| /**CFile*********************************************************************** |
| |
| FileName [cuddMatMult.c] |
| |
| PackageName [cudd] |
| |
| Synopsis [Matrix multiplication functions.] |
| |
| Description [External procedures included in this module: |
| <ul> |
| <li> Cudd_addMatrixMultiply() |
| <li> Cudd_addTimesPlus() |
| <li> Cudd_addTriangle() |
| <li> Cudd_addOuterSum() |
| </ul> |
| Static procedures included in this module: |
| <ul> |
| <li> addMMRecur() |
| <li> addTriangleRecur() |
| <li> cuddAddOuterSumRecur() |
| </ul>] |
| |
| Author [Fabio Somenzi] |
| |
| Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
| |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| Neither the name of the University of Colorado nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE.] |
| |
| ******************************************************************************/ |
| |
| #include "misc/util/util_hack.h" |
| #include "cuddInt.h" |
| |
| ABC_NAMESPACE_IMPL_START |
| |
| |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Constant declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Stucture declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Type declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Variable declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #ifndef lint |
| static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.17 2004/08/13 18:04:50 fabio Exp $"; |
| #endif |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Macro declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**AutomaticStart*************************************************************/ |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Static function prototypes */ |
| /*---------------------------------------------------------------------------*/ |
| |
| static DdNode * addMMRecur (DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars); |
| static DdNode * addTriangleRecur (DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube); |
| static DdNode * cuddAddOuterSumRecur (DdManager *dd, DdNode *M, DdNode *r, DdNode *c); |
| |
| /**AutomaticEnd***************************************************************/ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of exported functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Calculates the product of two matrices represented as |
| ADDs.] |
| |
| Description [Calculates the product of two matrices, A and B, |
| represented as ADDs. This procedure implements the quasiring multiplication |
| algorithm. A is assumed to depend on variables x (rows) and z |
| (columns). B is assumed to depend on variables z (rows) and y |
| (columns). The product of A and B then depends on x (rows) and y |
| (columns). Only the z variables have to be explicitly identified; |
| they are the "summation" variables. Returns a pointer to the |
| result if successful; NULL otherwise.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_addMatrixMultiply( |
| DdManager * dd, |
| DdNode * A, |
| DdNode * B, |
| DdNode ** z, |
| int nz) |
| { |
| int i, nvars, *vars; |
| DdNode *res; |
| |
| /* Array vars says what variables are "summation" variables. */ |
| nvars = dd->size; |
| vars = ABC_ALLOC(int,nvars); |
| if (vars == NULL) { |
| dd->errorCode = CUDD_MEMORY_OUT; |
| return(NULL); |
| } |
| for (i = 0; i < nvars; i++) { |
| vars[i] = 0; |
| } |
| for (i = 0; i < nz; i++) { |
| vars[z[i]->index] = 1; |
| } |
| |
| do { |
| dd->reordered = 0; |
| res = addMMRecur(dd,A,B,-1,vars); |
| } while (dd->reordered == 1); |
| ABC_FREE(vars); |
| return(res); |
| |
| } /* end of Cudd_addMatrixMultiply */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Calculates the product of two matrices represented as |
| ADDs.] |
| |
| Description [Calculates the product of two matrices, A and B, |
| represented as ADDs, using the CMU matrix by matrix multiplication |
| procedure by Clarke et al.. Matrix A has x's as row variables and z's |
| as column variables, while matrix B has z's as row variables and y's |
| as column variables. Returns the pointer to the result if successful; |
| NULL otherwise. The resulting matrix has x's as row variables and y's |
| as column variables.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_addMatrixMultiply] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_addTimesPlus( |
| DdManager * dd, |
| DdNode * A, |
| DdNode * B, |
| DdNode ** z, |
| int nz) |
| { |
| DdNode *w, *cube, *tmp, *res; |
| int i; |
| tmp = Cudd_addApply(dd,Cudd_addTimes,A,B); |
| if (tmp == NULL) return(NULL); |
| Cudd_Ref(tmp); |
| Cudd_Ref(cube = DD_ONE(dd)); |
| for (i = nz-1; i >= 0; i--) { |
| w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd)); |
| if (w == NULL) { |
| Cudd_RecursiveDeref(dd,tmp); |
| return(NULL); |
| } |
| Cudd_Ref(w); |
| Cudd_RecursiveDeref(dd,cube); |
| cube = w; |
| } |
| res = Cudd_addExistAbstract(dd,tmp,cube); |
| if (res == NULL) { |
| Cudd_RecursiveDeref(dd,tmp); |
| Cudd_RecursiveDeref(dd,cube); |
| return(NULL); |
| } |
| Cudd_Ref(res); |
| Cudd_RecursiveDeref(dd,cube); |
| Cudd_RecursiveDeref(dd,tmp); |
| Cudd_Deref(res); |
| return(res); |
| |
| } /* end of Cudd_addTimesPlus */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Performs the triangulation step for the shortest path |
| computation.] |
| |
| Description [Implements the semiring multiplication algorithm used in |
| the triangulation step for the shortest path computation. f |
| is assumed to depend on variables x (rows) and z (columns). g is |
| assumed to depend on variables z (rows) and y (columns). The product |
| of f and g then depends on x (rows) and y (columns). Only the z |
| variables have to be explicitly identified; they are the |
| "abstraction" variables. Returns a pointer to the result if |
| successful; NULL otherwise. ] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_addMatrixMultiply Cudd_bddAndAbstract] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_addTriangle( |
| DdManager * dd, |
| DdNode * f, |
| DdNode * g, |
| DdNode ** z, |
| int nz) |
| { |
| int i, nvars, *vars; |
| DdNode *res, *cube; |
| |
| nvars = dd->size; |
| vars = ABC_ALLOC(int, nvars); |
| if (vars == NULL) { |
| dd->errorCode = CUDD_MEMORY_OUT; |
| return(NULL); |
| } |
| for (i = 0; i < nvars; i++) vars[i] = -1; |
| for (i = 0; i < nz; i++) vars[z[i]->index] = i; |
| cube = Cudd_addComputeCube(dd, z, NULL, nz); |
| if (cube == NULL) { |
| ABC_FREE(vars); |
| return(NULL); |
| } |
| cuddRef(cube); |
| |
| do { |
| dd->reordered = 0; |
| res = addTriangleRecur(dd, f, g, vars, cube); |
| } while (dd->reordered == 1); |
| if (res != NULL) cuddRef(res); |
| Cudd_RecursiveDeref(dd,cube); |
| if (res != NULL) cuddDeref(res); |
| ABC_FREE(vars); |
| return(res); |
| |
| } /* end of Cudd_addTriangle */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Takes the minimum of a matrix and the outer sum of two vectors.] |
| |
| Description [Takes the pointwise minimum of a matrix and the outer |
| sum of two vectors. This procedure is used in the Floyd-Warshall |
| all-pair shortest path algorithm. Returns a pointer to the result if |
| successful; NULL otherwise.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_addOuterSum( |
| DdManager *dd, |
| DdNode *M, |
| DdNode *r, |
| DdNode *c) |
| { |
| DdNode *res; |
| |
| do { |
| dd->reordered = 0; |
| res = cuddAddOuterSumRecur(dd, M, r, c); |
| } while (dd->reordered == 1); |
| return(res); |
| |
| } /* end of Cudd_addOuterSum */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of internal functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of static functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Performs the recursive step of Cudd_addMatrixMultiply.] |
| |
| Description [Performs the recursive step of Cudd_addMatrixMultiply. |
| Returns a pointer to the result if successful; NULL otherwise.] |
| |
| SideEffects [None] |
| |
| ******************************************************************************/ |
| static DdNode * |
| addMMRecur( |
| DdManager * dd, |
| DdNode * A, |
| DdNode * B, |
| int topP, |
| int * vars) |
| { |
| DdNode *zero, |
| *At, /* positive cofactor of first operand */ |
| *Ae, /* negative cofactor of first operand */ |
| *Bt, /* positive cofactor of second operand */ |
| *Be, /* negative cofactor of second operand */ |
| *t, /* positive cofactor of result */ |
| *e, /* negative cofactor of result */ |
| *scaled, /* scaled result */ |
| *add_scale, /* ADD representing the scaling factor */ |
| *res; |
| int i; /* loop index */ |
| double scale; /* scaling factor */ |
| int index; /* index of the top variable */ |
| CUDD_VALUE_TYPE value; |
| unsigned int topA, topB, topV; |
| DD_CTFP cacheOp; |
| |
| statLine(dd); |
| zero = DD_ZERO(dd); |
| |
| if (A == zero || B == zero) { |
| return(zero); |
| } |
| |
| if (cuddIsConstant(A) && cuddIsConstant(B)) { |
| /* Compute the scaling factor. It is 2^k, where k is the |
| ** number of summation variables below the current variable. |
| ** Indeed, these constants represent blocks of 2^k identical |
| ** constant values in both A and B. |
| */ |
| value = cuddV(A) * cuddV(B); |
| for (i = 0; i < dd->size; i++) { |
| if (vars[i]) { |
| if (dd->perm[i] > topP) { |
| value *= (CUDD_VALUE_TYPE) 2; |
| } |
| } |
| } |
| res = cuddUniqueConst(dd, value); |
| return(res); |
| } |
| |
| /* Standardize to increase cache efficiency. Clearly, A*B != B*A |
| ** in matrix multiplication. However, which matrix is which is |
| ** determined by the variables appearing in the ADDs and not by |
| ** which one is passed as first argument. |
| */ |
| if (A > B) { |
| DdNode *tmp = A; |
| A = B; |
| B = tmp; |
| } |
| |
| topA = cuddI(dd,A->index); topB = cuddI(dd,B->index); |
| topV = ddMin(topA,topB); |
| |
| cacheOp = (DD_CTFP) addMMRecur; |
| res = cuddCacheLookup2(dd,cacheOp,A,B); |
| if (res != NULL) { |
| /* If the result is 0, there is no need to normalize. |
| ** Otherwise we count the number of z variables between |
| ** the current depth and the top of the ADDs. These are |
| ** the missing variables that determine the size of the |
| ** constant blocks. |
| */ |
| if (res == zero) return(res); |
| scale = 1.0; |
| for (i = 0; i < dd->size; i++) { |
| if (vars[i]) { |
| if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) { |
| scale *= 2; |
| } |
| } |
| } |
| if (scale > 1.0) { |
| cuddRef(res); |
| add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale); |
| if (add_scale == NULL) { |
| Cudd_RecursiveDeref(dd, res); |
| return(NULL); |
| } |
| cuddRef(add_scale); |
| scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale); |
| if (scaled == NULL) { |
| Cudd_RecursiveDeref(dd, add_scale); |
| Cudd_RecursiveDeref(dd, res); |
| return(NULL); |
| } |
| cuddRef(scaled); |
| Cudd_RecursiveDeref(dd, add_scale); |
| Cudd_RecursiveDeref(dd, res); |
| res = scaled; |
| cuddDeref(res); |
| } |
| return(res); |
| } |
| |
| /* compute the cofactors */ |
| if (topV == topA) { |
| At = cuddT(A); |
| Ae = cuddE(A); |
| } else { |
| At = Ae = A; |
| } |
| if (topV == topB) { |
| Bt = cuddT(B); |
| Be = cuddE(B); |
| } else { |
| Bt = Be = B; |
| } |
| |
| t = addMMRecur(dd, At, Bt, (int)topV, vars); |
| if (t == NULL) return(NULL); |
| cuddRef(t); |
| e = addMMRecur(dd, Ae, Be, (int)topV, vars); |
| if (e == NULL) { |
| Cudd_RecursiveDeref(dd, t); |
| return(NULL); |
| } |
| cuddRef(e); |
| |
| index = dd->invperm[topV]; |
| if (vars[index] == 0) { |
| /* We have split on either the rows of A or the columns |
| ** of B. We just need to connect the two subresults, |
| ** which correspond to two submatrices of the result. |
| */ |
| res = (t == e) ? t : cuddUniqueInter(dd,index,t,e); |
| if (res == NULL) { |
| Cudd_RecursiveDeref(dd, t); |
| Cudd_RecursiveDeref(dd, e); |
| return(NULL); |
| } |
| cuddRef(res); |
| cuddDeref(t); |
| cuddDeref(e); |
| } else { |
| /* we have simultaneously split on the columns of A and |
| ** the rows of B. The two subresults must be added. |
| */ |
| res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e); |
| if (res == NULL) { |
| Cudd_RecursiveDeref(dd, t); |
| Cudd_RecursiveDeref(dd, e); |
| return(NULL); |
| } |
| cuddRef(res); |
| Cudd_RecursiveDeref(dd, t); |
| Cudd_RecursiveDeref(dd, e); |
| } |
| |
| cuddCacheInsert2(dd,cacheOp,A,B,res); |
| |
| /* We have computed (and stored in the computed table) a minimal |
| ** result; that is, a result that assumes no summation variables |
| ** between the current depth of the recursion and its top |
| ** variable. We now take into account the z variables by properly |
| ** scaling the result. |
| */ |
| if (res != zero) { |
| scale = 1.0; |
| for (i = 0; i < dd->size; i++) { |
| if (vars[i]) { |
| if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) { |
| scale *= 2; |
| } |
| } |
| } |
| if (scale > 1.0) { |
| add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale); |
| if (add_scale == NULL) { |
| Cudd_RecursiveDeref(dd, res); |
| return(NULL); |
| } |
| cuddRef(add_scale); |
| scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale); |
| if (scaled == NULL) { |
| Cudd_RecursiveDeref(dd, res); |
| Cudd_RecursiveDeref(dd, add_scale); |
| return(NULL); |
| } |
| cuddRef(scaled); |
| Cudd_RecursiveDeref(dd, add_scale); |
| Cudd_RecursiveDeref(dd, res); |
| res = scaled; |
| } |
| } |
| cuddDeref(res); |
| return(res); |
| |
| } /* end of addMMRecur */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Performs the recursive step of Cudd_addTriangle.] |
| |
| Description [Performs the recursive step of Cudd_addTriangle. Returns |
| a pointer to the result if successful; NULL otherwise.] |
| |
| SideEffects [None] |
| |
| ******************************************************************************/ |
| static DdNode * |
| addTriangleRecur( |
| DdManager * dd, |
| DdNode * f, |
| DdNode * g, |
| int * vars, |
| DdNode *cube) |
| { |
| DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res; |
| CUDD_VALUE_TYPE value; |
| int top, topf, topg, index; |
| |
| statLine(dd); |
| if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) { |
| return(DD_PLUS_INFINITY(dd)); |
| } |
| |
| if (cuddIsConstant(f) && cuddIsConstant(g)) { |
| value = cuddV(f) + cuddV(g); |
| res = cuddUniqueConst(dd, value); |
| return(res); |
| } |
| if (f < g) { |
| DdNode *tmp = f; |
| f = g; |
| g = tmp; |
| } |
| |
| if (f->ref != 1 || g->ref != 1) { |
| res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube); |
| if (res != NULL) { |
| return(res); |
| } |
| } |
| |
| topf = cuddI(dd,f->index); topg = cuddI(dd,g->index); |
| top = ddMin(topf,topg); |
| |
| if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;} |
| if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;} |
| |
| t = addTriangleRecur(dd, fv, gv, vars, cube); |
| if (t == NULL) return(NULL); |
| cuddRef(t); |
| e = addTriangleRecur(dd, fvn, gvn, vars, cube); |
| if (e == NULL) { |
| Cudd_RecursiveDeref(dd, t); |
| return(NULL); |
| } |
| cuddRef(e); |
| |
| index = dd->invperm[top]; |
| if (vars[index] < 0) { |
| res = (t == e) ? t : cuddUniqueInter(dd,index,t,e); |
| if (res == NULL) { |
| Cudd_RecursiveDeref(dd, t); |
| Cudd_RecursiveDeref(dd, e); |
| return(NULL); |
| } |
| cuddDeref(t); |
| cuddDeref(e); |
| } else { |
| res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e); |
| if (res == NULL) { |
| Cudd_RecursiveDeref(dd, t); |
| Cudd_RecursiveDeref(dd, e); |
| return(NULL); |
| } |
| cuddRef(res); |
| Cudd_RecursiveDeref(dd, t); |
| Cudd_RecursiveDeref(dd, e); |
| cuddDeref(res); |
| } |
| |
| if (f->ref != 1 || g->ref != 1) { |
| cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res); |
| } |
| |
| return(res); |
| |
| } /* end of addTriangleRecur */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Performs the recursive step of Cudd_addOuterSum.] |
| |
| Description [Performs the recursive step of Cudd_addOuterSum. |
| Returns a pointer to the result if successful; NULL otherwise.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static DdNode * |
| cuddAddOuterSumRecur( |
| DdManager *dd, |
| DdNode *M, |
| DdNode *r, |
| DdNode *c) |
| { |
| DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re; |
| int topM, topc, topr; |
| int v, index; |
| |
| statLine(dd); |
| /* Check special cases. */ |
| if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M); |
| |
| if (cuddIsConstant(c) && cuddIsConstant(r)) { |
| R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r)); |
| cuddRef(R); |
| if (cuddIsConstant(M)) { |
| if (cuddV(R) <= cuddV(M)) { |
| cuddDeref(R); |
| return(R); |
| } else { |
| Cudd_RecursiveDeref(dd,R); |
| return(M); |
| } |
| } else { |
| P = Cudd_addApply(dd,Cudd_addMinimum,R,M); |
| cuddRef(P); |
| Cudd_RecursiveDeref(dd,R); |
| cuddDeref(P); |
| return(P); |
| } |
| } |
| |
| /* Check the cache. */ |
| R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c); |
| if (R != NULL) return(R); |
| |
| topM = cuddI(dd,M->index); topr = cuddI(dd,r->index); |
| topc = cuddI(dd,c->index); |
| v = ddMin(topM,ddMin(topr,topc)); |
| |
| /* Compute cofactors. */ |
| if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; } |
| if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; } |
| if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; } |
| |
| /* Recursively solve. */ |
| Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct); |
| if (Rt == NULL) return(NULL); |
| cuddRef(Rt); |
| Re = cuddAddOuterSumRecur(dd,Me,re,ce); |
| if (Re == NULL) { |
| Cudd_RecursiveDeref(dd, Rt); |
| return(NULL); |
| } |
| cuddRef(Re); |
| index = dd->invperm[v]; |
| R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re); |
| if (R == NULL) { |
| Cudd_RecursiveDeref(dd, Rt); |
| Cudd_RecursiveDeref(dd, Re); |
| return(NULL); |
| } |
| cuddDeref(Rt); |
| cuddDeref(Re); |
| |
| /* Store the result in the cache. */ |
| cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R); |
| |
| return(R); |
| |
| } /* end of cuddAddOuterSumRecur */ |
| |
| |
| ABC_NAMESPACE_IMPL_END |
| |