| /**CFile*********************************************************************** |
| |
| FileName [cuddSubsetHB.c] |
| |
| PackageName [cudd] |
| |
| Synopsis [Procedure to subset the given BDD by choosing the heavier |
| branches.] |
| |
| |
| Description [External procedures provided by this module: |
| <ul> |
| <li> Cudd_SubsetHeavyBranch() |
| <li> Cudd_SupersetHeavyBranch() |
| </ul> |
| Internal procedures included in this module: |
| <ul> |
| <li> cuddSubsetHeavyBranch() |
| </ul> |
| Static procedures included in this module: |
| <ul> |
| <li> ResizeCountMintermPages(); |
| <li> ResizeNodeDataPages() |
| <li> ResizeCountNodePages() |
| <li> SubsetCountMintermAux() |
| <li> SubsetCountMinterm() |
| <li> SubsetCountNodesAux() |
| <li> SubsetCountNodes() |
| <li> BuildSubsetBdd() |
| </ul> |
| ] |
| |
| SeeAlso [cuddSubsetSP.c] |
| |
| Author [Kavita Ravi] |
| |
| Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
| |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| Neither the name of the University of Colorado nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE.] |
| |
| ******************************************************************************/ |
| |
| #ifdef __STDC__ |
| #include <float.h> |
| #else |
| #define DBL_MAX_EXP 1024 |
| #endif |
| #include "misc/util/util_hack.h" |
| #include "cuddInt.h" |
| |
| ABC_NAMESPACE_IMPL_START |
| |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Constant declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #define DEFAULT_PAGE_SIZE 2048 |
| #define DEFAULT_NODE_DATA_PAGE_SIZE 1024 |
| #define INITIAL_PAGES 128 |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Stucture declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /* data structure to store the information on each node. It keeps |
| * the number of minterms represented by the DAG rooted at this node |
| * in terms of the number of variables specified by the user, number |
| * of nodes in this DAG and the number of nodes of its child with |
| * lesser number of minterms that are not shared by the child with |
| * more minterms |
| */ |
| struct NodeData { |
| double *mintermPointer; |
| int *nodesPointer; |
| int *lightChildNodesPointer; |
| }; |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Type declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| typedef struct NodeData NodeData_t; |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Variable declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #ifndef lint |
| static char rcsid[] DD_UNUSED = "$Id: cuddSubsetHB.c,v 1.37 2009/02/20 02:14:58 fabio Exp $"; |
| #endif |
| |
| static int memOut; |
| #ifdef DEBUG |
| static int num_calls; |
| #endif |
| |
| static DdNode *zero, *one; /* constant functions */ |
| static double **mintermPages; /* pointers to the pages */ |
| static int **nodePages; /* pointers to the pages */ |
| static int **lightNodePages; /* pointers to the pages */ |
| static double *currentMintermPage; /* pointer to the current |
| page */ |
| static double max; /* to store the 2^n value of the number |
| * of variables */ |
| |
| static int *currentNodePage; /* pointer to the current |
| page */ |
| static int *currentLightNodePage; /* pointer to the |
| * current page */ |
| static int pageIndex; /* index to next element */ |
| static int page; /* index to current page */ |
| static int pageSize = DEFAULT_PAGE_SIZE; /* page size */ |
| static int maxPages; /* number of page pointers */ |
| |
| static NodeData_t *currentNodeDataPage; /* pointer to the current |
| page */ |
| static int nodeDataPage; /* index to next element */ |
| static int nodeDataPageIndex; /* index to next element */ |
| static NodeData_t **nodeDataPages; /* index to current page */ |
| static int nodeDataPageSize = DEFAULT_NODE_DATA_PAGE_SIZE; |
| /* page size */ |
| static int maxNodeDataPages; /* number of page pointers */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Macro declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /**AutomaticStart*************************************************************/ |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Static function prototypes */ |
| /*---------------------------------------------------------------------------*/ |
| |
| static void ResizeNodeDataPages (void); |
| static void ResizeCountMintermPages (void); |
| static void ResizeCountNodePages (void); |
| static double SubsetCountMintermAux (DdNode *node, double max, st__table *table); |
| static st__table * SubsetCountMinterm (DdNode *node, int nvars); |
| static int SubsetCountNodesAux (DdNode *node, st__table *table, double max); |
| static int SubsetCountNodes (DdNode *node, st__table *table, int nvars); |
| static void StoreNodes ( st__table *storeTable, DdManager *dd, DdNode *node); |
| static DdNode * BuildSubsetBdd (DdManager *dd, DdNode *node, int *size, st__table *visitedTable, int threshold, st__table *storeTable, st__table *approxTable); |
| |
| /**AutomaticEnd***************************************************************/ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of exported functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Extracts a dense subset from a BDD with the heavy branch |
| heuristic.] |
| |
| Description [Extracts a dense subset from a BDD. This procedure |
| builds a subset by throwing away one of the children of each node, |
| starting from the root, until the result is small enough. The child |
| that is eliminated from the result is the one that contributes the |
| fewer minterms. Returns a pointer to the BDD of the subset if |
| successful. NULL if the procedure runs out of memory. The parameter |
| numVars is the maximum number of variables to be used in minterm |
| calculation and node count calculation. The optimal number should |
| be as close as possible to the size of the support of f. However, |
| it is safe to pass the value returned by Cudd_ReadSize for numVars |
| when the number of variables is under 1023. If numVars is larger |
| than 1023, it will overflow. If a 0 parameter is passed then the |
| procedure will compute a value which will avoid overflow but will |
| cause underflow with 2046 variables or more.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_SubsetShortPaths Cudd_SupersetHeavyBranch Cudd_ReadSize] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_SubsetHeavyBranch( |
| DdManager * dd /* manager */, |
| DdNode * f /* function to be subset */, |
| int numVars /* number of variables in the support of f */, |
| int threshold /* maximum number of nodes in the subset */) |
| { |
| DdNode *subset; |
| |
| memOut = 0; |
| do { |
| dd->reordered = 0; |
| subset = cuddSubsetHeavyBranch(dd, f, numVars, threshold); |
| } while ((dd->reordered == 1) && (!memOut)); |
| |
| return(subset); |
| |
| } /* end of Cudd_SubsetHeavyBranch */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Extracts a dense superset from a BDD with the heavy branch |
| heuristic.] |
| |
| Description [Extracts a dense superset from a BDD. The procedure is |
| identical to the subset procedure except for the fact that it |
| receives the complement of the given function. Extracting the subset |
| of the complement function is equivalent to extracting the superset |
| of the function. This procedure builds a superset by throwing away |
| one of the children of each node starting from the root of the |
| complement function, until the result is small enough. The child |
| that is eliminated from the result is the one that contributes the |
| fewer minterms. |
| Returns a pointer to the BDD of the superset if successful. NULL if |
| intermediate result causes the procedure to run out of memory. The |
| parameter numVars is the maximum number of variables to be used in |
| minterm calculation and node count calculation. The optimal number |
| should be as close as possible to the size of the support of f. |
| However, it is safe to pass the value returned by Cudd_ReadSize for |
| numVars when the number of variables is under 1023. If numVars is |
| larger than 1023, it will overflow. If a 0 parameter is passed then |
| the procedure will compute a value which will avoid overflow but |
| will cause underflow with 2046 variables or more.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_SubsetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_SupersetHeavyBranch( |
| DdManager * dd /* manager */, |
| DdNode * f /* function to be superset */, |
| int numVars /* number of variables in the support of f */, |
| int threshold /* maximum number of nodes in the superset */) |
| { |
| DdNode *subset, *g; |
| |
| g = Cudd_Not(f); |
| memOut = 0; |
| do { |
| dd->reordered = 0; |
| subset = cuddSubsetHeavyBranch(dd, g, numVars, threshold); |
| } while ((dd->reordered == 1) && (!memOut)); |
| |
| return(Cudd_NotCond(subset, (subset != NULL))); |
| |
| } /* end of Cudd_SupersetHeavyBranch */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of internal functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [The main procedure that returns a subset by choosing the heavier |
| branch in the BDD.] |
| |
| Description [Here a subset BDD is built by throwing away one of the |
| children. Starting at root, annotate each node with the number of |
| minterms (in terms of the total number of variables specified - |
| numVars), number of nodes taken by the DAG rooted at this node and |
| number of additional nodes taken by the child that has the lesser |
| minterms. The child with the lower number of minterms is thrown away |
| and a dyanmic count of the nodes of the subset is kept. Once the |
| threshold is reached the subset is returned to the calling |
| procedure.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_SubsetHeavyBranch] |
| |
| ******************************************************************************/ |
| DdNode * |
| cuddSubsetHeavyBranch( |
| DdManager * dd /* DD manager */, |
| DdNode * f /* current DD */, |
| int numVars /* maximum number of variables */, |
| int threshold /* threshold size for the subset */) |
| { |
| |
| int i, *size; |
| st__table *visitedTable; |
| int numNodes; |
| NodeData_t *currNodeQual; |
| DdNode *subset; |
| st__table *storeTable, *approxTable; |
| char *key, *value; |
| st__generator *stGen; |
| |
| if (f == NULL) { |
| fprintf(dd->err, "Cannot subset, nil object\n"); |
| dd->errorCode = CUDD_INVALID_ARG; |
| return(NULL); |
| } |
| |
| one = Cudd_ReadOne(dd); |
| zero = Cudd_Not(one); |
| |
| /* If user does not know numVars value, set it to the maximum |
| * exponent that the pow function can take. The -1 is due to the |
| * discrepancy in the value that pow takes and the value that |
| * log gives. |
| */ |
| if (numVars == 0) { |
| /* set default value */ |
| numVars = DBL_MAX_EXP - 1; |
| } |
| |
| if (Cudd_IsConstant(f)) { |
| return(f); |
| } |
| |
| max = pow(2.0, (double)numVars); |
| |
| /* Create visited table where structures for node data are allocated and |
| stored in a st__table */ |
| visitedTable = SubsetCountMinterm(f, numVars); |
| if ((visitedTable == NULL) || memOut) { |
| (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
| dd->errorCode = CUDD_MEMORY_OUT; |
| return(0); |
| } |
| numNodes = SubsetCountNodes(f, visitedTable, numVars); |
| if (memOut) { |
| (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
| dd->errorCode = CUDD_MEMORY_OUT; |
| return(0); |
| } |
| |
| if ( st__lookup(visitedTable, (const char *)f, (char **)&currNodeQual) == 0) { |
| fprintf(dd->err, |
| "Something is wrong, ought to be node quality table\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| } |
| |
| size = ABC_ALLOC(int, 1); |
| if (size == NULL) { |
| dd->errorCode = CUDD_MEMORY_OUT; |
| return(NULL); |
| } |
| *size = numNodes; |
| |
| #ifdef DEBUG |
| num_calls = 0; |
| #endif |
| /* table to store nodes being created. */ |
| storeTable = st__init_table( st__ptrcmp, st__ptrhash); |
| /* insert the constant */ |
| cuddRef(one); |
| if ( st__insert(storeTable, (char *)Cudd_ReadOne(dd), NIL(char)) == |
| st__OUT_OF_MEM) { |
| fprintf(dd->out, "Something wrong, st__table insert failed\n"); |
| } |
| /* table to store approximations of nodes */ |
| approxTable = st__init_table( st__ptrcmp, st__ptrhash); |
| subset = (DdNode *)BuildSubsetBdd(dd, f, size, visitedTable, threshold, |
| storeTable, approxTable); |
| if (subset != NULL) { |
| cuddRef(subset); |
| } |
| |
| stGen = st__init_gen(approxTable); |
| if (stGen == NULL) { |
| st__free_table(approxTable); |
| return(NULL); |
| } |
| while( st__gen(stGen, (const char **)&key, (char **)&value)) { |
| Cudd_RecursiveDeref(dd, (DdNode *)value); |
| } |
| st__free_gen(stGen); stGen = NULL; |
| st__free_table(approxTable); |
| |
| stGen = st__init_gen(storeTable); |
| if (stGen == NULL) { |
| st__free_table(storeTable); |
| return(NULL); |
| } |
| while( st__gen(stGen, (const char **)&key, (char **)&value)) { |
| Cudd_RecursiveDeref(dd, (DdNode *)key); |
| } |
| st__free_gen(stGen); stGen = NULL; |
| st__free_table(storeTable); |
| |
| for (i = 0; i <= page; i++) { |
| ABC_FREE(mintermPages[i]); |
| } |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= page; i++) { |
| ABC_FREE(nodePages[i]); |
| } |
| ABC_FREE(nodePages); |
| for (i = 0; i <= page; i++) { |
| ABC_FREE(lightNodePages[i]); |
| } |
| ABC_FREE(lightNodePages); |
| for (i = 0; i <= nodeDataPage; i++) { |
| ABC_FREE(nodeDataPages[i]); |
| } |
| ABC_FREE(nodeDataPages); |
| st__free_table(visitedTable); |
| ABC_FREE(size); |
| #if 0 |
| (void) Cudd_DebugCheck(dd); |
| (void) Cudd_CheckKeys(dd); |
| #endif |
| |
| if (subset != NULL) { |
| #ifdef DD_DEBUG |
| if (!Cudd_bddLeq(dd, subset, f)) { |
| fprintf(dd->err, "Wrong subset\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| #endif |
| cuddDeref(subset); |
| return(subset); |
| } else { |
| return(NULL); |
| } |
| } /* end of cuddSubsetHeavyBranch */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of static functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Resize the number of pages allocated to store the node data.] |
| |
| Description [Resize the number of pages allocated to store the node data |
| The procedure moves the counter to the next page when the end of |
| the page is reached and allocates new pages when necessary.] |
| |
| SideEffects [Changes the size of pages, page, page index, maximum |
| number of pages freeing stuff in case of memory out. ] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static void |
| ResizeNodeDataPages(void) |
| { |
| int i; |
| NodeData_t **newNodeDataPages; |
| |
| nodeDataPage++; |
| /* If the current page index is larger than the number of pages |
| * allocated, allocate a new page array. Page numbers are incremented by |
| * INITIAL_PAGES |
| */ |
| if (nodeDataPage == maxNodeDataPages) { |
| newNodeDataPages = ABC_ALLOC(NodeData_t *,maxNodeDataPages + INITIAL_PAGES); |
| if (newNodeDataPages == NULL) { |
| for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| memOut = 1; |
| return; |
| } else { |
| for (i = 0; i < maxNodeDataPages; i++) { |
| newNodeDataPages[i] = nodeDataPages[i]; |
| } |
| /* Increase total page count */ |
| maxNodeDataPages += INITIAL_PAGES; |
| ABC_FREE(nodeDataPages); |
| nodeDataPages = newNodeDataPages; |
| } |
| } |
| /* Allocate a new page */ |
| currentNodeDataPage = nodeDataPages[nodeDataPage] = |
| ABC_ALLOC(NodeData_t ,nodeDataPageSize); |
| if (currentNodeDataPage == NULL) { |
| for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| memOut = 1; |
| return; |
| } |
| /* reset page index */ |
| nodeDataPageIndex = 0; |
| return; |
| |
| } /* end of ResizeNodeDataPages */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Resize the number of pages allocated to store the minterm |
| counts. ] |
| |
| Description [Resize the number of pages allocated to store the minterm |
| counts. The procedure moves the counter to the next page when the |
| end of the page is reached and allocates new pages when necessary.] |
| |
| SideEffects [Changes the size of minterm pages, page, page index, maximum |
| number of pages freeing stuff in case of memory out. ] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static void |
| ResizeCountMintermPages(void) |
| { |
| int i; |
| double **newMintermPages; |
| |
| page++; |
| /* If the current page index is larger than the number of pages |
| * allocated, allocate a new page array. Page numbers are incremented by |
| * INITIAL_PAGES |
| */ |
| if (page == maxPages) { |
| newMintermPages = ABC_ALLOC(double *,maxPages + INITIAL_PAGES); |
| if (newMintermPages == NULL) { |
| for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| memOut = 1; |
| return; |
| } else { |
| for (i = 0; i < maxPages; i++) { |
| newMintermPages[i] = mintermPages[i]; |
| } |
| /* Increase total page count */ |
| maxPages += INITIAL_PAGES; |
| ABC_FREE(mintermPages); |
| mintermPages = newMintermPages; |
| } |
| } |
| /* Allocate a new page */ |
| currentMintermPage = mintermPages[page] = ABC_ALLOC(double,pageSize); |
| if (currentMintermPage == NULL) { |
| for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| memOut = 1; |
| return; |
| } |
| /* reset page index */ |
| pageIndex = 0; |
| return; |
| |
| } /* end of ResizeCountMintermPages */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Resize the number of pages allocated to store the node counts.] |
| |
| Description [Resize the number of pages allocated to store the node counts. |
| The procedure moves the counter to the next page when the end of |
| the page is reached and allocates new pages when necessary.] |
| |
| SideEffects [Changes the size of pages, page, page index, maximum |
| number of pages freeing stuff in case of memory out.] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static void |
| ResizeCountNodePages(void) |
| { |
| int i; |
| int **newNodePages; |
| |
| page++; |
| |
| /* If the current page index is larger than the number of pages |
| * allocated, allocate a new page array. The number of pages is incremented |
| * by INITIAL_PAGES. |
| */ |
| if (page == maxPages) { |
| newNodePages = ABC_ALLOC(int *,maxPages + INITIAL_PAGES); |
| if (newNodePages == NULL) { |
| for (i = 0; i < page; i++) ABC_FREE(nodePages[i]); |
| ABC_FREE(nodePages); |
| for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]); |
| ABC_FREE(lightNodePages); |
| memOut = 1; |
| return; |
| } else { |
| for (i = 0; i < maxPages; i++) { |
| newNodePages[i] = nodePages[i]; |
| } |
| ABC_FREE(nodePages); |
| nodePages = newNodePages; |
| } |
| |
| newNodePages = ABC_ALLOC(int *,maxPages + INITIAL_PAGES); |
| if (newNodePages == NULL) { |
| for (i = 0; i < page; i++) ABC_FREE(nodePages[i]); |
| ABC_FREE(nodePages); |
| for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]); |
| ABC_FREE(lightNodePages); |
| memOut = 1; |
| return; |
| } else { |
| for (i = 0; i < maxPages; i++) { |
| newNodePages[i] = lightNodePages[i]; |
| } |
| ABC_FREE(lightNodePages); |
| lightNodePages = newNodePages; |
| } |
| /* Increase total page count */ |
| maxPages += INITIAL_PAGES; |
| } |
| /* Allocate a new page */ |
| currentNodePage = nodePages[page] = ABC_ALLOC(int,pageSize); |
| if (currentNodePage == NULL) { |
| for (i = 0; i < page; i++) ABC_FREE(nodePages[i]); |
| ABC_FREE(nodePages); |
| for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]); |
| ABC_FREE(lightNodePages); |
| memOut = 1; |
| return; |
| } |
| /* Allocate a new page */ |
| currentLightNodePage = lightNodePages[page] = ABC_ALLOC(int,pageSize); |
| if (currentLightNodePage == NULL) { |
| for (i = 0; i <= page; i++) ABC_FREE(nodePages[i]); |
| ABC_FREE(nodePages); |
| for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]); |
| ABC_FREE(lightNodePages); |
| memOut = 1; |
| return; |
| } |
| /* reset page index */ |
| pageIndex = 0; |
| return; |
| |
| } /* end of ResizeCountNodePages */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Recursively counts minterms of each node in the DAG.] |
| |
| Description [Recursively counts minterms of each node in the DAG. |
| Similar to the cuddCountMintermAux which recursively counts the |
| number of minterms for the dag rooted at each node in terms of the |
| total number of variables (max). This procedure creates the node |
| data structure and stores the minterm count as part of the node |
| data structure. ] |
| |
| SideEffects [Creates structures of type node quality and fills the st__table] |
| |
| SeeAlso [SubsetCountMinterm] |
| |
| ******************************************************************************/ |
| static double |
| SubsetCountMintermAux( |
| DdNode * node /* function to analyze */, |
| double max /* number of minterms of constant 1 */, |
| st__table * table /* visitedTable table */) |
| { |
| |
| DdNode *N,*Nv,*Nnv; /* nodes to store cofactors */ |
| double min,*pmin; /* minterm count */ |
| double min1, min2; /* minterm count */ |
| NodeData_t *dummy; |
| NodeData_t *newEntry; |
| int i; |
| |
| #ifdef DEBUG |
| num_calls++; |
| #endif |
| |
| /* Constant case */ |
| if (Cudd_IsConstant(node)) { |
| if (node == zero) { |
| return(0.0); |
| } else { |
| return(max); |
| } |
| } else { |
| |
| /* check if entry for this node exists */ |
| if ( st__lookup(table, (const char *)node, (char **)&dummy)) { |
| min = *(dummy->mintermPointer); |
| return(min); |
| } |
| |
| /* Make the node regular to extract cofactors */ |
| N = Cudd_Regular(node); |
| |
| /* store the cofactors */ |
| Nv = Cudd_T(N); |
| Nnv = Cudd_E(N); |
| |
| Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
| Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
| |
| min1 = SubsetCountMintermAux(Nv, max,table)/2.0; |
| if (memOut) return(0.0); |
| min2 = SubsetCountMintermAux(Nnv,max,table)/2.0; |
| if (memOut) return(0.0); |
| min = (min1+min2); |
| |
| /* if page index is at the bottom, then create a new page */ |
| if (pageIndex == pageSize) ResizeCountMintermPages(); |
| if (memOut) { |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| return(0.0); |
| } |
| |
| /* point to the correct location in the page */ |
| pmin = currentMintermPage+pageIndex; |
| pageIndex++; |
| |
| /* store the minterm count of this node in the page */ |
| *pmin = min; |
| |
| /* Note I allocate the struct here. Freeing taken care of later */ |
| if (nodeDataPageIndex == nodeDataPageSize) ResizeNodeDataPages(); |
| if (memOut) { |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| st__free_table(table); |
| return(0.0); |
| } |
| |
| newEntry = currentNodeDataPage + nodeDataPageIndex; |
| nodeDataPageIndex++; |
| |
| /* points to the correct location in the page */ |
| newEntry->mintermPointer = pmin; |
| /* initialize this field of the Node Quality structure */ |
| newEntry->nodesPointer = NULL; |
| |
| /* insert entry for the node in the table */ |
| if ( st__insert(table,(char *)node, (char *)newEntry) == st__OUT_OF_MEM) { |
| memOut = 1; |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| return(0.0); |
| } |
| return(min); |
| } |
| |
| } /* end of SubsetCountMintermAux */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Counts minterms of each node in the DAG] |
| |
| Description [Counts minterms of each node in the DAG. Similar to the |
| Cudd_CountMinterm procedure except this returns the minterm count for |
| all the nodes in the bdd in an st__table.] |
| |
| SideEffects [none] |
| |
| SeeAlso [SubsetCountMintermAux] |
| |
| ******************************************************************************/ |
| static st__table * |
| SubsetCountMinterm( |
| DdNode * node /* function to be analyzed */, |
| int nvars /* number of variables node depends on */) |
| { |
| st__table *table; |
| int i; |
| |
| |
| #ifdef DEBUG |
| num_calls = 0; |
| #endif |
| |
| max = pow(2.0,(double) nvars); |
| table = st__init_table( st__ptrcmp, st__ptrhash); |
| if (table == NULL) goto OUT_OF_MEM; |
| maxPages = INITIAL_PAGES; |
| mintermPages = ABC_ALLOC(double *,maxPages); |
| if (mintermPages == NULL) { |
| st__free_table(table); |
| goto OUT_OF_MEM; |
| } |
| page = 0; |
| currentMintermPage = ABC_ALLOC(double,pageSize); |
| mintermPages[page] = currentMintermPage; |
| if (currentMintermPage == NULL) { |
| ABC_FREE(mintermPages); |
| st__free_table(table); |
| goto OUT_OF_MEM; |
| } |
| pageIndex = 0; |
| maxNodeDataPages = INITIAL_PAGES; |
| nodeDataPages = ABC_ALLOC(NodeData_t *, maxNodeDataPages); |
| if (nodeDataPages == NULL) { |
| for (i = 0; i <= page ; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| st__free_table(table); |
| goto OUT_OF_MEM; |
| } |
| nodeDataPage = 0; |
| currentNodeDataPage = ABC_ALLOC(NodeData_t ,nodeDataPageSize); |
| nodeDataPages[nodeDataPage] = currentNodeDataPage; |
| if (currentNodeDataPage == NULL) { |
| for (i = 0; i <= page ; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| goto OUT_OF_MEM; |
| } |
| nodeDataPageIndex = 0; |
| |
| (void) SubsetCountMintermAux(node,max,table); |
| if (memOut) goto OUT_OF_MEM; |
| return(table); |
| |
| OUT_OF_MEM: |
| memOut = 1; |
| return(NULL); |
| |
| } /* end of SubsetCountMinterm */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Recursively counts the number of nodes under the dag. |
| Also counts the number of nodes under the lighter child of |
| this node.] |
| |
| Description [Recursively counts the number of nodes under the dag. |
| Also counts the number of nodes under the lighter child of |
| this node. . Note that the same dag may be the lighter child of two |
| different nodes and have different counts. As with the minterm counts, |
| the node counts are stored in pages to be space efficient and the |
| address for these node counts are stored in an st__table associated |
| to each node. ] |
| |
| SideEffects [Updates the node data table with node counts] |
| |
| SeeAlso [SubsetCountNodes] |
| |
| ******************************************************************************/ |
| static int |
| SubsetCountNodesAux( |
| DdNode * node /* current node */, |
| st__table * table /* table to update node count, also serves as visited table. */, |
| double max /* maximum number of variables */) |
| { |
| int tval, eval, i; |
| DdNode *N, *Nv, *Nnv; |
| double minNv, minNnv; |
| NodeData_t *dummyN, *dummyNv, *dummyNnv, *dummyNBar; |
| int *pmin, *pminBar, *val; |
| |
| if ((node == NULL) || Cudd_IsConstant(node)) |
| return(0); |
| |
| /* if this node has been processed do nothing */ |
| if ( st__lookup(table, (const char *)node, (char **)&dummyN) == 1) { |
| val = dummyN->nodesPointer; |
| if (val != NULL) |
| return(0); |
| } else { |
| return(0); |
| } |
| |
| N = Cudd_Regular(node); |
| Nv = Cudd_T(N); |
| Nnv = Cudd_E(N); |
| |
| Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
| Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
| |
| /* find the minterm counts for the THEN and ELSE branches */ |
| if (Cudd_IsConstant(Nv)) { |
| if (Nv == zero) { |
| minNv = 0.0; |
| } else { |
| minNv = max; |
| } |
| } else { |
| if ( st__lookup(table, (const char *)Nv, (char **)&dummyNv) == 1) |
| minNv = *(dummyNv->mintermPointer); |
| else { |
| return(0); |
| } |
| } |
| if (Cudd_IsConstant(Nnv)) { |
| if (Nnv == zero) { |
| minNnv = 0.0; |
| } else { |
| minNnv = max; |
| } |
| } else { |
| if ( st__lookup(table, (const char *)Nnv, (char **)&dummyNnv) == 1) { |
| minNnv = *(dummyNnv->mintermPointer); |
| } |
| else { |
| return(0); |
| } |
| } |
| |
| |
| /* recur based on which has larger minterm, */ |
| if (minNv >= minNnv) { |
| tval = SubsetCountNodesAux(Nv, table, max); |
| if (memOut) return(0); |
| eval = SubsetCountNodesAux(Nnv, table, max); |
| if (memOut) return(0); |
| |
| /* store the node count of the lighter child. */ |
| if (pageIndex == pageSize) ResizeCountNodePages(); |
| if (memOut) { |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| return(0); |
| } |
| pmin = currentLightNodePage + pageIndex; |
| *pmin = eval; /* Here the ELSE child is lighter */ |
| dummyN->lightChildNodesPointer = pmin; |
| |
| } else { |
| eval = SubsetCountNodesAux(Nnv, table, max); |
| if (memOut) return(0); |
| tval = SubsetCountNodesAux(Nv, table, max); |
| if (memOut) return(0); |
| |
| /* store the node count of the lighter child. */ |
| if (pageIndex == pageSize) ResizeCountNodePages(); |
| if (memOut) { |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| return(0); |
| } |
| pmin = currentLightNodePage + pageIndex; |
| *pmin = tval; /* Here the THEN child is lighter */ |
| dummyN->lightChildNodesPointer = pmin; |
| |
| } |
| /* updating the page index for node count storage. */ |
| pmin = currentNodePage + pageIndex; |
| *pmin = tval + eval + 1; |
| dummyN->nodesPointer = pmin; |
| |
| /* pageIndex is parallel page index for count_nodes and count_lightNodes */ |
| pageIndex++; |
| |
| /* if this node has been reached first, it belongs to a heavier |
| branch. Its complement will be reached later on a lighter branch. |
| Hence the complement has zero node count. */ |
| |
| if ( st__lookup(table, (const char *)Cudd_Not(node), (char **)&dummyNBar) == 1) { |
| if (pageIndex == pageSize) ResizeCountNodePages(); |
| if (memOut) { |
| for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| return(0); |
| } |
| pminBar = currentLightNodePage + pageIndex; |
| *pminBar = 0; |
| dummyNBar->lightChildNodesPointer = pminBar; |
| /* The lighter child has less nodes than the parent. |
| * So if parent 0 then lighter child zero |
| */ |
| if (pageIndex == pageSize) ResizeCountNodePages(); |
| if (memOut) { |
| for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| st__free_table(table); |
| return(0); |
| } |
| pminBar = currentNodePage + pageIndex; |
| *pminBar = 0; |
| dummyNBar->nodesPointer = pminBar ; /* maybe should point to zero */ |
| |
| pageIndex++; |
| } |
| return(*pmin); |
| } /*end of SubsetCountNodesAux */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Counts the nodes under the current node and its lighter child] |
| |
| Description [Counts the nodes under the current node and its lighter |
| child. Calls a recursive procedure to count the number of nodes of |
| a DAG rooted at a particular node and the number of nodes taken by its |
| lighter child.] |
| |
| SideEffects [None] |
| |
| SeeAlso [SubsetCountNodesAux] |
| |
| ******************************************************************************/ |
| static int |
| SubsetCountNodes( |
| DdNode * node /* function to be analyzed */, |
| st__table * table /* node quality table */, |
| int nvars /* number of variables node depends on */) |
| { |
| int num; |
| int i; |
| |
| #ifdef DEBUG |
| num_calls = 0; |
| #endif |
| |
| max = pow(2.0,(double) nvars); |
| maxPages = INITIAL_PAGES; |
| nodePages = ABC_ALLOC(int *,maxPages); |
| if (nodePages == NULL) { |
| goto OUT_OF_MEM; |
| } |
| |
| lightNodePages = ABC_ALLOC(int *,maxPages); |
| if (lightNodePages == NULL) { |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| ABC_FREE(nodePages); |
| goto OUT_OF_MEM; |
| } |
| |
| page = 0; |
| currentNodePage = nodePages[page] = ABC_ALLOC(int,pageSize); |
| if (currentNodePage == NULL) { |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| ABC_FREE(lightNodePages); |
| ABC_FREE(nodePages); |
| goto OUT_OF_MEM; |
| } |
| |
| currentLightNodePage = lightNodePages[page] = ABC_ALLOC(int,pageSize); |
| if (currentLightNodePage == NULL) { |
| for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]); |
| ABC_FREE(mintermPages); |
| for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]); |
| ABC_FREE(nodeDataPages); |
| ABC_FREE(currentNodePage); |
| ABC_FREE(lightNodePages); |
| ABC_FREE(nodePages); |
| goto OUT_OF_MEM; |
| } |
| |
| pageIndex = 0; |
| num = SubsetCountNodesAux(node,table,max); |
| if (memOut) goto OUT_OF_MEM; |
| return(num); |
| |
| OUT_OF_MEM: |
| memOut = 1; |
| return(0); |
| |
| } /* end of SubsetCountNodes */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Procedure to recursively store nodes that are retained in the subset.] |
| |
| Description [rocedure to recursively store nodes that are retained in the subset.] |
| |
| SideEffects [None] |
| |
| SeeAlso [StoreNodes] |
| |
| ******************************************************************************/ |
| static void |
| StoreNodes( |
| st__table * storeTable, |
| DdManager * dd, |
| DdNode * node) |
| { |
| DdNode *N, *Nt, *Ne; |
| if (Cudd_IsConstant(dd)) { |
| return; |
| } |
| N = Cudd_Regular(node); |
| if ( st__lookup(storeTable, (char *)N, NIL(char *))) { |
| return; |
| } |
| cuddRef(N); |
| if ( st__insert(storeTable, (char *)N, NIL(char)) == st__OUT_OF_MEM) { |
| fprintf(dd->err,"Something wrong, st__table insert failed\n"); |
| } |
| |
| Nt = Cudd_T(N); |
| Ne = Cudd_E(N); |
| |
| StoreNodes(storeTable, dd, Nt); |
| StoreNodes(storeTable, dd, Ne); |
| return; |
| |
| } |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Builds the subset BDD using the heavy branch method.] |
| |
| Description [The procedure carries out the building of the subset BDD |
| starting at the root. Using the three different counts labelling each node, |
| the procedure chooses the heavier branch starting from the root and keeps |
| track of the number of nodes it discards at each step, thus keeping count |
| of the size of the subset BDD dynamically. Once the threshold is satisfied, |
| the procedure then calls ITE to build the BDD.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static DdNode * |
| BuildSubsetBdd( |
| DdManager * dd /* DD manager */, |
| DdNode * node /* current node */, |
| int * size /* current size of the subset */, |
| st__table * visitedTable /* visited table storing all node data */, |
| int threshold, |
| st__table * storeTable, |
| st__table * approxTable) |
| { |
| |
| DdNode *Nv, *Nnv, *N, *topv, *neW; |
| double minNv, minNnv; |
| NodeData_t *currNodeQual; |
| NodeData_t *currNodeQualT; |
| NodeData_t *currNodeQualE; |
| DdNode *ThenBranch, *ElseBranch; |
| unsigned int topid; |
| char *dummy; |
| |
| #ifdef DEBUG |
| num_calls++; |
| #endif |
| /*If the size of the subset is below the threshold, dont do |
| anything. */ |
| if ((*size) <= threshold) { |
| /* store nodes below this, so we can recombine if possible */ |
| StoreNodes(storeTable, dd, node); |
| return(node); |
| } |
| |
| if (Cudd_IsConstant(node)) |
| return(node); |
| |
| /* Look up minterm count for this node. */ |
| if (! st__lookup(visitedTable, (const char *)node, (char **)&currNodeQual)) { |
| fprintf(dd->err, |
| "Something is wrong, ought to be in node quality table\n"); |
| } |
| |
| /* Get children. */ |
| N = Cudd_Regular(node); |
| Nv = Cudd_T(N); |
| Nnv = Cudd_E(N); |
| |
| /* complement if necessary */ |
| Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
| Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
| |
| if (!Cudd_IsConstant(Nv)) { |
| /* find out minterms and nodes contributed by then child */ |
| if (! st__lookup(visitedTable, (const char *)Nv, (char **)&currNodeQualT)) { |
| fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| else { |
| minNv = *(((NodeData_t *)currNodeQualT)->mintermPointer); |
| } |
| } else { |
| if (Nv == zero) { |
| minNv = 0; |
| } else { |
| minNv = max; |
| } |
| } |
| if (!Cudd_IsConstant(Nnv)) { |
| /* find out minterms and nodes contributed by else child */ |
| if (! st__lookup(visitedTable, (const char *)Nnv, (char **)&currNodeQualE)) { |
| fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } else { |
| minNnv = *(((NodeData_t *)currNodeQualE)->mintermPointer); |
| } |
| } else { |
| if (Nnv == zero) { |
| minNnv = 0; |
| } else { |
| minNnv = max; |
| } |
| } |
| |
| /* keep track of size of subset by subtracting the number of |
| * differential nodes contributed by lighter child |
| */ |
| *size = (*(size)) - (int)*(currNodeQual->lightChildNodesPointer); |
| if (minNv >= minNnv) { /*SubsetCountNodesAux procedure takes |
| the Then branch in case of a tie */ |
| |
| /* recur with the Then branch */ |
| ThenBranch = (DdNode *)BuildSubsetBdd(dd, Nv, size, |
| visitedTable, threshold, storeTable, approxTable); |
| if (ThenBranch == NULL) { |
| return(NULL); |
| } |
| cuddRef(ThenBranch); |
| /* The Else branch is either a node that already exists in the |
| * subset, or one whose approximation has been computed, or |
| * Zero. |
| */ |
| if ( st__lookup(storeTable, (char *)Cudd_Regular(Nnv), &dummy)) { |
| ElseBranch = Nnv; |
| cuddRef(ElseBranch); |
| } else { |
| if ( st__lookup(approxTable, (char *)Nnv, &dummy)) { |
| ElseBranch = (DdNode *)dummy; |
| cuddRef(ElseBranch); |
| } else { |
| ElseBranch = zero; |
| cuddRef(ElseBranch); |
| } |
| } |
| |
| } |
| else { |
| /* recur with the Else branch */ |
| ElseBranch = (DdNode *)BuildSubsetBdd(dd, Nnv, size, |
| visitedTable, threshold, storeTable, approxTable); |
| if (ElseBranch == NULL) { |
| return(NULL); |
| } |
| cuddRef(ElseBranch); |
| /* The Then branch is either a node that already exists in the |
| * subset, or one whose approximation has been computed, or |
| * Zero. |
| */ |
| if ( st__lookup(storeTable, (char *)Cudd_Regular(Nv), &dummy)) { |
| ThenBranch = Nv; |
| cuddRef(ThenBranch); |
| } else { |
| if ( st__lookup(approxTable, (char *)Nv, &dummy)) { |
| ThenBranch = (DdNode *)dummy; |
| cuddRef(ThenBranch); |
| } else { |
| ThenBranch = zero; |
| cuddRef(ThenBranch); |
| } |
| } |
| } |
| |
| /* construct the Bdd with the top variable and the two children */ |
| topid = Cudd_NodeReadIndex(N); |
| topv = Cudd_ReadVars(dd, topid); |
| cuddRef(topv); |
| neW = cuddBddIteRecur(dd, topv, ThenBranch, ElseBranch); |
| if (neW != NULL) { |
| cuddRef(neW); |
| } |
| Cudd_RecursiveDeref(dd, topv); |
| Cudd_RecursiveDeref(dd, ThenBranch); |
| Cudd_RecursiveDeref(dd, ElseBranch); |
| |
| |
| if (neW == NULL) |
| return(NULL); |
| else { |
| /* store this node in the store table */ |
| if (! st__lookup(storeTable, (char *)Cudd_Regular(neW), &dummy)) { |
| cuddRef(neW); |
| if (! st__insert(storeTable, (char *)Cudd_Regular(neW), NIL(char))) |
| return (NULL); |
| } |
| /* store the approximation for this node */ |
| if (N != Cudd_Regular(neW)) { |
| if ( st__lookup(approxTable, (char *)node, &dummy)) { |
| fprintf(dd->err, "This node should not be in the approximated table\n"); |
| } else { |
| cuddRef(neW); |
| if (! st__insert(approxTable, (char *)node, (char *)neW)) |
| return(NULL); |
| } |
| } |
| cuddDeref(neW); |
| return(neW); |
| } |
| } /* end of BuildSubsetBdd */ |
| |
| |
| ABC_NAMESPACE_IMPL_END |
| |