blob: 97f5f09543971570b955f869cb1f7fe4b25237db [file] [log] [blame]
/**CFile****************************************************************
FileName [sclBuffer.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Standard-cell library representation.]
Synopsis [Buffering algorithms.]
Author [Alan Mishchenko, Niklas Een]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 24, 2012.]
Revision [$Id: sclBuffer.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sclSize.h"
#include "map/mio/mio.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define BUF_SCALE 1000
typedef struct Buf_Man_t_ Buf_Man_t;
struct Buf_Man_t_
{
// parameters
int nFanMin; // the smallest fanout count to consider
int nFanMax; // the largest fanout count allowed off CP
int fBufPis; // enables buffing of the combinational inputs
// internal deta
Abc_Ntk_t * pNtk; // logic network
Vec_Int_t * vOffsets; // offsets into edge delays
Vec_Int_t * vEdges; // edge delays
Vec_Int_t * vArr; // arrival times
Vec_Int_t * vDep; // departure times
Vec_Flt_t * vCounts; // fanout counts
Vec_Que_t * vQue; // queue by fanout count
int nObjStart; // the number of starting objects
int nObjAlloc; // the number of allocated objects
int DelayMax; // maximum delay (percentage of inverter delay)
float DelayInv; // inverter delay
// sorting fanouts
Vec_Int_t * vOrder; // ordering of fanouts
Vec_Int_t * vDelays; // fanout delays
Vec_Int_t * vNonCrit; // non-critical fanouts
Vec_Int_t * vTfCone; // TFI/TFO cone of the node including the node
Vec_Ptr_t * vFanouts; // temp storage for fanouts
// statistics
int nSeparate;
int nDuplicate;
int nBranch0;
int nBranch1;
int nBranchCrit;
};
static inline int Abc_BufNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vArr, Abc_ObjId(pObj) ); }
static inline int Abc_BufNodeDep( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vDep, Abc_ObjId(pObj) ); }
static inline void Abc_BufSetNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj, int f ) { Vec_IntWriteEntry( p->vArr, Abc_ObjId(pObj), f ); }
static inline void Abc_BufSetNodeDep( Buf_Man_t * p, Abc_Obj_t * pObj, int f ) { Vec_IntWriteEntry( p->vDep, Abc_ObjId(pObj), f ); }
static inline int Abc_BufEdgeDelay( Buf_Man_t * p, Abc_Obj_t * pObj, int i ) { return Vec_IntEntry( p->vEdges, Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) + i ); }
static inline void Abc_BufSetEdgeDelay( Buf_Man_t * p, Abc_Obj_t * pObj, int i, int f ) { Vec_IntWriteEntry( p->vEdges, Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) + i, f ); }
static inline int Abc_BufNodeSlack( Buf_Man_t * p, Abc_Obj_t * pObj ) { return p->DelayMax - Abc_BufNodeArr(p, pObj) - Abc_BufNodeDep(p, pObj); }
static inline int Abc_BufEdgeSlack( Buf_Man_t * p, Abc_Obj_t * pObj, Abc_Obj_t * pFan ) { return p->DelayMax - Abc_BufNodeArr(p, pObj) - Abc_BufNodeDep(p, pFan) - Abc_BufEdgeDelay(p, pFan, Abc_NodeFindFanin(pFan, pObj)); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Make sure fanins of gates are not duplicated.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_SclReportDupFanins( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj, * pFanin, * pFanin2;
int i, k, k2;
Abc_NtkForEachNode( pNtk, pObj, i )
Abc_ObjForEachFanin( pObj, pFanin, k )
Abc_ObjForEachFanin( pObj, pFanin2, k2 )
if ( k != k2 && pFanin == pFanin2 )
printf( "Node %d has dup fanin %d.\n", i, Abc_ObjId(pFanin) );
}
/**Function*************************************************************
Synopsis [Removes buffers and inverters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_SclObjIsBufInv( Abc_Obj_t * pObj )
{
return Abc_ObjIsNode(pObj) && Abc_ObjFaninNum(pObj) == 1;
}
int Abc_SclIsInv( Abc_Obj_t * pObj )
{
assert( Abc_ObjIsNode(pObj) );
return Mio_GateReadTruth((Mio_Gate_t *)pObj->pData) == ABC_CONST(0x5555555555555555);
}
int Abc_SclGetRealFaninLit( Abc_Obj_t * pObj )
{
int iLit;
if ( !Abc_SclObjIsBufInv(pObj) )
return Abc_Var2Lit( Abc_ObjId(pObj), 0 );
iLit = Abc_SclGetRealFaninLit( Abc_ObjFanin0(pObj) );
return Abc_LitNotCond( iLit, Abc_SclIsInv(pObj) );
}
Abc_Ntk_t * Abc_SclUnBufferPerform( Abc_Ntk_t * pNtk, int fVerbose )
{
Vec_Int_t * vLits;
Abc_Obj_t * pObj, * pFanin, * pFaninNew;
int i, k, iLit, nNodesOld = Abc_NtkObjNumMax(pNtk);
// assign inverters
vLits = Vec_IntStartFull( Abc_NtkObjNumMax(pNtk) );
Abc_NtkForEachNode( pNtk, pObj, i )
if ( Abc_SclIsInv(pObj) && !Abc_SclObjIsBufInv(Abc_ObjFanin0(pObj)) )
Vec_IntWriteEntry( vLits, Abc_ObjFaninId0(pObj), Abc_ObjId(pObj) );
// transfer fanins
Abc_NtkForEachNodeCo( pNtk, pObj, i )
{
if ( i >= nNodesOld )
break;
Abc_ObjForEachFanin( pObj, pFanin, k )
{
if ( !Abc_SclObjIsBufInv(pFanin) )
continue;
iLit = Abc_SclGetRealFaninLit( pFanin );
pFaninNew = Abc_NtkObj( pNtk, Abc_Lit2Var(iLit) );
if ( Abc_LitIsCompl(iLit) )
{
if ( Vec_IntEntry( vLits, Abc_Lit2Var(iLit) ) == -1 )
{
pFaninNew = Abc_NtkCreateNodeInv( pNtk, pFaninNew );
Vec_IntWriteEntry( vLits, Abc_Lit2Var(iLit), Abc_ObjId(pFaninNew) );
}
else
pFaninNew = Abc_NtkObj( pNtk, Vec_IntEntry( vLits, Abc_Lit2Var(iLit) ) );
assert( Abc_ObjFaninNum(pFaninNew) == 1 );
}
if ( pFanin != pFaninNew )
Abc_ObjPatchFanin( pObj, pFanin, pFaninNew );
}
}
Vec_IntFree( vLits );
// duplicate network in topo order
return Abc_NtkDupDfs( pNtk );
}
/**Function*************************************************************
Synopsis [Removes buffers and inverters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCountMaxPhases( Abc_Ntk_t * pNtk )
{
Vec_Int_t * vPhLevel;
Abc_Obj_t * pObj, * pFanin;
int i, k, Max = 0, MaxAll = 0;
vPhLevel = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
Abc_NtkForEachNodeCo( pNtk, pObj, i )
{
Max = 0;
Abc_ObjForEachFanin( pObj, pFanin, k )
Max = Abc_MaxInt( Max, Vec_IntEntry(vPhLevel, Abc_ObjId(pFanin)) + Abc_ObjFaninPhase(pObj, k) );
Vec_IntWriteEntry( vPhLevel, i, Max );
MaxAll = Abc_MaxInt( MaxAll, Max );
}
Vec_IntFree( vPhLevel );
return MaxAll;
}
Abc_Ntk_t * Abc_SclBufferPhase( Abc_Ntk_t * pNtk, int fVerbose )
{
Abc_Ntk_t * pNtkNew;
Vec_Int_t * vInvs;
Abc_Obj_t * pObj, * pFanin, * pFaninNew;
int nNodesOld = Abc_NtkObjNumMax(pNtk);
int i, k, Counter = 0, Counter2 = 0, Total = 0;
assert( pNtk->vPhases != NULL );
vInvs = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
Abc_NtkForEachNodeCo( pNtk, pObj, i )
{
if ( i >= nNodesOld )
break;
Abc_ObjForEachFanin( pObj, pFanin, k )
{
Total++;
if ( !Abc_ObjFaninPhase(pObj, k) )
continue;
if ( Vec_IntEntry(vInvs, Abc_ObjId(pFanin)) == 0 || Abc_ObjIsCi(pFanin) ) // allow PIs to have high fanout - to be fixed later
{
pFaninNew = Abc_NtkCreateNodeInv( pNtk, pFanin );
Vec_IntWriteEntry( vInvs, Abc_ObjId(pFanin), Abc_ObjId(pFaninNew) );
Counter++;
}
pFaninNew = Abc_NtkObj( pNtk, Vec_IntEntry(vInvs, Abc_ObjId(pFanin)) );
Abc_ObjPatchFanin( pObj, pFanin, pFaninNew );
Counter2++;
}
}
if ( fVerbose )
printf( "Added %d inverters (%.2f %% fanins) (%.2f %% compl fanins).\n",
Counter, 100.0 * Counter / Total, 100.0 * Counter2 / Total );
Vec_IntFree( vInvs );
Vec_IntFillExtra( pNtk->vPhases, Abc_NtkObjNumMax(pNtk), 0 );
// duplicate network in topo order
vInvs = pNtk->vPhases;
pNtk->vPhases = NULL;
pNtkNew = Abc_NtkDupDfs( pNtk );
pNtk->vPhases = vInvs;
return pNtkNew;
}
Abc_Ntk_t * Abc_SclUnBufferPhase( Abc_Ntk_t * pNtk, int fVerbose )
{
Abc_Ntk_t * pNtkNew;
Abc_Obj_t * pObj, * pFanin, * pFaninNew;
int i, k, iLit, Counter = 0, Total = 0;
assert( pNtk->vPhases == NULL );
pNtk->vPhases = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
Abc_NtkForEachNodeCo( pNtk, pObj, i )
{
if ( Abc_SclObjIsBufInv(pObj) )
continue;
Abc_ObjForEachFanin( pObj, pFanin, k )
{
Total++;
iLit = Abc_SclGetRealFaninLit( pFanin );
pFaninNew = Abc_NtkObj( pNtk, Abc_Lit2Var(iLit) );
if ( pFaninNew == pFanin )
continue;
// skip fanins which are already fanins of the node
if ( Abc_NodeFindFanin( pObj, pFaninNew ) >= 0 )
continue;
Abc_ObjPatchFanin( pObj, pFanin, pFaninNew );
if ( Abc_LitIsCompl(iLit) )
Abc_ObjFaninFlipPhase( pObj, k ), Counter++;
}
}
if ( fVerbose )
printf( "Saved %d (%.2f %%) fanin phase bits. ", Counter, 100.0 * Counter / Total );
// duplicate network in topo order
pNtkNew = Abc_NtkDupDfs( pNtk );
if ( fVerbose )
printf( "Max depth = %d.\n", Abc_SclCountMaxPhases(pNtkNew) );
Abc_SclReportDupFanins( pNtkNew );
return pNtkNew;
}
/**Function*************************************************************
Synopsis [Make sure the network is in topo order without dangling nodes.]
Description [Returns 1 iff the network is fine.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose )
{
Abc_Obj_t * pObj, * pFanin;
int i, k, fFlag = 1;
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_NodeSetTravIdCurrent( pObj );
Abc_NtkForEachNode( p, pObj, i )
{
Abc_ObjForEachFanin( pObj, pFanin, k )
if ( !Abc_NodeIsTravIdCurrent( pFanin ) )
printf( "obj %d and its fanin %d are not in the topo order\n", Abc_ObjId(pObj), Abc_ObjId(pFanin) ), fFlag = 0;
Abc_NodeSetTravIdCurrent( pObj );
if ( Abc_ObjIsBarBuf(pObj) )
continue;
if ( Abc_ObjFanoutNum(pObj) == 0 )
printf( "node %d has no fanout\n", Abc_ObjId(pObj) ), fFlag = 0;
if ( !fFlag )
break;
}
if ( fFlag && fVerbose )
printf( "The network is in topo order and no dangling nodes.\n" );
return fFlag;
}
/**Function*************************************************************
Synopsis [Performs buffering of the mapped network (old code).]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeInvUpdateFanPolarity( Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i;
assert( Abc_ObjFaninNum(pObj) == 0 || Abc_SclObjIsBufInv(pObj) );
Abc_ObjForEachFanout( pObj, pFanout, i )
{
assert( Abc_ObjFaninNum(pFanout) > 0 );
if ( Abc_SclObjIsBufInv(pFanout) )
Abc_NodeInvUpdateFanPolarity( pFanout );
else
Abc_ObjFaninFlipPhase( pFanout, Abc_NodeFindFanin(pFanout, pObj) );
}
}
void Abc_NodeInvUpdateObjFanoutPolarity( Abc_Obj_t * pObj, Abc_Obj_t * pFanout )
{
if ( Abc_SclObjIsBufInv(pFanout) )
Abc_NodeInvUpdateFanPolarity( pFanout );
else
Abc_ObjFaninFlipPhase( pFanout, Abc_NodeFindFanin(pFanout, pObj) );
}
int Abc_NodeCompareLevels( Abc_Obj_t ** pp1, Abc_Obj_t ** pp2 )
{
int Diff = Abc_ObjLevel(*pp1) - Abc_ObjLevel(*pp2);
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
Diff = (*pp1)->Id - (*pp2)->Id; // needed to make qsort() platform-infependent
if ( Diff < 0 )
return -1;
if ( Diff > 0 )
return 1;
return 0;
}
int Abc_SclComputeReverseLevel( Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i, Level = 0;
Abc_ObjForEachFanout( pObj, pFanout, i )
Level = Abc_MaxInt( Level, pFanout->Level );
return Level + 1;
}
Abc_Obj_t * Abc_SclPerformBufferingOne( Abc_Obj_t * pObj, int Degree, int fUseInvs, int fVerbose )
{
Vec_Ptr_t * vFanouts;
Abc_Obj_t * pBuffer, * pFanout;
int i, Degree0 = Degree;
assert( Abc_ObjFanoutNum(pObj) > Degree );
// collect fanouts and sort by reverse level
vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) );
Abc_NodeCollectFanouts( pObj, vFanouts );
Vec_PtrSort( vFanouts, (int (*)(void))Abc_NodeCompareLevels );
// select the first Degree fanouts
if ( fUseInvs )
pBuffer = Abc_NtkCreateNodeInv( pObj->pNtk, NULL );
else
pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL );
// check if it is possible to not increase level
if ( Vec_PtrSize(vFanouts) < 2 * Degree )
{
Abc_Obj_t * pFanPrev = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Vec_PtrSize(vFanouts)-1-Degree);
Abc_Obj_t * pFanThis = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Degree-1);
Abc_Obj_t * pFanLast = (Abc_Obj_t *)Vec_PtrEntryLast(vFanouts);
if ( Abc_ObjLevel(pFanThis) == Abc_ObjLevel(pFanLast) &&
Abc_ObjLevel(pFanPrev) < Abc_ObjLevel(pFanThis) )
{
// find the first one whose level is the same as last
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
if ( Abc_ObjLevel(pFanout) == Abc_ObjLevel(pFanLast) )
break;
assert( i < Vec_PtrSize(vFanouts) );
if ( i > 1 )
Degree = i;
}
// make the last two more well-balanced
if ( Degree == Degree0 && Degree > Vec_PtrSize(vFanouts) - Degree )
Degree = Vec_PtrSize(vFanouts)/2 + (Vec_PtrSize(vFanouts) & 1);
assert( Degree <= Degree0 );
}
// select fanouts
Vec_PtrForEachEntryStop( Abc_Obj_t *, vFanouts, pFanout, i, Degree )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
if ( fVerbose )
{
printf( "%5d : ", Abc_ObjId(pObj) );
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
printf( "%d%s ", Abc_ObjLevel(pFanout), i == Degree-1 ? " " : "" );
printf( "\n" );
}
Vec_PtrFree( vFanouts );
Abc_ObjAddFanin( pBuffer, pObj );
pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer );
if ( fUseInvs )
Abc_NodeInvUpdateFanPolarity( pBuffer );
return pBuffer;
}
void Abc_SclPerformBuffering_rec( Abc_Obj_t * pObj, int DegreeR, int Degree, int fUseInvs, int fVerbose )
{
Vec_Ptr_t * vFanouts;
Abc_Obj_t * pBuffer;
Abc_Obj_t * pFanout;
int i, nOldFanNum;
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return;
Abc_NodeSetTravIdCurrent( pObj );
pObj->Level = 0;
if ( Abc_ObjIsCo(pObj) )
return;
assert( Abc_ObjIsCi(pObj) || Abc_ObjIsNode(pObj) );
// buffer fanouts and collect reverse levels
Abc_ObjForEachFanout( pObj, pFanout, i )
Abc_SclPerformBuffering_rec( pFanout, DegreeR, Degree, fUseInvs, fVerbose );
// perform buffering as long as needed
nOldFanNum = Abc_ObjFanoutNum(pObj);
while ( Abc_ObjFanoutNum(pObj) > Degree )
Abc_SclPerformBufferingOne( pObj, Degree, fUseInvs, fVerbose );
// add yet another level of buffers
if ( DegreeR && nOldFanNum > DegreeR )
{
if ( fUseInvs )
pBuffer = Abc_NtkCreateNodeInv( pObj->pNtk, NULL );
else
pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL );
vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) );
Abc_NodeCollectFanouts( pObj, vFanouts );
Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
Vec_PtrFree( vFanouts );
Abc_ObjAddFanin( pBuffer, pObj );
pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer );
if ( fUseInvs )
Abc_NodeInvUpdateFanPolarity( pBuffer );
}
// compute the new level of the node
pObj->Level = Abc_SclComputeReverseLevel( pObj );
}
Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int DegreeR, int Degree, int fUseInvs, int fVerbose )
{
Vec_Int_t * vCiLevs;
Abc_Ntk_t * pNew;
Abc_Obj_t * pObj;
int i;
assert( Abc_NtkHasMapping(p) );
if ( fUseInvs )
{
printf( "Warning!!! Using inverters instead of buffers.\n" );
if ( p->vPhases == NULL )
printf( "The phases are not given. The result will not verify.\n" );
}
// remember CI levels
vCiLevs = Vec_IntAlloc( Abc_NtkCiNum(p) );
Abc_NtkForEachCi( p, pObj, i )
Vec_IntPush( vCiLevs, Abc_ObjLevel(pObj) );
// perform buffering
Abc_NtkIncrementTravId( p );
Abc_NtkForEachCi( p, pObj, i )
Abc_SclPerformBuffering_rec( pObj, DegreeR, Degree, fUseInvs, fVerbose );
// recompute logic levels
Abc_NtkForEachCi( p, pObj, i )
pObj->Level = Vec_IntEntry( vCiLevs, i );
Abc_NtkForEachNode( p, pObj, i )
Abc_ObjLevelNew( pObj );
Vec_IntFree( vCiLevs );
// if phases are present
if ( p->vPhases )
Vec_IntFillExtra( p->vPhases, Abc_NtkObjNumMax(p), 0 );
// duplication in topo order
pNew = Abc_NtkDupDfs( p );
Abc_SclCheckNtk( pNew, fVerbose );
// Abc_NtkDelete( pNew );
return pNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Abc_BufComputeArr( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanin;
int i;
float DelayF, Delay = -ABC_INFINITY;
Abc_ObjForEachFanin( pObj, pFanin, i )
{
if ( Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) == -ABC_INFINITY )
continue;
DelayF = Abc_BufNodeArr(p, pFanin) + Abc_BufEdgeDelay(p, pObj, i);
if ( Delay < DelayF )
Delay = DelayF;
}
Abc_BufSetNodeArr( p, pObj, Delay );
return Delay;
}
float Abc_BufComputeDep( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i;
float DelayF, Delay = -ABC_INFINITY;
Abc_ObjForEachFanout( pObj, pFanout, i )
{
if ( Vec_IntEntry(p->vOffsets, Abc_ObjId(pFanout)) == -ABC_INFINITY )
continue;
DelayF = Abc_BufNodeDep(p, pFanout) + Abc_BufEdgeDelay(p, pFanout, Abc_NodeFindFanin(pFanout, pObj));
if ( Delay < DelayF )
Delay = DelayF;
}
Abc_BufSetNodeDep( p, pObj, Delay );
return Delay;
}
void Abc_BufUpdateGlobal( Buf_Man_t * p )
{
Abc_Obj_t * pObj;
int i;
p->DelayMax = 0;
Abc_NtkForEachCo( p->pNtk, pObj, i )
p->DelayMax = Abc_MaxInt( p->DelayMax, Abc_BufNodeArr(p, Abc_ObjFanin0(pObj)) );
}
void Abc_BufCreateEdges( Buf_Man_t * p, Abc_Obj_t * pObj )
{
int k;
Mio_Gate_t * pGate = Abc_ObjIsCo(pObj) ? NULL : (Mio_Gate_t *)pObj->pData;
Vec_IntWriteEntry( p->vOffsets, Abc_ObjId(pObj), Vec_IntSize(p->vEdges) );
for ( k = 0; k < Abc_ObjFaninNum(pObj); k++ )
Vec_IntPush( p->vEdges, pGate ? (int)(1.0 * BUF_SCALE * Mio_GateReadPinDelay(pGate, k) / p->DelayInv) : 0 );
}
void Abc_BufAddToQue( Buf_Man_t * p, Abc_Obj_t * pObj )
{
if ( Abc_ObjFanoutNum(pObj) < p->nFanMin || (!p->fBufPis && Abc_ObjIsCi(pObj)) )
return;
Vec_FltWriteEntry( p->vCounts, Abc_ObjId(pObj), Abc_ObjFanoutNum(pObj) );
if ( Vec_QueIsMember(p->vQue, Abc_ObjId(pObj)) )
Vec_QueUpdate( p->vQue, Abc_ObjId(pObj) );
else
Vec_QuePush( p->vQue, Abc_ObjId(pObj) );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_BufCollectTfoCone_rec( Abc_Obj_t * pNode, Vec_Int_t * vNodes )
{
Abc_Obj_t * pNext;
int i;
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
Abc_NodeSetTravIdCurrent( pNode );
if ( Abc_ObjIsCo(pNode) )
return;
assert( Abc_ObjIsCi(pNode) || Abc_ObjIsNode(pNode) );
Abc_ObjForEachFanout( pNode, pNext, i )
Abc_BufCollectTfoCone_rec( pNext, vNodes );
if ( Abc_ObjIsNode(pNode) )
Vec_IntPush( vNodes, Abc_ObjId(pNode) );
}
void Abc_BufCollectTfoCone( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Vec_IntClear( p->vTfCone );
Abc_NtkIncrementTravId( p->pNtk );
Abc_BufCollectTfoCone_rec( pObj, p->vTfCone );
}
void Abc_BufUpdateArr( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pNext;
int i, Delay;
// assert( Abc_ObjIsNode(pObj) );
Abc_BufCollectTfoCone( p, pObj );
Vec_IntReverseOrder( p->vTfCone );
Abc_NtkForEachObjVec( p->vTfCone, p->pNtk, pNext, i )
{
Delay = Abc_BufComputeArr( p, pNext );
p->DelayMax = Abc_MaxInt( p->DelayMax, Delay );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_BufCollectTfiCone_rec( Abc_Obj_t * pNode, Vec_Int_t * vNodes )
{
Abc_Obj_t * pNext;
int i;
if ( Abc_NodeIsTravIdCurrent( pNode ) )
return;
Abc_NodeSetTravIdCurrent( pNode );
if ( Abc_ObjIsCi(pNode) )
return;
assert( Abc_ObjIsNode(pNode) );
Abc_ObjForEachFanin( pNode, pNext, i )
Abc_BufCollectTfiCone_rec( pNext, vNodes );
Vec_IntPush( vNodes, Abc_ObjId(pNode) );
}
void Abc_BufCollectTfiCone( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Vec_IntClear( p->vTfCone );
Abc_NtkIncrementTravId( p->pNtk );
Abc_BufCollectTfiCone_rec( pObj, p->vTfCone );
}
void Abc_BufUpdateDep( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pNext;
int i, Delay;
// assert( Abc_ObjIsNode(pObj) );
Abc_BufCollectTfiCone( p, pObj );
Vec_IntReverseOrder( p->vTfCone );
Abc_NtkForEachObjVec( p->vTfCone, p->pNtk, pNext, i )
{
Delay = Abc_BufComputeDep( p, pNext );
p->DelayMax = Abc_MaxInt( p->DelayMax, Delay );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk, int FanMin, int FanMax, int fBufPis )
{
Buf_Man_t * p;
Abc_Obj_t * pObj;
Vec_Ptr_t * vNodes;
int i;
p = ABC_CALLOC( Buf_Man_t, 1 );
p->pNtk = pNtk;
p->nFanMin = FanMin;
p->nFanMax = FanMax;
p->fBufPis = fBufPis;
// allocate arrays
p->nObjStart = Abc_NtkObjNumMax(p->pNtk);
p->nObjAlloc = (6 * Abc_NtkObjNumMax(p->pNtk) / 3) + 100;
p->vOffsets = Vec_IntAlloc( p->nObjAlloc );
p->vArr = Vec_IntAlloc( p->nObjAlloc );
p->vDep = Vec_IntAlloc( p->nObjAlloc );
p->vCounts = Vec_FltAlloc( p->nObjAlloc );
p->vQue = Vec_QueAlloc( p->nObjAlloc );
Vec_IntFill( p->vOffsets, p->nObjAlloc, -ABC_INFINITY );
Vec_IntFill( p->vArr, p->nObjAlloc, 0 );
Vec_IntFill( p->vDep, p->nObjAlloc, 0 );
Vec_FltFill( p->vCounts, p->nObjAlloc, -ABC_INFINITY );
Vec_QueSetPriority( p->vQue, Vec_FltArrayP(p->vCounts) );
// collect edge delays
p->DelayInv = Mio_GateReadPinDelay( Mio_LibraryReadInv((Mio_Library_t *)pNtk->pManFunc), 0 );
p->vEdges = Vec_IntAlloc( 1000 );
// create edges
vNodes = Abc_NtkDfs( p->pNtk, 0 );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufCreateEdges( p, pObj );
Abc_NtkForEachCo( p->pNtk, pObj, i )
Abc_BufCreateEdges( p, pObj );
// derive delays
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufComputeArr( p, pObj );
Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufComputeDep( p, pObj );
Abc_BufUpdateGlobal( p );
// Abc_NtkForEachNode( p->pNtk, pObj, i )
// printf( "%4d : %4d %4d\n", i, Abc_BufNodeArr(p, pObj), Abc_BufNodeDep(p, pObj) );
// create fanout queue
// Abc_NtkForEachCi( p->pNtk, pObj, i )
// Abc_BufAddToQue( p, pObj );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Abc_BufAddToQue( p, pObj );
Vec_PtrFree( vNodes );
p->vDelays = Vec_IntAlloc( 100 );
p->vOrder = Vec_IntAlloc( 100 );
p->vNonCrit = Vec_IntAlloc( 100 );
p->vTfCone = Vec_IntAlloc( 100 );
p->vFanouts = Vec_PtrAlloc( 100 );
return p;
}
void Buf_ManStop( Buf_Man_t * p )
{
printf( "Sep = %d. Dup = %d. Br0 = %d. Br1 = %d. BrC = %d. ",
p->nSeparate, p->nDuplicate, p->nBranch0, p->nBranch1, p->nBranchCrit );
printf( "Orig = %d. Add = %d. Rem = %d.\n",
p->nObjStart, Abc_NtkObjNumMax(p->pNtk) - p->nObjStart,
p->nObjAlloc - Abc_NtkObjNumMax(p->pNtk) );
Vec_PtrFree( p->vFanouts );
Vec_IntFree( p->vTfCone );
Vec_IntFree( p->vNonCrit );
Vec_IntFree( p->vDelays );
Vec_IntFree( p->vOrder );
Vec_IntFree( p->vOffsets );
Vec_IntFree( p->vEdges );
Vec_IntFree( p->vArr );
Vec_IntFree( p->vDep );
// Vec_QueCheck( p->vQue );
Vec_QueFree( p->vQue );
Vec_FltFree( p->vCounts );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_BufSortByDelay( Buf_Man_t * p, int iPivot )
{
Abc_Obj_t * pObj, * pFanout;
int i, Slack, * pOrder;
Vec_IntClear( p->vDelays );
pObj = Abc_NtkObj( p->pNtk, iPivot );
Abc_ObjForEachFanout( pObj, pFanout, i )
{
Slack = Abc_BufEdgeSlack(p, pObj, pFanout);
assert( Slack >= 0 );
Vec_IntPush( p->vDelays, Abc_MaxInt(0, Slack) );
}
pOrder = Abc_QuickSortCost( Vec_IntArray(p->vDelays), Vec_IntSize(p->vDelays), 0 );
Vec_IntClear( p->vOrder );
for ( i = 0; i < Vec_IntSize(p->vDelays); i++ )
Vec_IntPush( p->vOrder, Abc_ObjId(Abc_ObjFanout(pObj, pOrder[i])) );
ABC_FREE( pOrder );
// for ( i = 0; i < Vec_IntSize(p->vDelays); i++ )
// printf( "%5d - %5d ", Vec_IntEntry(p->vOrder, i), Abc_BufEdgeSlack(p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(p->vOrder, i))) );
return p->vOrder;
}
void Abc_BufPrintOne( Buf_Man_t * p, int iPivot )
{
Abc_Obj_t * pObj, * pFanout;
Vec_Int_t * vOrder;
int i, Slack;
pObj = Abc_NtkObj( p->pNtk, iPivot );
vOrder = Abc_BufSortByDelay( p, iPivot );
printf( "Node %5d Fi = %d Fo = %3d Lev = %3d : {", iPivot, Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj), Abc_ObjLevel(pObj) );
Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i )
{
Slack = Abc_BufEdgeSlack( p, pObj, pFanout );
printf( " %d(%d)", Abc_ObjId(pFanout), Slack );
}
printf( " }\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_BufReplaceBufsByInvs( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj, * pInv;
int i, Counter = 0;
Abc_NtkForEachNode( pNtk, pObj, i )
{
if ( !Abc_NodeIsBuf(pObj) )
continue;
assert( pObj->pData == Mio_LibraryReadBuf((Mio_Library_t *)pNtk->pManFunc) );
pObj->pData = Mio_LibraryReadInv((Mio_Library_t *)pNtk->pManFunc);
pInv = Abc_NtkCreateNodeInv( pNtk, Abc_ObjFanin0(pObj) );
Abc_ObjPatchFanin( pObj, Abc_ObjFanin0(pObj), pInv );
Counter++;
}
printf( "Replaced %d buffers by invertor pairs.\n", Counter );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder )
{
Abc_Obj_t * pObj, * pFanout;
int i, Average = 0;
pObj = Abc_NtkObj( p->pNtk, iPivot );
Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i )
Average += Abc_BufEdgeSlack( p, pObj, pFanout );
return Average / Vec_IntSize(vOrder);
}
Abc_Obj_t * Abc_BufFindNonBuffDriver( Buf_Man_t * p, Abc_Obj_t * pObj )
{
return (Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj)) ? Abc_BufFindNonBuffDriver(p, Abc_ObjFanin0(pObj)) : pObj;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_BufCountNonCritical( Buf_Man_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i;
Vec_IntClear( p->vNonCrit );
Abc_ObjForEachFanout( pObj, pFanout, i )
if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 7*BUF_SCALE/2 )
Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) );
return Vec_IntSize(p->vNonCrit);
}
void Abc_BufPerformOne( Buf_Man_t * p, int iPivot, int fSkipDup, int fVerbose )
{
Abc_Obj_t * pObj, * pFanout;
int i, j, nCrit, nNonCrit;
// int DelayMax = p->DelayMax;
assert( Abc_NtkObjNumMax(p->pNtk) + 30 < p->nObjAlloc );
pObj = Abc_NtkObj( p->pNtk, iPivot );
// assert( Vec_FltEntry(p->vCounts, iPivot) == (float)Abc_ObjFanoutNum(pObj) );
nNonCrit = Abc_BufCountNonCritical( p, pObj );
nCrit = Abc_ObjFanoutNum(pObj) - nNonCrit;
if ( fVerbose )
{
//Abc_BufPrintOne( p, iPivot );
printf( "ObjId = %6d : %-10s FI = %d. FO =%4d. Crit =%4d. ",
Abc_ObjId(pObj), Mio_GateReadName((Mio_Gate_t *)pObj->pData), Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj), nCrit );
}
// consider three cases
if ( nCrit > 0 && nNonCrit > 1 )
{
// (1) both critical and non-critical are present - split them by adding buffer
Abc_Obj_t * pBuffer = Abc_NtkCreateNodeBuf( p->pNtk, pObj );
Abc_NtkForEachObjVec( p->vNonCrit, p->pNtk, pFanout, i )
Abc_ObjPatchFanin( pFanout, pObj, pBuffer );
// update timing
Abc_BufCreateEdges( p, pBuffer );
Abc_BufUpdateArr( p, pBuffer );
Abc_BufUpdateDep( p, pBuffer );
Abc_BufAddToQue( p, pObj );
Abc_BufAddToQue( p, pBuffer );
Abc_SclTimeIncUpdateLevel( pBuffer );
p->nSeparate++;
if ( fVerbose )
printf( "Adding buffer\n" );
}
else if ( !fSkipDup && nCrit > 0 && Abc_ObjIsNode(pObj) && Abc_ObjFanoutNum(pObj) > p->nFanMin )//&& Abc_ObjLevel(pObj) < 4 )//&& Abc_ObjFaninNum(pObj) < 2 )
{
// (2) only critical are present - duplicate
Abc_Obj_t * pClone = Abc_NtkDupObj( p->pNtk, pObj, 0 );
Abc_ObjForEachFanin( pObj, pFanout, i )
Abc_ObjAddFanin( pClone, pFanout );
Abc_NodeCollectFanouts( pObj, p->vFanouts );
Vec_PtrForEachEntryStop( Abc_Obj_t *, p->vFanouts, pFanout, i, Vec_PtrSize(p->vFanouts)/2 )
Abc_ObjPatchFanin( pFanout, pObj, pClone );
// update timing
Abc_BufCreateEdges( p, pClone );
Abc_BufSetNodeArr( p, pClone, Abc_BufNodeArr(p, pObj) );
Abc_BufUpdateDep( p, pObj );
Abc_BufUpdateDep( p, pClone );
Abc_BufAddToQue( p, pObj );
Abc_BufAddToQue( p, pClone );
Abc_ObjForEachFanin( pObj, pFanout, i )
Abc_BufAddToQue( p, pFanout );
Abc_SclTimeIncUpdateLevel( pClone );
p->nDuplicate++;
// printf( "Duplicating %s on level %d\n", Mio_GateReadName((Mio_Gate_t *)pObj->pData), Abc_ObjLevel(pObj) );
if ( fVerbose )
printf( "Duplicating node\n" );
}
else if ( (nCrit > 0 && Abc_ObjFanoutNum(pObj) > 8) || Abc_ObjFanoutNum(pObj) > p->nFanMax )
{
// (2) only critical or only non-critical - add buffer/inverter tree
int nDegree, n1Degree, n1Number, nFirst;
int iFirstBuf = Abc_NtkObjNumMax( p->pNtk );
// nDegree = Abc_MinInt( 3, (int)pow(Abc_ObjFanoutNum(pObj), 0.34) );
nDegree = Abc_MinInt( 10, (int)pow(Abc_ObjFanoutNum(pObj), 0.5) );
n1Degree = Abc_ObjFanoutNum(pObj) / nDegree + 1;
n1Number = Abc_ObjFanoutNum(pObj) % nDegree;
nFirst = n1Degree * n1Number;
p->nBranchCrit += (nCrit > 0);
// create inverters
Abc_NodeCollectFanouts( pObj, p->vFanouts );
if ( Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj) )
{
p->nBranch0++;
pObj->pData = Mio_LibraryReadInv((Mio_Library_t *)p->pNtk->pManFunc);
Abc_BufSetEdgeDelay( p, pObj, 0, BUF_SCALE );
assert( Abc_NodeIsInv(pObj) );
for ( i = 0; i < nDegree; i++ )
Abc_NtkCreateNodeInv( p->pNtk, pObj );
if ( fVerbose )
printf( "Adding %d inverters\n", nDegree );
}
else
{
p->nBranch1++;
for ( i = 0; i < nDegree; i++ )
Abc_NtkCreateNodeBuf( p->pNtk, pObj );
if ( fVerbose )
printf( "Adding %d buffers\n", nDegree );
}
// connect inverters
Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanouts, pFanout, i )
{
j = (i < nFirst) ? i/n1Degree : n1Number + ((i - nFirst)/(n1Degree - 1));
assert( j >= 0 && j < nDegree );
Abc_ObjPatchFanin( pFanout, pObj, Abc_NtkObj(p->pNtk, iFirstBuf + j) );
}
// update timing
for ( i = 0; i < nDegree; i++ )
Abc_BufCreateEdges( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
Abc_BufUpdateArr( p, pObj );
for ( i = 0; i < nDegree; i++ )
Abc_BufComputeDep( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
Abc_BufUpdateDep( p, pObj );
for ( i = 0; i < nDegree; i++ )
Abc_BufAddToQue( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) );
for ( i = 0; i < nDegree; i++ )
Abc_SclTimeIncUpdateLevel( Abc_NtkObj(p->pNtk, iFirstBuf + i) );
}
else
{
if ( fVerbose )
printf( "Doing nothing\n" );
}
// if ( DelayMax != p->DelayMax )
// printf( "%d (%.2f) ", p->DelayMax, 1.0 * p->DelayMax * p->DelayInv / BUF_SCALE );
}
Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int FanMin, int FanMax, int fBufPis, int fSkipDup, int fVerbose )
{
Abc_Ntk_t * pNew;
Buf_Man_t * p = Buf_ManStart( pNtk, FanMin, FanMax, fBufPis );
int i, Limit = ABC_INFINITY;
Abc_NtkLevel( pNtk );
// if ( Abc_NtkNodeNum(pNtk) < 1000 )
// fSkipDup = 1;
for ( i = 0; i < Limit && Vec_QueSize(p->vQue); i++ )
Abc_BufPerformOne( p, Vec_QuePop(p->vQue), fSkipDup, fVerbose );
Buf_ManStop( p );
// Abc_BufReplaceBufsByInvs( pNtk );
// duplicate network in topo order
pNew = Abc_NtkDupDfs( pNtk );
Abc_SclCheckNtk( pNew, fVerbose );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END