) );
Acb_NtkUpdateLevelD( pNtk, -1 ); // compute forward logic level
for ( n = 2; n >= 0; n-- )
Acb_NtkForEachNode( pNtk, iObj )
if ( iObj < nNodes && !Vec_BitEntry(vVisited, iObj) && Acb_NtkObjMffcEstimate(pNtk, iObj) >= n )
{
pMan->nNodes++;
//if ( iObj != 103 )
// continue;
//Acb_NtkOptNode( pMan, iObj );
while ( (RetValue = Acb_NtkOptNode(pMan, iObj)) && Acb_ObjFaninNum(pNtk, iObj) );
Vec_BitWriteEntry( vVisited, iObj, 1 );
}
Vec_BitFree( vVisited );
}
else
{
int Value;
Acb_NtkUpdateTiming( pNtk, -1 ); // compute delay information
while ( (Value = (int)Vec_QueTopPriority(pNtk->vQue)) > 0 )
{
int iObj = Vec_QuePop(pNtk->vQue);
if ( !Acb_ObjType(pNtk, iObj) )
continue;
//if ( iObj != 103 )
// continue;
//printf( "Trying node %4d (%4d) ", iObj, Value );
Acb_NtkOptNode( pMan, iObj );
}
}
if ( pPars->fVerbose )
{
pMan->timeTotal = Abc_Clock() - pMan->timeTotal;
printf( "Node = %d Win = %d (Ave = %d) DivAve = %d Change = %d C = %d N1 = %d N2 = %d N3 = %d Over = %d Str = %d 2Node = %d.\n",
pMan->nNodes, pMan->nWins, pMan->nWinsAll/Abc_MaxInt(1, pMan->nWins), pMan->nDivsAll/Abc_MaxInt(1, pMan->nWins),
pMan->nChanges[0] + pMan->nChanges[1] + pMan->nChanges[2] + pMan->nChanges[3],
pMan->nChanges[0], pMan->nChanges[1], pMan->nChanges[2], pMan->nChanges[3], pMan->nOvers, StrCount, pMan->nTwoNodes );
ABC_PRTP( "Windowing ", pMan->timeWin, pMan->timeTotal );
ABC_PRTP( "CNF compute", pMan->timeCnf, pMan->timeTotal );
ABC_PRTP( "Make solver", pMan->timeSol, pMan->timeTotal );
ABC_PRTP( "SAT solving", pMan->timeSat, pMan->timeTotal );
// ABC_PRTP( " unsat ", pMan->timeSatU, pMan->timeTotal );
// ABC_PRTP( " sat ", pMan->timeSatS, pMan->timeTotal );
ABC_PRTP( "TOTAL ", pMan->timeTotal, pMan->timeTotal );
fflush( stdout );
}
Acb_MfsStop( pMan );
StrCount = 0;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END