blob: 9c5027edfa670292d55d89000eccbbee415ce2ed [file] [log] [blame]
/**CFile****************************************************************
FileName [sclLib.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Standard-cell library representation.]
Synopsis [Simplified library representation for STA.]
Author [Alan Mishchenko, Niklas Een]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 24, 2012.]
Revision [$Id: sclLib.h,v 1.0 2012/08/24 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__map__scl__sclLib_h
#define ABC__map__scl__sclLib_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "misc/vec/vec.h"
ABC_NAMESPACE_HEADER_START
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
#define ABC_SCL_CUR_VERSION 8
typedef enum
{
sc_dir_NULL,
sc_dir_Input,
sc_dir_Output,
sc_dir_InOut,
sc_dir_Internal,
} SC_Dir;
typedef enum // -- timing sense, positive-, negative- or non-unate
{
sc_ts_NULL,
sc_ts_Pos,
sc_ts_Neg,
sc_ts_Non,
} SC_TSense;
typedef struct SC_Pair_ SC_Pair;
struct SC_Pair_
{
float rise;
float fall;
};
typedef struct SC_PairI_ SC_PairI;
struct SC_PairI_
{
int rise;
int fall;
};
typedef struct SC_SizePars_ SC_SizePars;
struct SC_SizePars_
{
int nIters;
int nIterNoChange;
int Window; // used for upsizing
int Ratio; // used for upsizing
int Notches;
int DelayUser;
int DelayGap;
int TimeOut;
int BuffTreeEst; // ratio for buffer tree estimation
int BypassFreq; // frequency to try bypassing
int fUseDept;
int fDumpStats;
int fUseWireLoads;
int fVerbose;
int fVeryVerbose;
};
typedef struct SC_BusPars_ SC_BusPars;
struct SC_BusPars_
{
int GainRatio; // target gain
int Slew; // target slew
int nDegree; // max branching factor
int fSizeOnly; // perform only sizing
int fAddBufs; // add buffers
int fBufPis; // use CI buffering
int fUseWireLoads; // wire loads
int fVerbose; // verbose
int fVeryVerbose; // verbose
};
////////////////////////////////////////////////////////////////////////
/// STRUCTURE DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct SC_WireLoad_ SC_WireLoad;
typedef struct SC_WireLoadSel_ SC_WireLoadSel;
typedef struct SC_TableTempl_ SC_TableTempl;
typedef struct SC_Surface_ SC_Surface;
typedef struct SC_Timing_ SC_Timing;
typedef struct SC_Timings_ SC_Timings;
typedef struct SC_Pin_ SC_Pin;
typedef struct SC_Cell_ SC_Cell;
typedef struct SC_Lib_ SC_Lib;
struct SC_WireLoad_
{
char * pName;
float cap; // }- multiply estimation in 'fanout_len[].snd' with this value
float slope; // used to extrapolate wireload for large fanout count
Vec_Int_t vFanout; // Vec<Pair<uint,float> > -- pairs '(#fanouts, est-wire-len)'
Vec_Flt_t vLen;
};
struct SC_WireLoadSel_
{
char * pName;
Vec_Flt_t vAreaFrom; // Vec<Trip<float,float,Str> > -- triplets '(from-area, upto-area, wire-load-model)'; range is [from, upto[
Vec_Flt_t vAreaTo;
Vec_Ptr_t vWireLoadModel;
};
struct SC_TableTempl_
{
char * pName;
Vec_Ptr_t vVars; // Vec<Str> -- name of variable (numbered from 0, not 1 as in the Liberty file)
Vec_Ptr_t vIndex; // Vec<Vec<float> > -- this is the point of measurement in table for the given variable
};
struct SC_Surface_
{
char * pName;
Vec_Flt_t vIndex0; // Vec<float> -- correspondes to "index_1" in the liberty file (for timing: slew)
Vec_Flt_t vIndex1; // Vec<float> -- correspondes to "index_2" in the liberty file (for timing: load)
Vec_Ptr_t vData; // Vec<Vec<float> > -- 'data[i0][i1]' gives value at '(index0[i0], index1[i1])'
Vec_Int_t vIndex0I; // Vec<float> -- correspondes to "index_1" in the liberty file (for timing: slew)
Vec_Int_t vIndex1I; // Vec<float> -- correspondes to "index_2" in the liberty file (for timing: load)
Vec_Ptr_t vDataI; // Vec<Vec<float> > -- 'data[i0][i1]' gives value at '(index0[i0], index1[i1])'
float approx[3][6];
};
struct SC_Timing_
{
char * related_pin; // -- related pin
SC_TSense tsense; // -- timing sense (positive_unate, negative_unate, non_unate)
char * when_text; // -- logic condition on inputs triggering this delay model for the output (currently not used)
SC_Surface pCellRise; // -- Used to compute pin-to-pin delay
SC_Surface pCellFall;
SC_Surface pRiseTrans; // -- Used to compute output slew
SC_Surface pFallTrans;
};
struct SC_Timings_
{
char * pName; // -- the 'related_pin' field
Vec_Ptr_t vTimings; // structures of type SC_Timing
};
struct SC_Pin_
{
char * pName;
SC_Dir dir;
float cap; // -- this value is used if 'rise_cap' and 'fall_cap' is missing (copied by 'postProcess()'). (not used)
float rise_cap; // }- used for input pins ('cap' too).
float fall_cap; // }
int rise_capI; // }- used for input pins ('cap' too).
int fall_capI; // }
float max_out_cap; // } (not used)
float max_out_slew; // }- used only for output pins (max values must not be exceeded or else mapping is illegal) (not used)
char * func_text; // }
Vec_Wrd_t vFunc; // }
Vec_Ptr_t vRTimings; // -- for output pins
// SC_Timing Timing; // -- for output pins
};
struct SC_Cell_
{
char * pName;
int Id;
int fSkip; // skip this cell during genlib computation
int seq; // -- set to TRUE by parser if a sequential element
int unsupp; // -- set to TRUE by parser if cell contains information we cannot handle
float area;
float leakage;
int areaI;
int leakageI;
int drive_strength; // -- some library files provide this field (currently unused, but may be a good hint for sizing) (not used)
Vec_Ptr_t vPins; // NamedSet<SC_Pin>
int n_inputs; // -- 'pins[0 .. n_inputs-1]' are input pins
int n_outputs; // -- 'pins[n_inputs .. n_inputs+n_outputs-1]' are output pins
SC_Cell * pNext; // same-functionality cells linked into a ring by area
SC_Cell * pPrev; // same-functionality cells linked into a ring by area
SC_Cell * pRepr; // representative of the class
SC_Cell * pAve; // average size cell of this class
int Order; // order of the gate in the list
int nGates; // the number of gates in the list
};
struct SC_Lib_
{
char * pName;
char * pFileName;
char * default_wire_load;
char * default_wire_load_sel;
float default_max_out_slew; // -- 'default_max_transition'; this is copied to each output pin where 'max_transition' is not defined (not used)
int unit_time; // -- Valid 9..12. Unit is '10^(-val)' seconds (e.g. 9=1ns, 10=100ps, 11=10ps, 12=1ps)
float unit_cap_fst; // -- First part is a multiplier, second either 12 or 15 for 'pf' or 'ff'.
int unit_cap_snd;
Vec_Ptr_t vWireLoads; // NamedSet<SC_WireLoad>
Vec_Ptr_t vWireLoadSels; // NamedSet<SC_WireLoadSel>
Vec_Ptr_t vTempls; // NamedSet<SC_TableTempl>
Vec_Ptr_t vCells; // NamedSet<SC_Cell>
Vec_Ptr_t vCellClasses; // NamedSet<SC_Cell>
int * pBins; // hashing gateName -> gateId
int nBins;
};
////////////////////////////////////////////////////////////////////////
/// GLOBAL VARIABLES ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
static inline void SC_PairClean( SC_Pair * d ) { d->rise = d->fall = 0; }
static inline float SC_PairMax( SC_Pair * d ) { return Abc_MaxFloat(d->rise, d->fall); }
static inline float SC_PairMin( SC_Pair * d ) { return Abc_MinFloat(d->rise, d->fall); }
static inline float SC_PairAve( SC_Pair * d ) { return 0.5 * d->rise + 0.5 * d->fall; }
static inline void SC_PairDup( SC_Pair * d, SC_Pair * s ) { *d = *s; }
static inline void SC_PairMove( SC_Pair * d, SC_Pair * s ) { *d = *s; s->rise = s->fall = 0; }
static inline void SC_PairAdd( SC_Pair * d, SC_Pair * s ) { d->rise += s->rise; d->fall += s->fall;}
static inline int SC_PairEqual( SC_Pair * d, SC_Pair * s ) { return d->rise == s->rise && d->fall == s->fall; }
static inline int SC_PairEqualE( SC_Pair * d, SC_Pair * s, float E ) { return d->rise - s->rise < E && s->rise - d->rise < E && d->fall - s->fall < E && s->fall - d->fall < E; }
static inline int SC_LibCellNum( SC_Lib * p ) { return Vec_PtrSize(&p->vCells); }
static inline SC_Cell * SC_LibCell( SC_Lib * p, int i ) { return (SC_Cell *)Vec_PtrEntry(&p->vCells, i); }
static inline SC_Pin * SC_CellPin( SC_Cell * p, int i ) { return (SC_Pin *)Vec_PtrEntry(&p->vPins, i); }
static inline Vec_Wrd_t * SC_CellFunc( SC_Cell * p ) { return &SC_CellPin(p, p->n_inputs)->vFunc; }
static inline float SC_CellPinCap( SC_Cell * p, int i ) { return 0.5 * SC_CellPin(p, i)->rise_cap + 0.5 * SC_CellPin(p, i)->fall_cap; }
static inline float SC_CellPinCapAve( SC_Cell * p ) { int i; float c = 0; for (i = 0; i < p->n_inputs; i++) c += SC_CellPinCap(p, i); return c / Abc_MaxInt(1, p->n_inputs); }
static inline char * SC_CellPinOutFunc( SC_Cell * p, int i ) { return SC_CellPin(p, p->n_inputs + i)->func_text; }
static inline char * SC_CellPinName( SC_Cell * p, int i ) { return SC_CellPin(p, i)->pName; }
#define SC_LibForEachCell( p, pCell, i ) Vec_PtrForEachEntry( SC_Cell *, &p->vCells, pCell, i )
#define SC_LibForEachCellClass( p, pCell, i ) Vec_PtrForEachEntry( SC_Cell *, &p->vCellClasses, pCell, i )
#define SC_LibForEachWireLoad( p, pWL, i ) Vec_PtrForEachEntry( SC_WireLoad *, &p->vWireLoads, pWL, i )
#define SC_LibForEachWireLoadSel( p, pWLS, i ) Vec_PtrForEachEntry( SC_WireLoadSel *, &p->vWireLoadSels, pWLS, i )
#define SC_LibForEachTempl( p, pTempl, i ) Vec_PtrForEachEntry( SC_TableTempl *, &p->vTempls, pTempl, i )
#define SC_CellForEachPin( p, pPin, i ) Vec_PtrForEachEntry( SC_Pin *, &p->vPins, pPin, i )
#define SC_CellForEachPinIn( p, pPin, i ) Vec_PtrForEachEntryStop( SC_Pin *, &p->vPins, pPin, i, p->n_inputs )
#define SC_CellForEachPinOut( p, pPin, i ) Vec_PtrForEachEntryStart( SC_Pin *, &p->vPins, pPin, i, p->n_inputs )
#define SC_RingForEachCell( pRing, pCell, i ) for ( i = 0, pCell = pRing; i == 0 || pCell != pRing; pCell = pCell->pNext, i++ )
#define SC_RingForEachCellRev( pRing, pCell, i ) for ( i = 0, pCell = pRing; i == 0 || pCell != pRing; pCell = pCell->pPrev, i++ )
#define SC_PinForEachRTiming( p, pRTime, i ) Vec_PtrForEachEntry( SC_Timings *, &p->vRTimings, pRTime, i )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Constructors of the library data-structures.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline SC_WireLoad * Abc_SclWireLoadAlloc()
{
SC_WireLoad * p;
p = ABC_CALLOC( SC_WireLoad, 1 );
return p;
}
static inline SC_WireLoadSel * Abc_SclWireLoadSelAlloc()
{
SC_WireLoadSel * p;
p = ABC_CALLOC( SC_WireLoadSel, 1 );
return p;
}
static inline SC_TableTempl * Abc_SclTableTemplAlloc()
{
SC_TableTempl * p;
p = ABC_CALLOC( SC_TableTempl, 1 );
return p;
}
static inline SC_Surface * Abc_SclSurfaceAlloc()
{
SC_Surface * p;
p = ABC_CALLOC( SC_Surface, 1 );
return p;
}
static inline SC_Timing * Abc_SclTimingAlloc()
{
SC_Timing * p;
p = ABC_CALLOC( SC_Timing, 1 );
return p;
}
static inline SC_Timings * Abc_SclTimingsAlloc()
{
SC_Timings * p;
p = ABC_CALLOC( SC_Timings, 1 );
return p;
}
static inline SC_Pin * Abc_SclPinAlloc()
{
SC_Pin * p;
p = ABC_CALLOC( SC_Pin, 1 );
p->max_out_slew = -1;
return p;
}
static inline SC_Cell * Abc_SclCellAlloc()
{
SC_Cell * p;
p = ABC_CALLOC( SC_Cell, 1 );
return p;
}
static inline SC_Lib * Abc_SclLibAlloc()
{
SC_Lib * p;
p = ABC_CALLOC( SC_Lib, 1 );
p->default_max_out_slew = -1;
p->unit_time = 9;
p->unit_cap_fst = 1;
p->unit_cap_snd = 12;
return p;
}
/**Function*************************************************************
Synopsis [Destructors of the library data-structures.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Abc_SclWireLoadFree( SC_WireLoad * p )
{
Vec_IntErase( &p->vFanout );
Vec_FltErase( &p->vLen );
ABC_FREE( p->pName );
ABC_FREE( p );
}
static inline void Abc_SclWireLoadSelFree( SC_WireLoadSel * p )
{
Vec_FltErase( &p->vAreaFrom );
Vec_FltErase( &p->vAreaTo );
Vec_PtrFreeData( &p->vWireLoadModel );
Vec_PtrErase( &p->vWireLoadModel );
ABC_FREE( p->pName );
ABC_FREE( p );
}
static inline void Abc_SclTableTemplFree( SC_TableTempl * p )
{
Vec_PtrFreeData( &p->vVars );
Vec_PtrErase( &p->vVars );
Vec_VecErase( (Vec_Vec_t *)&p->vIndex );
ABC_FREE( p->pName );
ABC_FREE( p );
}
static inline void Abc_SclSurfaceFree( SC_Surface * p )
{
Vec_FltErase( &p->vIndex0 );
Vec_FltErase( &p->vIndex1 );
Vec_IntErase( &p->vIndex0I );
Vec_IntErase( &p->vIndex1I );
Vec_VecErase( (Vec_Vec_t *)&p->vData );
Vec_VecErase( (Vec_Vec_t *)&p->vDataI );
ABC_FREE( p->pName );
// ABC_FREE( p );
}
static inline void Abc_SclTimingFree( SC_Timing * p )
{
Abc_SclSurfaceFree( &p->pCellRise );
Abc_SclSurfaceFree( &p->pCellFall );
Abc_SclSurfaceFree( &p->pRiseTrans );
Abc_SclSurfaceFree( &p->pFallTrans );
ABC_FREE( p->related_pin );
ABC_FREE( p->when_text );
ABC_FREE( p );
}
static inline void Abc_SclTimingsFree( SC_Timings * p )
{
SC_Timing * pTemp;
int i;
Vec_PtrForEachEntry( SC_Timing *, &p->vTimings, pTemp, i )
Abc_SclTimingFree( pTemp );
Vec_PtrErase( &p->vTimings );
ABC_FREE( p->pName );
ABC_FREE( p );
}
static inline void Abc_SclPinFree( SC_Pin * p )
{
SC_Timings * pTemp;
int i;
SC_PinForEachRTiming( p, pTemp, i )
Abc_SclTimingsFree( pTemp );
Vec_PtrErase( &p->vRTimings );
Vec_WrdErase( &p->vFunc );
ABC_FREE( p->func_text );
ABC_FREE( p->pName );
ABC_FREE( p );
}
static inline void Abc_SclCellFree( SC_Cell * p )
{
SC_Pin * pTemp;
int i;
SC_CellForEachPin( p, pTemp, i )
Abc_SclPinFree( pTemp );
Vec_PtrErase( &p->vPins );
ABC_FREE( p->pName );
ABC_FREE( p );
}
static inline void Abc_SclLibFree( SC_Lib * p )
{
SC_WireLoad * pWL;
SC_WireLoadSel * pWLS;
SC_TableTempl * pTempl;
SC_Cell * pCell;
int i;
SC_LibForEachWireLoad( p, pWL, i )
Abc_SclWireLoadFree( pWL );
Vec_PtrErase( &p->vWireLoads );
SC_LibForEachWireLoadSel( p, pWLS, i )
Abc_SclWireLoadSelFree( pWLS );
Vec_PtrErase( &p->vWireLoadSels );
SC_LibForEachTempl( p, pTempl, i )
Abc_SclTableTemplFree( pTempl );
Vec_PtrErase( &p->vTempls );
SC_LibForEachCell( p, pCell, i )
Abc_SclCellFree( pCell );
Vec_PtrErase( &p->vCells );
Vec_PtrErase( &p->vCellClasses );
ABC_FREE( p->pName );
ABC_FREE( p->pFileName );
ABC_FREE( p->default_wire_load );
ABC_FREE( p->default_wire_load_sel );
ABC_FREE( p->pBins );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Lookup table delay computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline float Scl_LibLookup( SC_Surface * p, float slew, float load )
{
float * pIndex0, * pIndex1, * pDataS, * pDataS1;
float sfrac, lfrac, p0, p1;
int s, l;
// handle constant table
if ( Vec_FltSize(&p->vIndex0) == 1 && Vec_FltSize(&p->vIndex1) == 1 )
{
Vec_Flt_t * vTemp = (Vec_Flt_t *)Vec_PtrEntry(&p->vData, 0);
assert( Vec_PtrSize(&p->vData) == 1 );
assert( Vec_FltSize(vTemp) == 1 );
return Vec_FltEntry(vTemp, 0);
}
// Find closest sample points in surface:
pIndex0 = Vec_FltArray(&p->vIndex0);
for ( s = 1; s < Vec_FltSize(&p->vIndex0)-1; s++ )
if ( pIndex0[s] > slew )
break;
s--;
pIndex1 = Vec_FltArray(&p->vIndex1);
for ( l = 1; l < Vec_FltSize(&p->vIndex1)-1; l++ )
if ( pIndex1[l] > load )
break;
l--;
// Interpolate (or extrapolate) function value from sample points:
sfrac = (slew - pIndex0[s]) / (pIndex0[s+1] - pIndex0[s]);
lfrac = (load - pIndex1[l]) / (pIndex1[l+1] - pIndex1[l]);
pDataS = Vec_FltArray( (Vec_Flt_t *)Vec_PtrEntry(&p->vData, s) );
pDataS1 = Vec_FltArray( (Vec_Flt_t *)Vec_PtrEntry(&p->vData, s+1) );
p0 = pDataS [l] + lfrac * (pDataS [l+1] - pDataS [l]);
p1 = pDataS1[l] + lfrac * (pDataS1[l+1] - pDataS1[l]);
return p0 + sfrac * (p1 - p0); // <<== multiply result with K factor here
}
static inline void Scl_LibPinArrival( SC_Timing * pTime, SC_Pair * pArrIn, SC_Pair * pSlewIn, SC_Pair * pLoad, SC_Pair * pArrOut, SC_Pair * pSlewOut )
{
if (pTime->tsense == sc_ts_Pos || pTime->tsense == sc_ts_Non)
{
pArrOut->rise = Abc_MaxFloat( pArrOut->rise, pArrIn->rise + Scl_LibLookup(&pTime->pCellRise, pSlewIn->rise, pLoad->rise) );
pArrOut->fall = Abc_MaxFloat( pArrOut->fall, pArrIn->fall + Scl_LibLookup(&pTime->pCellFall, pSlewIn->fall, pLoad->fall) );
pSlewOut->rise = Abc_MaxFloat( pSlewOut->rise, Scl_LibLookup(&pTime->pRiseTrans, pSlewIn->rise, pLoad->rise) );
pSlewOut->fall = Abc_MaxFloat( pSlewOut->fall, Scl_LibLookup(&pTime->pFallTrans, pSlewIn->fall, pLoad->fall) );
}
if (pTime->tsense == sc_ts_Neg || pTime->tsense == sc_ts_Non)
{
pArrOut->rise = Abc_MaxFloat( pArrOut->rise, pArrIn->fall + Scl_LibLookup(&pTime->pCellRise, pSlewIn->fall, pLoad->rise) );
pArrOut->fall = Abc_MaxFloat( pArrOut->fall, pArrIn->rise + Scl_LibLookup(&pTime->pCellFall, pSlewIn->rise, pLoad->fall) );
pSlewOut->rise = Abc_MaxFloat( pSlewOut->rise, Scl_LibLookup(&pTime->pRiseTrans, pSlewIn->fall, pLoad->rise) );
pSlewOut->fall = Abc_MaxFloat( pSlewOut->fall, Scl_LibLookup(&pTime->pFallTrans, pSlewIn->rise, pLoad->fall) );
}
}
static inline void Scl_LibPinDeparture( SC_Timing * pTime, SC_Pair * pDepIn, SC_Pair * pSlewIn, SC_Pair * pLoad, SC_Pair * pDepOut )
{
if (pTime->tsense == sc_ts_Pos || pTime->tsense == sc_ts_Non)
{
pDepIn->rise = Abc_MaxFloat( pDepIn->rise, pDepOut->rise + Scl_LibLookup(&pTime->pCellRise, pSlewIn->rise, pLoad->rise) );
pDepIn->fall = Abc_MaxFloat( pDepIn->fall, pDepOut->fall + Scl_LibLookup(&pTime->pCellFall, pSlewIn->fall, pLoad->fall) );
}
if (pTime->tsense == sc_ts_Neg || pTime->tsense == sc_ts_Non)
{
pDepIn->fall = Abc_MaxFloat( pDepIn->fall, pDepOut->rise + Scl_LibLookup(&pTime->pCellRise, pSlewIn->fall, pLoad->rise) );
pDepIn->rise = Abc_MaxFloat( pDepIn->rise, pDepOut->fall + Scl_LibLookup(&pTime->pCellFall, pSlewIn->rise, pLoad->fall) );
}
}
/**Function*************************************************************
Synopsis [Lookup table delay computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Scl_LibLookupI( SC_Surface * p, int slew, int load )
{
int * pIndex0, * pIndex1, * pDataS, * pDataS1;
int p0, p1, s, l;
iword lFrac0, lFrac1, sFrac;
// handle constant table
if ( Vec_IntSize(&p->vIndex0I) == 1 && Vec_IntSize(&p->vIndex1I) == 1 )
{
Vec_Int_t * vTemp = (Vec_Int_t *)Vec_PtrEntry(&p->vDataI, 0);
assert( Vec_PtrSize(&p->vDataI) == 1 );
assert( Vec_IntSize(vTemp) == 1 );
return Vec_IntEntry(vTemp, 0);
}
// Find closest sample points in surface:
pIndex0 = Vec_IntArray(&p->vIndex0I);
for ( s = 1; s < Vec_IntSize(&p->vIndex0I)-1; s++ )
if ( pIndex0[s] > slew )
break;
s--;
pIndex1 = Vec_IntArray(&p->vIndex1I);
for ( l = 1; l < Vec_IntSize(&p->vIndex1I)-1; l++ )
if ( pIndex1[l] > load )
break;
l--;
pDataS = Vec_IntArray( (Vec_Int_t *)Vec_PtrEntry(&p->vDataI, s) );
pDataS1 = Vec_IntArray( (Vec_Int_t *)Vec_PtrEntry(&p->vDataI, s+1) );
// Interpolate (or extrapolate) function value from sample points:
// lfrac = (load - pIndex1[l]) / (pIndex1[l+1] - pIndex1[l]);
// sfrac = (slew - pIndex0[s]) / (pIndex0[s+1] - pIndex0[s]);
lFrac0 = (iword)(pDataS [l+1] - pDataS [l]) * (iword)(load - pIndex1[l]) / (iword)(pIndex1[l+1] - pIndex1[l]);
lFrac1 = (iword)(pDataS1[l+1] - pDataS1[l]) * (iword)(load - pIndex1[l]) / (iword)(pIndex1[l+1] - pIndex1[l]);
// p0 = pDataS [l] + lfrac * (pDataS [l+1] - pDataS [l]);
// p1 = pDataS1[l] + lfrac * (pDataS1[l+1] - pDataS1[l]);
p0 = pDataS [l] + (int)lFrac0;
p1 = pDataS1[l] + (int)lFrac1;
sFrac = (iword)(p1 - p0) * (iword)(slew - pIndex0[s]) / (iword)(pIndex0[s+1] - pIndex0[s]);
// return p0 + sfrac * (p1 - p0);
return p0 + (int)sFrac;
}
static inline void Scl_LibPinArrivalI( SC_Timing * pTime, SC_PairI * pArrIn, SC_PairI * pSlewIn, SC_PairI * pLoad, SC_PairI * pArrOut, SC_PairI * pSlewOut, int * pArray )
{
if (pTime->tsense == sc_ts_Pos || pTime->tsense == sc_ts_Non)
{
pArrOut->rise = Abc_MaxInt( pArrOut->rise, pArrIn->rise + (pArray[0] = Scl_LibLookupI(&pTime->pCellRise, pSlewIn->rise, pLoad->rise)) );
pArrOut->fall = Abc_MaxInt( pArrOut->fall, pArrIn->fall + (pArray[1] = Scl_LibLookupI(&pTime->pCellFall, pSlewIn->fall, pLoad->fall)) );
pSlewOut->rise = Abc_MaxInt( pSlewOut->rise, Scl_LibLookupI(&pTime->pRiseTrans, pSlewIn->rise, pLoad->rise) );
pSlewOut->fall = Abc_MaxInt( pSlewOut->fall, Scl_LibLookupI(&pTime->pFallTrans, pSlewIn->fall, pLoad->fall) );
}
if (pTime->tsense == sc_ts_Neg || pTime->tsense == sc_ts_Non)
{
pArrOut->rise = Abc_MaxInt( pArrOut->rise, pArrIn->fall + (pArray[2] = Scl_LibLookupI(&pTime->pCellRise, pSlewIn->fall, pLoad->rise)) );
pArrOut->fall = Abc_MaxInt( pArrOut->fall, pArrIn->rise + (pArray[3] = Scl_LibLookupI(&pTime->pCellFall, pSlewIn->rise, pLoad->fall)) );
pSlewOut->rise = Abc_MaxInt( pSlewOut->rise, Scl_LibLookupI(&pTime->pRiseTrans, pSlewIn->fall, pLoad->rise) );
pSlewOut->fall = Abc_MaxInt( pSlewOut->fall, Scl_LibLookupI(&pTime->pFallTrans, pSlewIn->rise, pLoad->fall) );
}
}
static inline void Scl_LibPinRequiredI( SC_Timing * pTime, SC_PairI * pReqIn, SC_PairI * pReqOut, int * pArray )
{
if (pTime->tsense == sc_ts_Pos || pTime->tsense == sc_ts_Non)
{
pReqIn->rise = Abc_MinInt( pReqIn->rise, pReqOut->rise - pArray[0] );
pReqIn->fall = Abc_MinInt( pReqIn->fall, pReqOut->fall - pArray[1] );
}
if (pTime->tsense == sc_ts_Neg || pTime->tsense == sc_ts_Non)
{
pReqIn->fall = Abc_MinInt( pReqIn->fall, pReqOut->rise - pArray[2] );
pReqIn->rise = Abc_MinInt( pReqIn->rise, pReqOut->fall - pArray[3] );
}
}
/**Function*************************************************************
Synopsis [Compute one timing edge.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline SC_Timing * Scl_CellPinTime( SC_Cell * pCell, int iPin )
{
SC_Pin * pPin;
SC_Timings * pRTime;
assert( iPin >= 0 && iPin < pCell->n_inputs );
pPin = SC_CellPin( pCell, pCell->n_inputs );
assert( Vec_PtrSize(&pPin->vRTimings) == pCell->n_inputs );
pRTime = (SC_Timings *)Vec_PtrEntry( &pPin->vRTimings, iPin );
if ( Vec_PtrSize(&pRTime->vTimings) == 0 )
return NULL;
assert( Vec_PtrSize(&pRTime->vTimings) == 1 );
return (SC_Timing *)Vec_PtrEntry( &pRTime->vTimings, 0 );
}
static inline float Scl_LibPinArrivalEstimate( SC_Cell * pCell, int iPin, float Slew, float Load )
{
SC_Pair LoadIn = { Load, Load };
SC_Pair ArrIn = { 0.0, 0.0 };
SC_Pair ArrOut = { 0.0, 0.0 };
SC_Pair SlewIn = { 0.0, 0.0 };
SC_Pair SlewOut = { 0.0, 0.0 };
// Vec_Flt_t * vIndex0 = pTime->pCellRise->vIndex0; // slew
// SlewIn.fall = SlewIn.rise = Vec_FltEntry( vIndex0, Vec_FltSize(vIndex0)/2 );
SlewIn.fall = SlewIn.rise = Slew;
Scl_LibPinArrival( Scl_CellPinTime(pCell, iPin), &ArrIn, &SlewIn, &LoadIn, &ArrOut, &SlewOut );
return 0.5 * ArrOut.fall + 0.5 * ArrOut.rise;
}
static inline void Scl_LibHandleInputDriver( SC_Cell * pCell, SC_Pair * pLoadIn, SC_Pair * pArrOut, SC_Pair * pSlewOut )
{
SC_Pair LoadIn = { 0.0, 0.0 }; // zero input load
SC_Pair ArrIn = { 0.0, 0.0 }; // zero input time
SC_Pair SlewIn = { 0.0, 0.0 }; // zero input slew
SC_Pair ArrOut0 = { 0.0, 0.0 }; // output time under zero load
SC_Pair ArrOut1 = { 0.0, 0.0 }; // output time under given load
SC_Pair SlewOut = { 0.0, 0.0 }; // output slew under zero load
pSlewOut->fall = pSlewOut->rise = 0;
assert( pCell->n_inputs == 1 );
Scl_LibPinArrival( Scl_CellPinTime(pCell, 0), &ArrIn, &SlewIn, &LoadIn, &ArrOut0, &SlewOut );
Scl_LibPinArrival( Scl_CellPinTime(pCell, 0), &ArrIn, &SlewIn, pLoadIn, &ArrOut1, pSlewOut );
pArrOut->fall = ArrOut1.fall - ArrOut0.fall;
pArrOut->rise = ArrOut1.rise - ArrOut0.rise;
}
/**Function*************************************************************
Synopsis [Compute one timing edge.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Scl_LibPinArrivalEstimateI( SC_Cell * pCell, int iPin, int Slew, int Load )
{
int Arrray[4];
SC_PairI LoadIn = { Load, Load };
SC_PairI ArrIn = { 0, 0 };
SC_PairI ArrOut = { 0, 0 };
SC_PairI SlewIn = { 0, 0 };
SC_PairI SlewOut = { 0, 0 };
// Vec_Flt_t * vIndex0 = pTime->pCellRise->vIndex0; // slew
// SlewIn.fall = SlewIn.rise = Vec_FltEntry( vIndex0, Vec_FltSize(vIndex0)/2 );
SlewIn.fall = SlewIn.rise = Slew;
Scl_LibPinArrivalI( Scl_CellPinTime(pCell, iPin), &ArrIn, &SlewIn, &LoadIn, &ArrOut, &SlewOut, Arrray );
return (ArrOut.fall + ArrOut.rise) >> 1;
}
static inline void Scl_LibHandleInputDriver2( SC_Cell * pCell, SC_PairI * pLoadIn, SC_PairI * pArrOut, SC_PairI * pSlewOut )
{
int Arrray[4];
SC_PairI LoadIn = { 0, 0 }; // zero input load
SC_PairI ArrIn = { 0, 0 }; // zero input time
SC_PairI SlewIn = { 0, 0 }; // zero input slew
SC_PairI ArrOut0 = { 0, 0 }; // output time under zero load
SC_PairI ArrOut1 = { 0, 0 }; // output time under given load
SC_PairI SlewOut = { 0, 0 }; // output slew under zero load
pSlewOut->fall = pSlewOut->rise = 0;
assert( pCell->n_inputs == 1 );
Scl_LibPinArrivalI( Scl_CellPinTime(pCell, 0), &ArrIn, &SlewIn, &LoadIn, &ArrOut0, &SlewOut, Arrray );
Scl_LibPinArrivalI( Scl_CellPinTime(pCell, 0), &ArrIn, &SlewIn, pLoadIn, &ArrOut1, pSlewOut, Arrray );
pArrOut->fall = ArrOut1.fall - ArrOut0.fall;
pArrOut->rise = ArrOut1.rise - ArrOut0.rise;
}
/*=== sclLiberty.c ===============================================================*/
extern SC_Lib * Abc_SclReadLiberty( char * pFileName, int fVerbose, int fVeryVerbose );
/*=== sclLibScl.c ===============================================================*/
extern SC_Lib * Abc_SclReadFromGenlib( void * pLib );
extern SC_Lib * Abc_SclReadFromStr( Vec_Str_t * vOut );
extern SC_Lib * Abc_SclReadFromFile( char * pFileName );
extern void Abc_SclWriteScl( char * pFileName, SC_Lib * p );
extern void Abc_SclWriteLiberty( char * pFileName, SC_Lib * p );
/*=== sclLibUtil.c ===============================================================*/
extern void Abc_SclHashCells( SC_Lib * p );
extern int Abc_SclCellFind( SC_Lib * p, char * pName );
extern int Abc_SclClassCellNum( SC_Cell * pClass );
extern void Abc_SclShortNames( SC_Lib * p );
extern int Abc_SclLibClassNum( SC_Lib * pLib );
extern void Abc_SclLinkCells( SC_Lib * p );
extern void Abc_SclPrintCells( SC_Lib * p, float Slew, float Gain, int fInvOnly, int fShort );
extern void Abc_SclConvertLeakageIntoArea( SC_Lib * p, float A, float B );
extern void Abc_SclLibNormalize( SC_Lib * p );
extern SC_Cell * Abc_SclFindInvertor( SC_Lib * p, int fFindBuff );
extern SC_Cell * Abc_SclFindSmallestGate( SC_Cell * p, float CinMin );
extern SC_WireLoad * Abc_SclFindWireLoadModel( SC_Lib * p, float Area );
extern SC_WireLoad * Abc_SclFetchWireLoadModel( SC_Lib * p, char * pName );
extern int Abc_SclHasDelayInfo( void * pScl );
extern float Abc_SclComputeAverageSlew( SC_Lib * p );
extern void Abc_SclDumpGenlib( char * pFileName, SC_Lib * p, float Slew, float Gain, int nGatesMin );
extern void Abc_SclInstallGenlib( void * pScl, float Slew, float Gain, int nGatesMin );
ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////