| /**CFile*********************************************************************** |
| |
| FileName [cuddSubsetSP.c] |
| |
| PackageName [cudd] |
| |
| Synopsis [Procedure to subset the given BDD choosing the shortest paths |
| (largest cubes) in the BDD.] |
| |
| |
| Description [External procedures included in this module: |
| <ul> |
| <li> Cudd_SubsetShortPaths() |
| <li> Cudd_SupersetShortPaths() |
| </ul> |
| Internal procedures included in this module: |
| <ul> |
| <li> cuddSubsetShortPaths() |
| </ul> |
| Static procedures included in this module: |
| <ul> |
| <li> BuildSubsetBdd() |
| <li> CreatePathTable() |
| <li> AssessPathLength() |
| <li> CreateTopDist() |
| <li> CreateBotDist() |
| <li> ResizeNodeDistPages() |
| <li> ResizeQueuePages() |
| <li> stPathTableDdFree() |
| </ul> |
| ] |
| |
| SeeAlso [cuddSubsetHB.c] |
| |
| Author [Kavita Ravi] |
| |
| Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
| |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| Neither the name of the University of Colorado nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE.] |
| |
| ******************************************************************************/ |
| |
| #include "misc/util/util_hack.h" |
| #include "cuddInt.h" |
| |
| ABC_NAMESPACE_IMPL_START |
| |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Constant declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #define DEFAULT_PAGE_SIZE 2048 /* page size to store the BFS queue element type */ |
| #define DEFAULT_NODE_DIST_PAGE_SIZE 2048 /* page sizesto store NodeDist_t type */ |
| #define MAXSHORTINT ((DdHalfWord) ~0) /* constant defined to store |
| * maximum distance of a node |
| * from the root or the |
| * constant |
| */ |
| #define INITIAL_PAGES 128 /* number of initial pages for the |
| * queue/NodeDist_t type */ |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Stucture declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /* structure created to store subset results for each node and distances with |
| * odd and even parity of the node from the root and sink. Main data structure |
| * in this procedure. |
| */ |
| struct NodeDist{ |
| DdHalfWord oddTopDist; |
| DdHalfWord evenTopDist; |
| DdHalfWord oddBotDist; |
| DdHalfWord evenBotDist; |
| DdNode *regResult; |
| DdNode *compResult; |
| }; |
| |
| /* assorted information needed by the BuildSubsetBdd procedure. */ |
| struct AssortedInfo { |
| unsigned int maxpath; |
| int findShortestPath; |
| int thresholdReached; |
| st__table *maxpathTable; |
| int threshold; |
| }; |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Type declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| typedef struct NodeDist NodeDist_t; |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Variable declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #ifndef lint |
| static char rcsid[] DD_UNUSED = "$Id: cuddSubsetSP.c,v 1.34 2009/02/19 16:23:19 fabio Exp $"; |
| #endif |
| |
| #ifdef DD_DEBUG |
| static int numCalls; |
| static int hits; |
| static int thishit; |
| #endif |
| |
| |
| static int memOut; /* flag to indicate out of memory */ |
| static DdNode *zero, *one; /* constant functions */ |
| |
| static NodeDist_t **nodeDistPages; /* pointers to the pages */ |
| static int nodeDistPageIndex; /* index to next element */ |
| static int nodeDistPage; /* index to current page */ |
| static int nodeDistPageSize = DEFAULT_NODE_DIST_PAGE_SIZE; /* page size */ |
| static int maxNodeDistPages; /* number of page pointers */ |
| static NodeDist_t *currentNodeDistPage; /* current page */ |
| |
| static DdNode ***queuePages; /* pointers to the pages */ |
| static int queuePageIndex; /* index to next element */ |
| static int queuePage; /* index to current page */ |
| static int queuePageSize = DEFAULT_PAGE_SIZE; /* page size */ |
| static int maxQueuePages; /* number of page pointers */ |
| static DdNode **currentQueuePage; /* current page */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Macro declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /**AutomaticStart*************************************************************/ |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Static function prototypes */ |
| /*---------------------------------------------------------------------------*/ |
| |
| static void ResizeNodeDistPages (void); |
| static void ResizeQueuePages (void); |
| static void CreateTopDist ( st__table *pathTable, int parentPage, int parentQueueIndex, int topLen, DdNode **childPage, int childQueueIndex, int numParents, FILE *fp); |
| static int CreateBotDist (DdNode *node, st__table *pathTable, unsigned int *pathLengthArray, FILE *fp); |
| static st__table * CreatePathTable (DdNode *node, unsigned int *pathLengthArray, FILE *fp); |
| static unsigned int AssessPathLength (unsigned int *pathLengthArray, int threshold, int numVars, unsigned int *excess, FILE *fp); |
| static DdNode * BuildSubsetBdd (DdManager *dd, st__table *pathTable, DdNode *node, struct AssortedInfo *info, st__table *subsetNodeTable); |
| static enum st__retval stPathTableDdFree (char *key, char *value, char *arg); |
| |
| /**AutomaticEnd***************************************************************/ |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of Exported functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Extracts a dense subset from a BDD with the shortest paths |
| heuristic.] |
| |
| Description [Extracts a dense subset from a BDD. This procedure |
| tries to preserve the shortest paths of the input BDD, because they |
| give many minterms and contribute few nodes. This procedure may |
| increase the number of nodes in trying to create the subset or |
| reduce the number of nodes due to recombination as compared to the |
| original BDD. Hence the threshold may not be strictly adhered to. In |
| practice, recombination overshadows the increase in the number of |
| nodes and results in small BDDs as compared to the threshold. The |
| hardlimit specifies whether threshold needs to be strictly adhered |
| to. If it is set to 1, the procedure ensures that result is never |
| larger than the specified limit but may be considerably less than |
| the threshold. Returns a pointer to the BDD for the subset if |
| successful; NULL otherwise. The value for numVars should be as |
| close as possible to the size of the support of f for better |
| efficiency. However, it is safe to pass the value returned by |
| Cudd_ReadSize for numVars. If 0 is passed, then the value returned |
| by Cudd_ReadSize is used.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_SupersetShortPaths Cudd_SubsetHeavyBranch Cudd_ReadSize] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_SubsetShortPaths( |
| DdManager * dd /* manager */, |
| DdNode * f /* function to be subset */, |
| int numVars /* number of variables in the support of f */, |
| int threshold /* maximum number of nodes in the subset */, |
| int hardlimit /* flag: 1 if threshold is a hard limit */) |
| { |
| DdNode *subset; |
| |
| memOut = 0; |
| do { |
| dd->reordered = 0; |
| subset = cuddSubsetShortPaths(dd, f, numVars, threshold, hardlimit); |
| } while((dd->reordered ==1) && (!memOut)); |
| |
| return(subset); |
| |
| } /* end of Cudd_SubsetShortPaths */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Extracts a dense superset from a BDD with the shortest paths |
| heuristic.] |
| |
| Description [Extracts a dense superset from a BDD. The procedure is |
| identical to the subset procedure except for the fact that it |
| receives the complement of the given function. Extracting the subset |
| of the complement function is equivalent to extracting the superset |
| of the function. This procedure tries to preserve the shortest |
| paths of the complement BDD, because they give many minterms and |
| contribute few nodes. This procedure may increase the number of |
| nodes in trying to create the superset or reduce the number of nodes |
| due to recombination as compared to the original BDD. Hence the |
| threshold may not be strictly adhered to. In practice, recombination |
| overshadows the increase in the number of nodes and results in small |
| BDDs as compared to the threshold. The hardlimit specifies whether |
| threshold needs to be strictly adhered to. If it is set to 1, the |
| procedure ensures that result is never larger than the specified |
| limit but may be considerably less than the threshold. Returns a |
| pointer to the BDD for the superset if successful; NULL |
| otherwise. The value for numVars should be as close as possible to |
| the size of the support of f for better efficiency. However, it is |
| safe to pass the value returned by Cudd_ReadSize for numVar. If 0 |
| is passed, then the value returned by Cudd_ReadSize is used.] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_SubsetShortPaths Cudd_SupersetHeavyBranch Cudd_ReadSize] |
| |
| ******************************************************************************/ |
| DdNode * |
| Cudd_SupersetShortPaths( |
| DdManager * dd /* manager */, |
| DdNode * f /* function to be superset */, |
| int numVars /* number of variables in the support of f */, |
| int threshold /* maximum number of nodes in the subset */, |
| int hardlimit /* flag: 1 if threshold is a hard limit */) |
| { |
| DdNode *subset, *g; |
| |
| g = Cudd_Not(f); |
| memOut = 0; |
| do { |
| dd->reordered = 0; |
| subset = cuddSubsetShortPaths(dd, g, numVars, threshold, hardlimit); |
| } while((dd->reordered ==1) && (!memOut)); |
| |
| return(Cudd_NotCond(subset, (subset != NULL))); |
| |
| } /* end of Cudd_SupersetShortPaths */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of internal functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [The outermost procedure to return a subset of the given BDD |
| with the shortest path lengths.] |
| |
| Description [The outermost procedure to return a subset of the given |
| BDD with the largest cubes. The path lengths are calculated, the maximum |
| allowable path length is determined and the number of nodes of this |
| path length that can be used to build a subset. If the threshold is |
| larger than the size of the original BDD, the original BDD is |
| returned. ] |
| |
| SideEffects [None] |
| |
| SeeAlso [Cudd_SubsetShortPaths] |
| |
| ******************************************************************************/ |
| DdNode * |
| cuddSubsetShortPaths( |
| DdManager * dd /* DD manager */, |
| DdNode * f /* function to be subset */, |
| int numVars /* total number of variables in consideration */, |
| int threshold /* maximum number of nodes allowed in the subset */, |
| int hardlimit /* flag determining whether thershold should be respected strictly */) |
| { |
| st__table *pathTable; |
| DdNode *N, *subset; |
| |
| unsigned int *pathLengthArray; |
| unsigned int maxpath, oddLen, evenLen, pathLength, *excess; |
| int i; |
| NodeDist_t *nodeStat; |
| struct AssortedInfo *info; |
| st__table *subsetNodeTable; |
| |
| one = DD_ONE(dd); |
| zero = Cudd_Not(one); |
| |
| if (numVars == 0) { |
| /* set default value */ |
| numVars = Cudd_ReadSize(dd); |
| } |
| |
| if (threshold > numVars) { |
| threshold = threshold - numVars; |
| } |
| if (f == NULL) { |
| fprintf(dd->err, "Cannot partition, nil object\n"); |
| dd->errorCode = CUDD_INVALID_ARG; |
| return(NULL); |
| } |
| if (Cudd_IsConstant(f)) |
| return (f); |
| |
| pathLengthArray = ABC_ALLOC(unsigned int, numVars+1); |
| for (i = 0; i < numVars+1; i++) pathLengthArray[i] = 0; |
| |
| |
| #ifdef DD_DEBUG |
| numCalls = 0; |
| #endif |
| |
| pathTable = CreatePathTable(f, pathLengthArray, dd->err); |
| |
| if ((pathTable == NULL) || (memOut)) { |
| if (pathTable != NULL) |
| st__free_table(pathTable); |
| ABC_FREE(pathLengthArray); |
| return (NIL(DdNode)); |
| } |
| |
| excess = ABC_ALLOC(unsigned int, 1); |
| *excess = 0; |
| maxpath = AssessPathLength(pathLengthArray, threshold, numVars, excess, |
| dd->err); |
| |
| if (maxpath != (unsigned) (numVars + 1)) { |
| |
| info = ABC_ALLOC(struct AssortedInfo, 1); |
| info->maxpath = maxpath; |
| info->findShortestPath = 0; |
| info->thresholdReached = *excess; |
| info->maxpathTable = st__init_table( st__ptrcmp, st__ptrhash); |
| info->threshold = threshold; |
| |
| #ifdef DD_DEBUG |
| (void) fprintf(dd->out, "Path length array\n"); |
| for (i = 0; i < (numVars+1); i++) { |
| if (pathLengthArray[i]) |
| (void) fprintf(dd->out, "%d ",i); |
| } |
| (void) fprintf(dd->out, "\n"); |
| for (i = 0; i < (numVars+1); i++) { |
| if (pathLengthArray[i]) |
| (void) fprintf(dd->out, "%d ",pathLengthArray[i]); |
| } |
| (void) fprintf(dd->out, "\n"); |
| (void) fprintf(dd->out, "Maxpath = %d, Thresholdreached = %d\n", |
| maxpath, info->thresholdReached); |
| #endif |
| |
| N = Cudd_Regular(f); |
| if (! st__lookup(pathTable, (const char *)N, (char **)&nodeStat)) { |
| fprintf(dd->err, "Something wrong, root node must be in table\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| ABC_FREE(excess); |
| ABC_FREE(info); |
| return(NULL); |
| } else { |
| if ((nodeStat->oddTopDist != MAXSHORTINT) && |
| (nodeStat->oddBotDist != MAXSHORTINT)) |
| oddLen = (nodeStat->oddTopDist + nodeStat->oddBotDist); |
| else |
| oddLen = MAXSHORTINT; |
| |
| if ((nodeStat->evenTopDist != MAXSHORTINT) && |
| (nodeStat->evenBotDist != MAXSHORTINT)) |
| evenLen = (nodeStat->evenTopDist +nodeStat->evenBotDist); |
| else |
| evenLen = MAXSHORTINT; |
| |
| pathLength = (oddLen <= evenLen) ? oddLen : evenLen; |
| if (pathLength > maxpath) { |
| (void) fprintf(dd->err, "All computations are bogus, since root has path length greater than max path length within threshold %u, %u\n", maxpath, pathLength); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| } |
| |
| #ifdef DD_DEBUG |
| numCalls = 0; |
| hits = 0; |
| thishit = 0; |
| #endif |
| /* initialize a table to store computed nodes */ |
| if (hardlimit) { |
| subsetNodeTable = st__init_table( st__ptrcmp, st__ptrhash); |
| } else { |
| subsetNodeTable = NIL( st__table); |
| } |
| subset = BuildSubsetBdd(dd, pathTable, f, info, subsetNodeTable); |
| if (subset != NULL) { |
| cuddRef(subset); |
| } |
| /* record the number of times a computed result for a node is hit */ |
| |
| #ifdef DD_DEBUG |
| (void) fprintf(dd->out, "Hits = %d, New==Node = %d, NumCalls = %d\n", |
| hits, thishit, numCalls); |
| #endif |
| |
| if (subsetNodeTable != NIL( st__table)) { |
| st__free_table(subsetNodeTable); |
| } |
| st__free_table(info->maxpathTable); |
| st__foreach(pathTable, stPathTableDdFree, (char *)dd); |
| |
| ABC_FREE(info); |
| |
| } else {/* if threshold larger than size of dd */ |
| subset = f; |
| cuddRef(subset); |
| } |
| ABC_FREE(excess); |
| st__free_table(pathTable); |
| ABC_FREE(pathLengthArray); |
| for (i = 0; i <= nodeDistPage; i++) ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| |
| #ifdef DD_DEBUG |
| /* check containment of subset in f */ |
| if (subset != NULL) { |
| DdNode *check; |
| check = Cudd_bddIteConstant(dd, subset, f, one); |
| if (check != one) { |
| (void) fprintf(dd->err, "Wrong partition\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| } |
| #endif |
| |
| if (subset != NULL) { |
| cuddDeref(subset); |
| return(subset); |
| } else { |
| return(NULL); |
| } |
| |
| } /* end of cuddSubsetShortPaths */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of static functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Resize the number of pages allocated to store the distances |
| related to each node.] |
| |
| Description [Resize the number of pages allocated to store the distances |
| related to each node. The procedure moves the counter to the |
| next page when the end of the page is reached and allocates new |
| pages when necessary. ] |
| |
| SideEffects [Changes the size of pages, page, page index, maximum |
| number of pages freeing stuff in case of memory out. ] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static void |
| ResizeNodeDistPages(void) |
| { |
| int i; |
| NodeDist_t **newNodeDistPages; |
| |
| /* move to next page */ |
| nodeDistPage++; |
| |
| /* If the current page index is larger than the number of pages |
| * allocated, allocate a new page array. Page numbers are incremented by |
| * INITIAL_PAGES |
| */ |
| if (nodeDistPage == maxNodeDistPages) { |
| newNodeDistPages = ABC_ALLOC(NodeDist_t *,maxNodeDistPages + INITIAL_PAGES); |
| if (newNodeDistPages == NULL) { |
| for (i = 0; i < nodeDistPage; i++) ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| memOut = 1; |
| return; |
| } else { |
| for (i = 0; i < maxNodeDistPages; i++) { |
| newNodeDistPages[i] = nodeDistPages[i]; |
| } |
| /* Increase total page count */ |
| maxNodeDistPages += INITIAL_PAGES; |
| ABC_FREE(nodeDistPages); |
| nodeDistPages = newNodeDistPages; |
| } |
| } |
| /* Allocate a new page */ |
| currentNodeDistPage = nodeDistPages[nodeDistPage] = ABC_ALLOC(NodeDist_t, |
| nodeDistPageSize); |
| if (currentNodeDistPage == NULL) { |
| for (i = 0; i < nodeDistPage; i++) ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| memOut = 1; |
| return; |
| } |
| /* reset page index */ |
| nodeDistPageIndex = 0; |
| return; |
| |
| } /* end of ResizeNodeDistPages */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Resize the number of pages allocated to store nodes in the BFS |
| traversal of the Bdd .] |
| |
| Description [Resize the number of pages allocated to store nodes in the BFS |
| traversal of the Bdd. The procedure moves the counter to the |
| next page when the end of the page is reached and allocates new |
| pages when necessary.] |
| |
| SideEffects [Changes the size of pages, page, page index, maximum |
| number of pages freeing stuff in case of memory out. ] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static void |
| ResizeQueuePages(void) |
| { |
| int i; |
| DdNode ***newQueuePages; |
| |
| queuePage++; |
| /* If the current page index is larger than the number of pages |
| * allocated, allocate a new page array. Page numbers are incremented by |
| * INITIAL_PAGES |
| */ |
| if (queuePage == maxQueuePages) { |
| newQueuePages = ABC_ALLOC(DdNode **,maxQueuePages + INITIAL_PAGES); |
| if (newQueuePages == NULL) { |
| for (i = 0; i < queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| memOut = 1; |
| return; |
| } else { |
| for (i = 0; i < maxQueuePages; i++) { |
| newQueuePages[i] = queuePages[i]; |
| } |
| /* Increase total page count */ |
| maxQueuePages += INITIAL_PAGES; |
| ABC_FREE(queuePages); |
| queuePages = newQueuePages; |
| } |
| } |
| /* Allocate a new page */ |
| currentQueuePage = queuePages[queuePage] = ABC_ALLOC(DdNode *,queuePageSize); |
| if (currentQueuePage == NULL) { |
| for (i = 0; i < queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| memOut = 1; |
| return; |
| } |
| /* reset page index */ |
| queuePageIndex = 0; |
| return; |
| |
| } /* end of ResizeQueuePages */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [ Labels each node with its shortest distance from the root] |
| |
| Description [ Labels each node with its shortest distance from the root. |
| This is done in a BFS search of the BDD. The nodes are processed |
| in a queue implemented as pages(array) to reduce memory fragmentation. |
| An entry is created for each node visited. The distance from the root |
| to the node with the corresponding parity is updated. The procedure |
| is called recursively each recusion level handling nodes at a given |
| level from the root.] |
| |
| |
| SideEffects [Creates entries in the pathTable] |
| |
| SeeAlso [CreatePathTable CreateBotDist] |
| |
| ******************************************************************************/ |
| static void |
| CreateTopDist( |
| st__table * pathTable /* hast table to store path lengths */, |
| int parentPage /* the pointer to the page on which the first parent in the queue is to be found. */, |
| int parentQueueIndex /* pointer to the first parent on the page */, |
| int topLen /* current distance from the root */, |
| DdNode ** childPage /* pointer to the page on which the first child is to be added. */, |
| int childQueueIndex /* pointer to the first child */, |
| int numParents /* number of parents to process in this recursive call */, |
| FILE *fp /* where to write messages */) |
| { |
| NodeDist_t *nodeStat; |
| DdNode *N, *Nv, *Nnv, *node, *child, *regChild; |
| int i; |
| int processingDone, childrenCount; |
| |
| #ifdef DD_DEBUG |
| numCalls++; |
| |
| /* assume this procedure comes in with only the root node*/ |
| /* set queue index to the next available entry for addition */ |
| /* set queue page to page of addition */ |
| if ((queuePages[parentPage] == childPage) && (parentQueueIndex == |
| childQueueIndex)) { |
| fprintf(fp, "Should not happen that they are equal\n"); |
| } |
| assert(queuePageIndex == childQueueIndex); |
| assert(currentQueuePage == childPage); |
| #endif |
| /* number children added to queue is initialized , needed for |
| * numParents in the next call |
| */ |
| childrenCount = 0; |
| /* process all the nodes in this level */ |
| while (numParents) { |
| numParents--; |
| if (parentQueueIndex == queuePageSize) { |
| parentPage++; |
| parentQueueIndex = 0; |
| } |
| /* a parent to process */ |
| node = *(queuePages[parentPage] + parentQueueIndex); |
| parentQueueIndex++; |
| /* get its children */ |
| N = Cudd_Regular(node); |
| Nv = Cudd_T(N); |
| Nnv = Cudd_E(N); |
| |
| Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
| Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
| |
| processingDone = 2; |
| while (processingDone) { |
| /* processing the THEN and the ELSE children, the THEN |
| * child first |
| */ |
| if (processingDone == 2) { |
| child = Nv; |
| } else { |
| child = Nnv; |
| } |
| |
| regChild = Cudd_Regular(child); |
| /* dont process if the child is a constant */ |
| if (!Cudd_IsConstant(child)) { |
| /* check is already visited, if not add a new entry in |
| * the path Table |
| */ |
| if (! st__lookup(pathTable, (const char *)regChild, (char **)&nodeStat)) { |
| /* if not in table, has never been visited */ |
| /* create entry for table */ |
| if (nodeDistPageIndex == nodeDistPageSize) |
| ResizeNodeDistPages(); |
| if (memOut) { |
| for (i = 0; i <= queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| st__free_table(pathTable); |
| return; |
| } |
| /* New entry for child in path Table is created here */ |
| nodeStat = currentNodeDistPage + nodeDistPageIndex; |
| nodeDistPageIndex++; |
| |
| /* Initialize fields of the node data */ |
| nodeStat->oddTopDist = MAXSHORTINT; |
| nodeStat->evenTopDist = MAXSHORTINT; |
| nodeStat->evenBotDist = MAXSHORTINT; |
| nodeStat->oddBotDist = MAXSHORTINT; |
| nodeStat->regResult = NULL; |
| nodeStat->compResult = NULL; |
| /* update the table entry element, the distance keeps |
| * track of the parity of the path from the root |
| */ |
| if (Cudd_IsComplement(child)) { |
| nodeStat->oddTopDist = (DdHalfWord) topLen + 1; |
| } else { |
| nodeStat->evenTopDist = (DdHalfWord) topLen + 1; |
| } |
| |
| /* insert entry element for child in the table */ |
| if ( st__insert(pathTable, (char *)regChild, |
| (char *)nodeStat) == st__OUT_OF_MEM) { |
| memOut = 1; |
| for (i = 0; i <= nodeDistPage; i++) |
| ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| for (i = 0; i <= queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| st__free_table(pathTable); |
| return; |
| } |
| |
| /* Create list element for this child to process its children. |
| * If this node has been processed already, then it appears |
| * in the path table and hence is never added to the list |
| * again. |
| */ |
| |
| if (queuePageIndex == queuePageSize) ResizeQueuePages(); |
| if (memOut) { |
| for (i = 0; i <= nodeDistPage; i++) |
| ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| st__free_table(pathTable); |
| return; |
| } |
| *(currentQueuePage + queuePageIndex) = child; |
| queuePageIndex++; |
| |
| childrenCount++; |
| } else { |
| /* if not been met in a path with this parity before */ |
| /* put in list */ |
| if (((Cudd_IsComplement(child)) && (nodeStat->oddTopDist == |
| MAXSHORTINT)) || ((!Cudd_IsComplement(child)) && |
| (nodeStat->evenTopDist == MAXSHORTINT))) { |
| |
| if (queuePageIndex == queuePageSize) ResizeQueuePages(); |
| if (memOut) { |
| for (i = 0; i <= nodeDistPage; i++) |
| ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| st__free_table(pathTable); |
| return; |
| |
| } |
| *(currentQueuePage + queuePageIndex) = child; |
| queuePageIndex++; |
| |
| /* update the distance with the appropriate parity */ |
| if (Cudd_IsComplement(child)) { |
| nodeStat->oddTopDist = (DdHalfWord) topLen + 1; |
| } else { |
| nodeStat->evenTopDist = (DdHalfWord) topLen + 1; |
| } |
| childrenCount++; |
| } |
| |
| } /* end of else (not found in st__table) */ |
| } /*end of if Not constant child */ |
| processingDone--; |
| } /*end of while processing Nv, Nnv */ |
| } /*end of while numParents */ |
| |
| #ifdef DD_DEBUG |
| assert(queuePages[parentPage] == childPage); |
| assert(parentQueueIndex == childQueueIndex); |
| #endif |
| |
| if (childrenCount != 0) { |
| topLen++; |
| childPage = currentQueuePage; |
| childQueueIndex = queuePageIndex; |
| CreateTopDist(pathTable, parentPage, parentQueueIndex, topLen, |
| childPage, childQueueIndex, childrenCount, fp); |
| } |
| |
| return; |
| |
| } /* end of CreateTopDist */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [ Labels each node with the shortest distance from the constant.] |
| |
| Description [Labels each node with the shortest distance from the constant. |
| This is done in a DFS search of the BDD. Each node has an odd |
| and even parity distance from the sink (since there exists paths to both |
| zero and one) which is less than MAXSHORTINT. At each node these distances |
| are updated using the minimum distance of its children from the constant. |
| SInce now both the length from the root and child is known, the minimum path |
| length(length of the shortest path between the root and the constant that |
| this node lies on) of this node can be calculated and used to update the |
| pathLengthArray] |
| |
| SideEffects [Updates Path Table and path length array] |
| |
| SeeAlso [CreatePathTable CreateTopDist AssessPathLength] |
| |
| ******************************************************************************/ |
| static int |
| CreateBotDist( |
| DdNode * node /* current node */, |
| st__table * pathTable /* path table with path lengths */, |
| unsigned int * pathLengthArray /* array that stores number of nodes belonging to a particular path length. */, |
| FILE *fp /* where to write messages */) |
| { |
| DdNode *N, *Nv, *Nnv; |
| DdNode *realChild; |
| DdNode *child, *regChild; |
| NodeDist_t *nodeStat, *nodeStatChild; |
| unsigned int oddLen, evenLen, pathLength; |
| DdHalfWord botDist; |
| int processingDone; |
| |
| if (Cudd_IsConstant(node)) |
| return(1); |
| N = Cudd_Regular(node); |
| /* each node has one table entry */ |
| /* update as you go down the min dist of each node from |
| the root in each (odd and even) parity */ |
| if (! st__lookup(pathTable, (const char *)N, (char **)&nodeStat)) { |
| fprintf(fp, "Something wrong, the entry doesn't exist\n"); |
| return(0); |
| } |
| |
| /* compute length of odd parity distances */ |
| if ((nodeStat->oddTopDist != MAXSHORTINT) && |
| (nodeStat->oddBotDist != MAXSHORTINT)) |
| oddLen = (nodeStat->oddTopDist + nodeStat->oddBotDist); |
| else |
| oddLen = MAXSHORTINT; |
| |
| /* compute length of even parity distances */ |
| if (!((nodeStat->evenTopDist == MAXSHORTINT) || |
| (nodeStat->evenBotDist == MAXSHORTINT))) |
| evenLen = (nodeStat->evenTopDist +nodeStat->evenBotDist); |
| else |
| evenLen = MAXSHORTINT; |
| |
| /* assign pathlength to minimum of the two */ |
| pathLength = (oddLen <= evenLen) ? oddLen : evenLen; |
| |
| Nv = Cudd_T(N); |
| Nnv = Cudd_E(N); |
| |
| /* process each child */ |
| processingDone = 0; |
| while (processingDone != 2) { |
| if (!processingDone) { |
| child = Nv; |
| } else { |
| child = Nnv; |
| } |
| |
| realChild = Cudd_NotCond(child, Cudd_IsComplement(node)); |
| regChild = Cudd_Regular(child); |
| if (Cudd_IsConstant(realChild)) { |
| /* Found a minterm; count parity and shortest distance |
| ** from the constant. |
| */ |
| if (Cudd_IsComplement(child)) |
| nodeStat->oddBotDist = 1; |
| else |
| nodeStat->evenBotDist = 1; |
| } else { |
| /* If node not in table, recur. */ |
| if (! st__lookup(pathTable, (const char *)regChild, (char **)&nodeStatChild)) { |
| fprintf(fp, "Something wrong, node in table should have been created in top dist proc.\n"); |
| return(0); |
| } |
| |
| if (nodeStatChild->oddBotDist == MAXSHORTINT) { |
| if (nodeStatChild->evenBotDist == MAXSHORTINT) { |
| if (!CreateBotDist(realChild, pathTable, pathLengthArray, fp)) |
| return(0); |
| } else { |
| fprintf(fp, "Something wrong, both bot nodeStats should be there\n"); |
| return(0); |
| } |
| } |
| |
| /* Update shortest distance from the constant depending on |
| ** parity. */ |
| |
| if (Cudd_IsComplement(child)) { |
| /* If parity on the edge then add 1 to even distance |
| ** of child to get odd parity distance and add 1 to |
| ** odd distance of child to get even parity |
| ** distance. Change distance of current node only if |
| ** the calculated distance is less than existing |
| ** distance. */ |
| if (nodeStatChild->oddBotDist != MAXSHORTINT) |
| botDist = nodeStatChild->oddBotDist + 1; |
| else |
| botDist = MAXSHORTINT; |
| if (nodeStat->evenBotDist > botDist ) |
| nodeStat->evenBotDist = botDist; |
| |
| if (nodeStatChild->evenBotDist != MAXSHORTINT) |
| botDist = nodeStatChild->evenBotDist + 1; |
| else |
| botDist = MAXSHORTINT; |
| if (nodeStat->oddBotDist > botDist) |
| nodeStat->oddBotDist = botDist; |
| |
| } else { |
| /* If parity on the edge then add 1 to even distance |
| ** of child to get even parity distance and add 1 to |
| ** odd distance of child to get odd parity distance. |
| ** Change distance of current node only if the |
| ** calculated distance is lesser than existing |
| ** distance. */ |
| if (nodeStatChild->evenBotDist != MAXSHORTINT) |
| botDist = nodeStatChild->evenBotDist + 1; |
| else |
| botDist = MAXSHORTINT; |
| if (nodeStat->evenBotDist > botDist) |
| nodeStat->evenBotDist = botDist; |
| |
| if (nodeStatChild->oddBotDist != MAXSHORTINT) |
| botDist = nodeStatChild->oddBotDist + 1; |
| else |
| botDist = MAXSHORTINT; |
| if (nodeStat->oddBotDist > botDist) |
| nodeStat->oddBotDist = botDist; |
| } |
| } /* end of else (if not constant child ) */ |
| processingDone++; |
| } /* end of while processing Nv, Nnv */ |
| |
| /* Compute shortest path length on the fly. */ |
| if ((nodeStat->oddTopDist != MAXSHORTINT) && |
| (nodeStat->oddBotDist != MAXSHORTINT)) |
| oddLen = (nodeStat->oddTopDist + nodeStat->oddBotDist); |
| else |
| oddLen = MAXSHORTINT; |
| |
| if ((nodeStat->evenTopDist != MAXSHORTINT) && |
| (nodeStat->evenBotDist != MAXSHORTINT)) |
| evenLen = (nodeStat->evenTopDist +nodeStat->evenBotDist); |
| else |
| evenLen = MAXSHORTINT; |
| |
| /* Update path length array that has number of nodes of a particular |
| ** path length. */ |
| if (oddLen < pathLength ) { |
| if (pathLength != MAXSHORTINT) |
| pathLengthArray[pathLength]--; |
| if (oddLen != MAXSHORTINT) |
| pathLengthArray[oddLen]++; |
| pathLength = oddLen; |
| } |
| if (evenLen < pathLength ) { |
| if (pathLength != MAXSHORTINT) |
| pathLengthArray[pathLength]--; |
| if (evenLen != MAXSHORTINT) |
| pathLengthArray[evenLen]++; |
| } |
| |
| return(1); |
| |
| } /*end of CreateBotDist */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [ The outer procedure to label each node with its shortest |
| distance from the root and constant] |
| |
| Description [ The outer procedure to label each node with its shortest |
| distance from the root and constant. Calls CreateTopDist and CreateBotDist. |
| The basis for computing the distance between root and constant is that |
| the distance may be the sum of even distances from the node to the root |
| and constant or the sum of odd distances from the node to the root and |
| constant. Both CreateTopDist and CreateBotDist create the odd and |
| even parity distances from the root and constant respectively.] |
| |
| SideEffects [None] |
| |
| SeeAlso [CreateTopDist CreateBotDist] |
| |
| ******************************************************************************/ |
| static st__table * |
| CreatePathTable( |
| DdNode * node /* root of function */, |
| unsigned int * pathLengthArray /* array of path lengths to store nodes labeled with the various path lengths */, |
| FILE *fp /* where to write messages */) |
| { |
| |
| st__table *pathTable; |
| NodeDist_t *nodeStat; |
| DdHalfWord topLen; |
| DdNode *N; |
| int i, numParents; |
| int insertValue; |
| DdNode **childPage; |
| int parentPage; |
| int childQueueIndex, parentQueueIndex; |
| |
| /* Creating path Table for storing data about nodes */ |
| pathTable = st__init_table( st__ptrcmp, st__ptrhash); |
| |
| /* initializing pages for info about each node */ |
| maxNodeDistPages = INITIAL_PAGES; |
| nodeDistPages = ABC_ALLOC(NodeDist_t *, maxNodeDistPages); |
| if (nodeDistPages == NULL) { |
| goto OUT_OF_MEM; |
| } |
| nodeDistPage = 0; |
| currentNodeDistPage = nodeDistPages[nodeDistPage] = |
| ABC_ALLOC(NodeDist_t, nodeDistPageSize); |
| if (currentNodeDistPage == NULL) { |
| for (i = 0; i <= nodeDistPage; i++) ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| goto OUT_OF_MEM; |
| } |
| nodeDistPageIndex = 0; |
| |
| /* Initializing pages for the BFS search queue, implemented as an array. */ |
| maxQueuePages = INITIAL_PAGES; |
| queuePages = ABC_ALLOC(DdNode **, maxQueuePages); |
| if (queuePages == NULL) { |
| goto OUT_OF_MEM; |
| } |
| queuePage = 0; |
| currentQueuePage = queuePages[queuePage] = ABC_ALLOC(DdNode *, queuePageSize); |
| if (currentQueuePage == NULL) { |
| for (i = 0; i <= queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| goto OUT_OF_MEM; |
| } |
| queuePageIndex = 0; |
| |
| /* Enter the root node into the queue to start with. */ |
| parentPage = queuePage; |
| parentQueueIndex = queuePageIndex; |
| topLen = 0; |
| *(currentQueuePage + queuePageIndex) = node; |
| queuePageIndex++; |
| childPage = currentQueuePage; |
| childQueueIndex = queuePageIndex; |
| |
| N = Cudd_Regular(node); |
| |
| if (nodeDistPageIndex == nodeDistPageSize) ResizeNodeDistPages(); |
| if (memOut) { |
| for (i = 0; i <= nodeDistPage; i++) ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| for (i = 0; i <= queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| st__free_table(pathTable); |
| goto OUT_OF_MEM; |
| } |
| |
| nodeStat = currentNodeDistPage + nodeDistPageIndex; |
| nodeDistPageIndex++; |
| |
| nodeStat->oddTopDist = MAXSHORTINT; |
| nodeStat->evenTopDist = MAXSHORTINT; |
| nodeStat->evenBotDist = MAXSHORTINT; |
| nodeStat->oddBotDist = MAXSHORTINT; |
| nodeStat->regResult = NULL; |
| nodeStat->compResult = NULL; |
| |
| insertValue = st__insert(pathTable, (char *)N, (char *)nodeStat); |
| if (insertValue == st__OUT_OF_MEM) { |
| memOut = 1; |
| for (i = 0; i <= nodeDistPage; i++) ABC_FREE(nodeDistPages[i]); |
| ABC_FREE(nodeDistPages); |
| for (i = 0; i <= queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| st__free_table(pathTable); |
| goto OUT_OF_MEM; |
| } else if (insertValue == 1) { |
| fprintf(fp, "Something wrong, the entry exists but didnt show up in st__lookup\n"); |
| return(NULL); |
| } |
| |
| if (Cudd_IsComplement(node)) { |
| nodeStat->oddTopDist = 0; |
| } else { |
| nodeStat->evenTopDist = 0; |
| } |
| numParents = 1; |
| /* call the function that counts the distance of each node from the |
| * root |
| */ |
| #ifdef DD_DEBUG |
| numCalls = 0; |
| #endif |
| CreateTopDist(pathTable, parentPage, parentQueueIndex, (int) topLen, |
| childPage, childQueueIndex, numParents, fp); |
| if (memOut) { |
| fprintf(fp, "Out of Memory and cant count path lengths\n"); |
| goto OUT_OF_MEM; |
| } |
| |
| #ifdef DD_DEBUG |
| numCalls = 0; |
| #endif |
| /* call the function that counts the distance of each node from the |
| * constant |
| */ |
| if (!CreateBotDist(node, pathTable, pathLengthArray, fp)) return(NULL); |
| |
| /* free BFS queue pages as no longer required */ |
| for (i = 0; i <= queuePage; i++) ABC_FREE(queuePages[i]); |
| ABC_FREE(queuePages); |
| return(pathTable); |
| |
| OUT_OF_MEM: |
| (void) fprintf(fp, "Out of Memory, cannot allocate pages\n"); |
| memOut = 1; |
| return(NULL); |
| |
| } /*end of CreatePathTable */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Chooses the maximum allowable path length of nodes under the |
| threshold.] |
| |
| Description [Chooses the maximum allowable path length under each node. |
| The corner cases are when the threshold is larger than the number |
| of nodes in the BDD iself, in which case 'numVars + 1' is returned. |
| If all nodes of a particular path length are needed, then the |
| maxpath returned is the next one with excess nodes = 0;] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static unsigned int |
| AssessPathLength( |
| unsigned int * pathLengthArray /* array determining number of nodes belonging to the different path lengths */, |
| int threshold /* threshold to determine maximum allowable nodes in the subset */, |
| int numVars /* maximum number of variables */, |
| unsigned int * excess /* number of nodes labeled maxpath required in the subset */, |
| FILE *fp /* where to write messages */) |
| { |
| unsigned int i, maxpath; |
| int temp; |
| |
| temp = threshold; |
| i = 0; |
| maxpath = 0; |
| /* quit loop if i reaches max number of variables or if temp reaches |
| * below zero |
| */ |
| while ((i < (unsigned) numVars+1) && (temp > 0)) { |
| if (pathLengthArray[i] > 0) { |
| maxpath = i; |
| temp = temp - pathLengthArray[i]; |
| } |
| i++; |
| } |
| /* if all nodes of max path are needed */ |
| if (temp >= 0) { |
| maxpath++; /* now maxpath becomes the next maxppath or max number |
| of variables */ |
| *excess = 0; |
| } else { /* normal case when subset required is less than size of |
| original BDD */ |
| *excess = temp + pathLengthArray[maxpath]; |
| } |
| |
| if (maxpath == 0) { |
| fprintf(fp, "Path Length array seems to be all zeroes, check\n"); |
| } |
| return(maxpath); |
| |
| } /* end of AssessPathLength */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Builds the BDD with nodes labeled with path length less than or equal to maxpath] |
| |
| Description [Builds the BDD with nodes labeled with path length |
| under maxpath and as many nodes labeled maxpath as determined by the |
| threshold. The procedure uses the path table to determine which nodes |
| in the original bdd need to be retained. This procedure picks a |
| shortest path (tie break decided by taking the child with the shortest |
| distance to the constant) and recurs down the path till it reaches the |
| constant. the procedure then starts building the subset upward from |
| the constant. All nodes labeled by path lengths less than the given |
| maxpath are used to build the subset. However, in the case of nodes |
| that have label equal to maxpath, as many are chosen as required by |
| the threshold. This number is stored in the info structure in the |
| field thresholdReached. This field is decremented whenever a node |
| labeled maxpath is encountered and the nodes labeled maxpath are |
| aggregated in a maxpath table. As soon as the thresholdReached count |
| goes to 0, the shortest path from this node to the constant is found. |
| The extraction of nodes with the above labeling is based on the fact |
| that each node, labeled with a path length, P, has at least one child |
| labeled P or less. So extracting all nodes labeled a given path length |
| P ensures complete paths between the root and the constant. Extraction |
| of a partial number of nodes with a given path length may result in |
| incomplete paths and hence the additional number of nodes are grabbed |
| to complete the path. Since the Bdd is built bottom-up, other nodes |
| labeled maxpath do lie on complete paths. The procedure may cause the |
| subset to have a larger or smaller number of nodes than the specified |
| threshold. The increase in the number of nodes is caused by the |
| building of a subset and the reduction by recombination. However in |
| most cases, the recombination overshadows the increase and the |
| procedure returns a result with lower number of nodes than specified. |
| The subsetNodeTable is NIL when there is no hard limit on the number |
| of nodes. Further efforts towards keeping the subset closer to the |
| threshold number were abandoned in favour of keeping the procedure |
| simple and fast.] |
| |
| SideEffects [SubsetNodeTable is changed if it is not NIL.] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static DdNode * |
| BuildSubsetBdd( |
| DdManager * dd /* DD manager */, |
| st__table * pathTable /* path table with path lengths and computed results */, |
| DdNode * node /* current node */, |
| struct AssortedInfo * info /* assorted information structure */, |
| st__table * subsetNodeTable /* table storing computed results */) |
| { |
| DdNode *N, *Nv, *Nnv; |
| DdNode *ThenBranch, *ElseBranch, *childBranch; |
| DdNode *child, *regChild, *regNnv = NULL, *regNv = NULL; |
| NodeDist_t *nodeStatNv, *nodeStat, *nodeStatNnv; |
| DdNode *neW, *topv, *regNew; |
| char *entry; |
| unsigned int topid; |
| unsigned int childPathLength, oddLen, evenLen, NnvPathLength = 0, NvPathLength = 0; |
| unsigned int NvBotDist, NnvBotDist; |
| int tiebreakChild; |
| int processingDone, thenDone, elseDone; |
| |
| |
| #ifdef DD_DEBUG |
| numCalls++; |
| #endif |
| if (Cudd_IsConstant(node)) |
| return(node); |
| |
| N = Cudd_Regular(node); |
| /* Find node in table. */ |
| if (! st__lookup(pathTable, (const char *)N, (char **)&nodeStat)) { |
| (void) fprintf(dd->err, "Something wrong, node must be in table \n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| /* If the node in the table has been visited, then return the corresponding |
| ** Dd. Since a node can become a subset of itself, its |
| ** complement (that is te same node reached by a different parity) will |
| ** become a superset of the original node and result in some minterms |
| ** that were not in the original set. Hence two different results are |
| ** maintained, corresponding to the odd and even parities. |
| */ |
| |
| /* If this node is reached with an odd parity, get odd parity results. */ |
| if (Cudd_IsComplement(node)) { |
| if (nodeStat->compResult != NULL) { |
| #ifdef DD_DEBUG |
| hits++; |
| #endif |
| return(nodeStat->compResult); |
| } |
| } else { |
| /* if this node is reached with an even parity, get even parity |
| * results |
| */ |
| if (nodeStat->regResult != NULL) { |
| #ifdef DD_DEBUG |
| hits++; |
| #endif |
| return(nodeStat->regResult); |
| } |
| } |
| |
| |
| /* get children */ |
| Nv = Cudd_T(N); |
| Nnv = Cudd_E(N); |
| |
| Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
| Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
| |
| /* no child processed */ |
| processingDone = 0; |
| /* then child not processed */ |
| thenDone = 0; |
| ThenBranch = NULL; |
| /* else child not processed */ |
| elseDone = 0; |
| ElseBranch = NULL; |
| /* if then child constant, branch is the child */ |
| if (Cudd_IsConstant(Nv)) { |
| /*shortest path found */ |
| if ((Nv == DD_ONE(dd)) && (info->findShortestPath)) { |
| info->findShortestPath = 0; |
| } |
| |
| ThenBranch = Nv; |
| cuddRef(ThenBranch); |
| if (ThenBranch == NULL) { |
| return(NULL); |
| } |
| |
| thenDone++; |
| processingDone++; |
| NvBotDist = MAXSHORTINT; |
| } else { |
| /* Derive regular child for table lookup. */ |
| regNv = Cudd_Regular(Nv); |
| /* Get node data for shortest path length. */ |
| if (! st__lookup(pathTable, (const char *)regNv, (char **)&nodeStatNv) ) { |
| (void) fprintf(dd->err, "Something wrong, node must be in table\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| /* Derive shortest path length for child. */ |
| if ((nodeStatNv->oddTopDist != MAXSHORTINT) && |
| (nodeStatNv->oddBotDist != MAXSHORTINT)) { |
| oddLen = (nodeStatNv->oddTopDist + nodeStatNv->oddBotDist); |
| } else { |
| oddLen = MAXSHORTINT; |
| } |
| |
| if ((nodeStatNv->evenTopDist != MAXSHORTINT) && |
| (nodeStatNv->evenBotDist != MAXSHORTINT)) { |
| evenLen = (nodeStatNv->evenTopDist +nodeStatNv->evenBotDist); |
| } else { |
| evenLen = MAXSHORTINT; |
| } |
| |
| NvPathLength = (oddLen <= evenLen) ? oddLen : evenLen; |
| NvBotDist = (oddLen <= evenLen) ? nodeStatNv->oddBotDist: |
| nodeStatNv->evenBotDist; |
| } |
| /* if else child constant, branch is the child */ |
| if (Cudd_IsConstant(Nnv)) { |
| /*shortest path found */ |
| if ((Nnv == DD_ONE(dd)) && (info->findShortestPath)) { |
| info->findShortestPath = 0; |
| } |
| |
| ElseBranch = Nnv; |
| cuddRef(ElseBranch); |
| if (ElseBranch == NULL) { |
| return(NULL); |
| } |
| |
| elseDone++; |
| processingDone++; |
| NnvBotDist = MAXSHORTINT; |
| } else { |
| /* Derive regular child for table lookup. */ |
| regNnv = Cudd_Regular(Nnv); |
| /* Get node data for shortest path length. */ |
| if (! st__lookup(pathTable, (const char *)regNnv, (char **)&nodeStatNnv) ) { |
| (void) fprintf(dd->err, "Something wrong, node must be in table\n"); |
| dd->errorCode = CUDD_INTERNAL_ERROR; |
| return(NULL); |
| } |
| /* Derive shortest path length for child. */ |
| if ((nodeStatNnv->oddTopDist != MAXSHORTINT) && |
| (nodeStatNnv->oddBotDist != MAXSHORTINT)) { |
| oddLen = (nodeStatNnv->oddTopDist + nodeStatNnv->oddBotDist); |
| } else { |
| oddLen = MAXSHORTINT; |
| } |
| |
| if ((nodeStatNnv->evenTopDist != MAXSHORTINT) && |
| (nodeStatNnv->evenBotDist != MAXSHORTINT)) { |
| evenLen = (nodeStatNnv->evenTopDist +nodeStatNnv->evenBotDist); |
| } else { |
| evenLen = MAXSHORTINT; |
| } |
| |
| NnvPathLength = (oddLen <= evenLen) ? oddLen : evenLen; |
| NnvBotDist = (oddLen <= evenLen) ? nodeStatNnv->oddBotDist : |
| nodeStatNnv->evenBotDist; |
| } |
| |
| tiebreakChild = (NvBotDist <= NnvBotDist) ? 1 : 0; |
| /* while both children not processed */ |
| while (processingDone != 2) { |
| if (!processingDone) { |
| /* if no child processed */ |
| /* pick the child with shortest path length and record which one |
| * picked |
| */ |
| if ((NvPathLength < NnvPathLength) || |
| ((NvPathLength == NnvPathLength) && (tiebreakChild == 1))) { |
| child = Nv; |
| regChild = regNv; |
| thenDone = 1; |
| childPathLength = NvPathLength; |
| } else { |
| child = Nnv; |
| regChild = regNnv; |
| elseDone = 1; |
| childPathLength = NnvPathLength; |
| } /* then path length less than else path length */ |
| } else { |
| /* if one child processed, process the other */ |
| if (thenDone) { |
| child = Nnv; |
| regChild = regNnv; |
| elseDone = 1; |
| childPathLength = NnvPathLength; |
| } else { |
| child = Nv; |
| regChild = regNv; |
| thenDone = 1; |
| childPathLength = NvPathLength; |
| } /* end of else pick the Then child if ELSE child processed */ |
| } /* end of else one child has been processed */ |
| |
| /* ignore (replace with constant 0) all nodes which lie on paths larger |
| * than the maximum length of the path required |
| */ |
| if (childPathLength > info->maxpath) { |
| /* record nodes visited */ |
| childBranch = zero; |
| } else { |
| if (childPathLength < info->maxpath) { |
| if (info->findShortestPath) { |
| info->findShortestPath = 0; |
| } |
| childBranch = BuildSubsetBdd(dd, pathTable, child, info, |
| subsetNodeTable); |
| |
| } else { /* Case: path length of node = maxpath */ |
| /* If the node labeled with maxpath is found in the |
| ** maxpathTable, use it to build the subset BDD. */ |
| if ( st__lookup(info->maxpathTable, (char *)regChild, |
| (char **)&entry)) { |
| /* When a node that is already been chosen is hit, |
| ** the quest for a complete path is over. */ |
| if (info->findShortestPath) { |
| info->findShortestPath = 0; |
| } |
| childBranch = BuildSubsetBdd(dd, pathTable, child, info, |
| subsetNodeTable); |
| } else { |
| /* If node is not found in the maxpathTable and |
| ** the threshold has been reached, then if the |
| ** path needs to be completed, continue. Else |
| ** replace the node with a zero. */ |
| if (info->thresholdReached <= 0) { |
| if (info->findShortestPath) { |
| if ( st__insert(info->maxpathTable, (char *)regChild, |
| (char *)NIL(char)) == st__OUT_OF_MEM) { |
| memOut = 1; |
| (void) fprintf(dd->err, "OUT of memory\n"); |
| info->thresholdReached = 0; |
| childBranch = zero; |
| } else { |
| info->thresholdReached--; |
| childBranch = BuildSubsetBdd(dd, pathTable, |
| child, info,subsetNodeTable); |
| } |
| } else { /* not find shortest path, we dont need this |
| node */ |
| childBranch = zero; |
| } |
| } else { /* Threshold hasn't been reached, |
| ** need the node. */ |
| if ( st__insert(info->maxpathTable, (char *)regChild, |
| (char *)NIL(char)) == st__OUT_OF_MEM) { |
| memOut = 1; |
| (void) fprintf(dd->err, "OUT of memory\n"); |
| info->thresholdReached = 0; |
| childBranch = zero; |
| } else { |
| info->thresholdReached--; |
| if (info->thresholdReached <= 0) { |
| info->findShortestPath = 1; |
| } |
| childBranch = BuildSubsetBdd(dd, pathTable, |
| child, info, subsetNodeTable); |
| |
| } /* end of st__insert successful */ |
| } /* end of threshold hasnt been reached yet */ |
| } /* end of else node not found in maxpath table */ |
| } /* end of if (path length of node = maxpath) */ |
| } /* end if !(childPathLength > maxpath) */ |
| if (childBranch == NULL) { |
| /* deref other stuff incase reordering has taken place */ |
| if (ThenBranch != NULL) { |
| Cudd_RecursiveDeref(dd, ThenBranch); |
| ThenBranch = NULL; |
| } |
| if (ElseBranch != NULL) { |
| Cudd_RecursiveDeref(dd, ElseBranch); |
| ElseBranch = NULL; |
| } |
| return(NULL); |
| } |
| |
| cuddRef(childBranch); |
| |
| if (child == Nv) { |
| ThenBranch = childBranch; |
| } else { |
| ElseBranch = childBranch; |
| } |
| processingDone++; |
| |
| } /*end of while processing Nv, Nnv */ |
| |
| info->findShortestPath = 0; |
| topid = Cudd_NodeReadIndex(N); |
| topv = Cudd_ReadVars(dd, topid); |
| cuddRef(topv); |
| neW = cuddBddIteRecur(dd, topv, ThenBranch, ElseBranch); |
| if (neW != NULL) { |
| cuddRef(neW); |
| } |
| Cudd_RecursiveDeref(dd, topv); |
| Cudd_RecursiveDeref(dd, ThenBranch); |
| Cudd_RecursiveDeref(dd, ElseBranch); |
| |
| |
| /* Hard Limit of threshold has been imposed */ |
| if (subsetNodeTable != NIL( st__table)) { |
| /* check if a new node is created */ |
| regNew = Cudd_Regular(neW); |
| /* subset node table keeps all new nodes that have been created to keep |
| * a running count of how many nodes have been built in the subset. |
| */ |
| if (! st__lookup(subsetNodeTable, (char *)regNew, (char **)&entry)) { |
| if (!Cudd_IsConstant(regNew)) { |
| if ( st__insert(subsetNodeTable, (char *)regNew, |
| (char *)NULL) == st__OUT_OF_MEM) { |
| (void) fprintf(dd->err, "Out of memory\n"); |
| return (NULL); |
| } |
| if ( st__count(subsetNodeTable) > info->threshold) { |
| info->thresholdReached = 0; |
| } |
| } |
| } |
| } |
| |
| |
| if (neW == NULL) { |
| return(NULL); |
| } else { |
| /*store computed result in regular form*/ |
| if (Cudd_IsComplement(node)) { |
| nodeStat->compResult = neW; |
| cuddRef(nodeStat->compResult); |
| /* if the new node is the same as the corresponding node in the |
| * original bdd then its complement need not be computed as it |
| * cannot be larger than the node itself |
| */ |
| if (neW == node) { |
| #ifdef DD_DEBUG |
| thishit++; |
| #endif |
| /* if a result for the node has already been computed, then |
| * it can only be smaller than teh node itself. hence store |
| * the node result in order not to break recombination |
| */ |
| if (nodeStat->regResult != NULL) { |
| Cudd_RecursiveDeref(dd, nodeStat->regResult); |
| } |
| nodeStat->regResult = Cudd_Not(neW); |
| cuddRef(nodeStat->regResult); |
| } |
| |
| } else { |
| nodeStat->regResult = neW; |
| cuddRef(nodeStat->regResult); |
| if (neW == node) { |
| #ifdef DD_DEBUG |
| thishit++; |
| #endif |
| if (nodeStat->compResult != NULL) { |
| Cudd_RecursiveDeref(dd, nodeStat->compResult); |
| } |
| nodeStat->compResult = Cudd_Not(neW); |
| cuddRef(nodeStat->compResult); |
| } |
| } |
| |
| cuddDeref(neW); |
| return(neW); |
| } /* end of else i.e. Subset != NULL */ |
| } /* end of BuildSubsetBdd */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Procedure to free te result dds stored in the NodeDist pages.] |
| |
| Description [None] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static enum st__retval |
| stPathTableDdFree( |
| char * key, |
| char * value, |
| char * arg) |
| { |
| NodeDist_t *nodeStat; |
| DdManager *dd; |
| |
| nodeStat = (NodeDist_t *)value; |
| dd = (DdManager *)arg; |
| if (nodeStat->regResult != NULL) { |
| Cudd_RecursiveDeref(dd, nodeStat->regResult); |
| } |
| if (nodeStat->compResult != NULL) { |
| Cudd_RecursiveDeref(dd, nodeStat->compResult); |
| } |
| return( st__CONTINUE); |
| |
| } /* end of stPathTableFree */ |
| |
| |
| ABC_NAMESPACE_IMPL_END |
| |