blob: ebd9cbc7118d5f22ea8f1c164be68ceb33174c84 [file] [log] [blame]
/**CFile****************************************************************
FileName [sclLibUtil.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Standard-cell library representation.]
Synopsis [Various library utilities.]
Author [Alan Mishchenko, Niklas Een]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 24, 2012.]
Revision [$Id: sclLibUtil.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sclLib.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "bool/kit/kit.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Reading library from file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static unsigned Abc_SclHashString( char * pName, int TableSize )
{
static int s_Primes[10] = { 1291, 1699, 2357, 4177, 5147, 5647, 6343, 7103, 7873, 8147 };
unsigned i, Key = 0;
for ( i = 0; pName[i] != '\0'; i++ )
Key += s_Primes[i%10]*pName[i]*pName[i];
return Key % TableSize;
}
int * Abc_SclHashLookup( SC_Lib * p, char * pName )
{
int i;
for ( i = Abc_SclHashString(pName, p->nBins); i < p->nBins; i = (i + 1) % p->nBins )
if ( p->pBins[i] == -1 || !strcmp(pName, SC_LibCell(p, p->pBins[i])->pName) )
return p->pBins + i;
assert( 0 );
return NULL;
}
void Abc_SclHashCells( SC_Lib * p )
{
SC_Cell * pCell;
int i, * pPlace;
assert( p->nBins == 0 );
p->nBins = Abc_PrimeCudd( 5 * SC_LibCellNum(p) );
p->pBins = ABC_FALLOC( int, p->nBins );
SC_LibForEachCell( p, pCell, i )
{
pPlace = Abc_SclHashLookup( p, pCell->pName );
assert( *pPlace == -1 );
*pPlace = i;
}
}
int Abc_SclCellFind( SC_Lib * p, char * pName )
{
int *pPlace = Abc_SclHashLookup( p, pName );
return pPlace ? *pPlace : -1;
}
int Abc_SclClassCellNum( SC_Cell * pClass )
{
SC_Cell * pCell;
int i, Count = 0;
SC_RingForEachCell( pClass, pCell, i )
if ( !pCell->fSkip )
Count++;
return Count;
}
int Abc_SclLibClassNum( SC_Lib * pLib )
{
SC_Cell * pRepr;
int i, Count = 0;
SC_LibForEachCellClass( pLib, pRepr, i )
Count++;
return Count;
}
/**Function*************************************************************
Synopsis [Change cell names and pin names.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Abc_SclIsChar( char c )
{
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_';
}
static inline int Abc_SclIsName( char c )
{
return Abc_SclIsChar(c) || (c >= '0' && c <= '9');
}
static inline char * Abc_SclFindLimit( char * pName )
{
assert( Abc_SclIsChar(*pName) );
while ( Abc_SclIsName(*pName) )
pName++;
return pName;
}
static inline int Abc_SclAreEqual( char * pBase, char * pName, char * pLimit )
{
return !strncmp( pBase, pName, pLimit - pName );
}
void Abc_SclShortFormula( SC_Cell * pCell, char * pForm, char * pBuffer )
{
SC_Pin * pPin; int i;
char * pTemp, * pLimit;
for ( pTemp = pForm; *pTemp; )
{
if ( !Abc_SclIsChar(*pTemp) )
{
*pBuffer++ = *pTemp++;
continue;
}
pLimit = Abc_SclFindLimit( pTemp );
SC_CellForEachPinIn( pCell, pPin, i )
if ( Abc_SclAreEqual( pPin->pName, pTemp, pLimit ) )
{
*pBuffer++ = 'a' + i;
break;
}
assert( i < pCell->n_inputs );
pTemp = pLimit;
}
*pBuffer++ = 0;
}
static inline void Abc_SclTimingUpdate( SC_Cell * pCell, SC_Timing * p, char * Buffer )
{
SC_Pin * pPin; int i;
SC_CellForEachPinIn( pCell, pPin, i )
if ( p->related_pin && !strcmp(p->related_pin, pPin->pName) )
{
ABC_FREE( p->related_pin );
sprintf( Buffer, "%c", 'a'+i );
p->related_pin = Abc_UtilStrsav( Buffer );
}
}
static inline void Abc_SclTimingsUpdate( SC_Cell * pCell, SC_Timings * p, char * Buffer )
{
SC_Timing * pTemp; int i;
Vec_PtrForEachEntry( SC_Timing *, &p->vTimings, pTemp, i )
Abc_SclTimingUpdate( pCell, pTemp, Buffer );
}
static inline void Abc_SclPinUpdate( SC_Cell * pCell, SC_Pin * p, char * Buffer )
{
// update pin names in the timing
SC_Timings * pTemp; int i;
SC_PinForEachRTiming( p, pTemp, i )
{
SC_Pin * pPin; int k;
Abc_SclTimingsUpdate( pCell, pTemp, Buffer );
SC_CellForEachPinIn( pCell, pPin, k )
if ( pTemp->pName && !strcmp(pTemp->pName, pPin->pName) )
{
ABC_FREE( pTemp->pName );
sprintf( Buffer, "%c", 'a'+k );
pTemp->pName = Abc_UtilStrsav( Buffer );
}
}
// update formula
Abc_SclShortFormula( pCell, p->func_text, Buffer );
ABC_FREE( p->func_text );
p->func_text = Abc_UtilStrsav( Buffer );
}
void Abc_SclShortNames( SC_Lib * p )
{
char Buffer[10000];
SC_Cell * pClass, * pCell; SC_Pin * pPin;
int i, k, n, nClasses = Abc_SclLibClassNum(p);
int nDigits = Abc_Base10Log( nClasses );
// itereate through classes
SC_LibForEachCellClass( p, pClass, i )
{
int nDigits2 = Abc_Base10Log( Abc_SclClassCellNum(pClass) );
SC_RingForEachCell( pClass, pCell, k )
{
ABC_FREE( pCell->pName );
sprintf( Buffer, "g%0*d_%0*d", nDigits, i, nDigits2, k );
pCell->pName = Abc_UtilStrsav( Buffer );
// formula
SC_CellForEachPinOut( pCell, pPin, n )
Abc_SclPinUpdate( pCell, pPin, Buffer );
// pin names
SC_CellForEachPinIn( pCell, pPin, n )
{
ABC_FREE( pPin->pName );
sprintf( Buffer, "%c", 'a'+n );
pPin->pName = Abc_UtilStrsav( Buffer );
}
SC_CellForEachPinOut( pCell, pPin, n )
{
ABC_FREE( pPin->pName );
sprintf( Buffer, "%c", 'z'-n+pCell->n_inputs );
pPin->pName = Abc_UtilStrsav( Buffer );
}
}
}
p->nBins = 0;
ABC_FREE( p->pBins );
Abc_SclHashCells( p );
// update library name
printf( "Renaming library \"%s\" into \"%s%d\".\n", p->pName, "lib", SC_LibCellNum(p) );
ABC_FREE( p->pName );
sprintf( Buffer, "lib%d", SC_LibCellNum(p) );
p->pName = Abc_UtilStrsav( Buffer );
}
/**Function*************************************************************
Synopsis [Links equal gates into rings while sorting them by area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static int Abc_SclCompareCells( SC_Cell ** pp1, SC_Cell ** pp2 )
{
if ( (*pp1)->n_inputs < (*pp2)->n_inputs )
return -1;
if ( (*pp1)->n_inputs > (*pp2)->n_inputs )
return 1;
// if ( (*pp1)->area < (*pp2)->area )
// return -1;
// if ( (*pp1)->area > (*pp2)->area )
// return 1;
if ( SC_CellPinCapAve(*pp1) < SC_CellPinCapAve(*pp2) )
return -1;
if ( SC_CellPinCapAve(*pp1) > SC_CellPinCapAve(*pp2) )
return 1;
return strcmp( (*pp1)->pName, (*pp2)->pName );
}
void Abc_SclLinkCells( SC_Lib * p )
{
Vec_Ptr_t * vList;
SC_Cell * pCell, * pRepr = NULL;
int i, k;
assert( Vec_PtrSize(&p->vCellClasses) == 0 );
SC_LibForEachCell( p, pCell, i )
{
// find gate with the same function
SC_LibForEachCellClass( p, pRepr, k )
if ( pCell->n_inputs == pRepr->n_inputs &&
pCell->n_outputs == pRepr->n_outputs &&
Vec_WrdEqual(SC_CellFunc(pCell), SC_CellFunc(pRepr)) )
break;
if ( k == Vec_PtrSize(&p->vCellClasses) )
{
Vec_PtrPush( &p->vCellClasses, pCell );
pCell->pNext = pCell->pPrev = pCell;
continue;
}
// add it to the list before the cell
pRepr->pPrev->pNext = pCell; pCell->pNext = pRepr;
pCell->pPrev = pRepr->pPrev; pRepr->pPrev = pCell;
}
// sort cells by size then by name
qsort( (void *)Vec_PtrArray(&p->vCellClasses), Vec_PtrSize(&p->vCellClasses), sizeof(void *), (int(*)(const void *,const void *))Abc_SclCompareCells );
// sort cell lists
vList = Vec_PtrAlloc( 100 );
SC_LibForEachCellClass( p, pRepr, k )
{
Vec_PtrClear( vList );
SC_RingForEachCell( pRepr, pCell, i )
Vec_PtrPush( vList, pCell );
qsort( (void *)Vec_PtrArray(vList), Vec_PtrSize(vList), sizeof(void *), (int(*)(const void *,const void *))Abc_SclCompareCells );
// create new representative
pRepr = (SC_Cell *)Vec_PtrEntry( vList, 0 );
pRepr->pNext = pRepr->pPrev = pRepr;
pRepr->pRepr = pRepr;
pRepr->pAve = (SC_Cell *)Vec_PtrEntry( vList, Vec_PtrSize(vList)/2 );
pRepr->Order = 0;
pRepr->nGates = Vec_PtrSize(vList);
// relink cells
Vec_PtrForEachEntryStart( SC_Cell *, vList, pCell, i, 1 )
{
pRepr->pPrev->pNext = pCell; pCell->pNext = pRepr;
pCell->pPrev = pRepr->pPrev; pRepr->pPrev = pCell;
pCell->pRepr = pRepr;
pCell->pAve = (SC_Cell *)Vec_PtrEntry( vList, Vec_PtrSize(vList)/2 );
pCell->Order = i;
pCell->nGates = Vec_PtrSize(vList);
}
// update list
Vec_PtrWriteEntry( &p->vCellClasses, k, pRepr );
}
Vec_PtrFree( vList );
}
/**Function*************************************************************
Synopsis [Returns the largest inverter.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
SC_Cell * Abc_SclFindInvertor( SC_Lib * p, int fFindBuff )
{
SC_Cell * pCell = NULL;
word Truth = fFindBuff ? ABC_CONST(0xAAAAAAAAAAAAAAAA) : ABC_CONST(0x5555555555555555);
int k;
SC_LibForEachCellClass( p, pCell, k )
if ( pCell->n_inputs == 1 && Vec_WrdEntry(&SC_CellPin(pCell, 1)->vFunc, 0) == Truth )
break;
// take representative
return pCell ? pCell->pRepr : NULL;
}
SC_Cell * Abc_SclFindSmallestGate( SC_Cell * p, float CinMin )
{
SC_Cell * pRes = NULL;
int i;
SC_RingForEachCell( p->pRepr, pRes, i )
if ( SC_CellPinCapAve(pRes) > CinMin )
return pRes;
// take the largest gate
return p->pRepr->pPrev;
}
/**Function*************************************************************
Synopsis [Returns the wireload model for the given area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
SC_WireLoad * Abc_SclFetchWireLoadModel( SC_Lib * p, char * pWLoadUsed )
{
SC_WireLoad * pWL = NULL;
int i;
// Get the actual table and reformat it for 'wire_cap' output:
assert( pWLoadUsed != NULL );
SC_LibForEachWireLoad( p, pWL, i )
if ( !strcmp(pWL->pName, pWLoadUsed) )
break;
if ( i == Vec_PtrSize(&p->vWireLoads) )
{
Abc_Print( -1, "Cannot find wire load model \"%s\".\n", pWLoadUsed );
exit(1);
}
// printf( "Using wireload model \"%s\".\n", pWL->pName );
return pWL;
}
SC_WireLoad * Abc_SclFindWireLoadModel( SC_Lib * p, float Area )
{
char * pWLoadUsed = NULL;
int i;
if ( p->default_wire_load_sel && strlen(p->default_wire_load_sel) )
{
SC_WireLoadSel * pWLS = NULL;
SC_LibForEachWireLoadSel( p, pWLS, i )
if ( !strcmp(pWLS->pName, p->default_wire_load_sel) )
break;
if ( i == Vec_PtrSize(&p->vWireLoadSels) )
{
Abc_Print( -1, "Cannot find wire load selection model \"%s\".\n", p->default_wire_load_sel );
exit(1);
}
for ( i = 0; i < Vec_FltSize(&pWLS->vAreaFrom); i++)
if ( Area >= Vec_FltEntry(&pWLS->vAreaFrom, i) && Area < Vec_FltEntry(&pWLS->vAreaTo, i) )
{
pWLoadUsed = (char *)Vec_PtrEntry(&pWLS->vWireLoadModel, i);
break;
}
if ( i == Vec_FltSize(&pWLS->vAreaFrom) )
pWLoadUsed = (char *)Vec_PtrEntryLast(&pWLS->vWireLoadModel);
}
else if ( p->default_wire_load && strlen(p->default_wire_load) )
pWLoadUsed = p->default_wire_load;
else
{
// Abc_Print( 0, "No wire model given.\n" );
return NULL;
}
return Abc_SclFetchWireLoadModel( p, pWLoadUsed );
}
/**Function*************************************************************
Synopsis [Returns 1 if the library has delay info.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclHasDelayInfo( void * pScl )
{
SC_Lib * p = (SC_Lib *)pScl;
SC_Cell * pCell;
SC_Timing * pTime;
pCell = Abc_SclFindInvertor(p, 0);
if ( pCell == NULL )
return 0;
pTime = Scl_CellPinTime( pCell, 0 );
if ( pTime == NULL )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Returns "average" slew.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Abc_SclComputeAverageSlew( SC_Lib * p )
{
SC_Cell * pCell;
SC_Timing * pTime;
Vec_Flt_t * vIndex;
pCell = Abc_SclFindInvertor(p, 0);
if ( pCell == NULL )
return 0;
pTime = Scl_CellPinTime( pCell, 0 );
if ( pTime == NULL )
return 0;
vIndex = &pTime->pCellRise.vIndex0; // slew
return Vec_FltEntry( vIndex, Vec_FltSize(vIndex)/3 );
}
/**Function*************************************************************
Synopsis [Compute delay parameters of pin/cell/class.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_SclComputeParametersPin( SC_Lib * p, SC_Cell * pCell, int iPin, float Slew, float * pLD, float * pPD )
{
SC_Pair Load0, Load1, Load2;
SC_Pair ArrIn = { 0.0, 0.0 };
SC_Pair SlewIn = { Slew, Slew };
SC_Pair ArrOut0 = { 0.0, 0.0 };
SC_Pair ArrOut1 = { 0.0, 0.0 };
SC_Pair ArrOut2 = { 0.0, 0.0 };
SC_Pair SlewOut = { 0.0, 0.0 };
SC_Timing * pTime = Scl_CellPinTime( pCell, iPin );
Vec_Flt_t * vIndex = pTime ? &pTime->pCellRise.vIndex1 : NULL; // capacitance
if ( vIndex == NULL )
return 0;
// handle constant table
if ( Vec_FltSize(vIndex) == 1 )
{
*pLD = 0;
*pPD = Vec_FltEntry( (Vec_Flt_t *)Vec_PtrEntry(&pTime->pCellRise.vData, 0), 0 );
return 1;
}
// get load points
Load0.rise = Load0.fall = 0.0;
Load1.rise = Load1.fall = Vec_FltEntry( vIndex, 0 );
Load2.rise = Load2.fall = Vec_FltEntry( vIndex, Vec_FltSize(vIndex) - 2 );
// compute delay
Scl_LibPinArrival( pTime, &ArrIn, &SlewIn, &Load0, &ArrOut0, &SlewOut );
Scl_LibPinArrival( pTime, &ArrIn, &SlewIn, &Load1, &ArrOut1, &SlewOut );
Scl_LibPinArrival( pTime, &ArrIn, &SlewIn, &Load2, &ArrOut2, &SlewOut );
ArrOut0.rise = 0.5 * ArrOut0.rise + 0.5 * ArrOut0.fall;
ArrOut1.rise = 0.5 * ArrOut1.rise + 0.5 * ArrOut1.fall;
ArrOut2.rise = 0.5 * ArrOut2.rise + 0.5 * ArrOut2.fall;
// get tangent
*pLD = (ArrOut2.rise - ArrOut1.rise) / ((Load2.rise - Load1.rise) / SC_CellPinCap(pCell, iPin));
// get constant
*pPD = ArrOut0.rise;
return 1;
}
int Abc_SclComputeParametersCell( SC_Lib * p, SC_Cell * pCell, float Slew, float * pLD, float * pPD )
{
SC_Pin * pPin;
float LD, PD, ld, pd;
int i;
LD = PD = ld = pd = 0;
SC_CellForEachPinIn( pCell, pPin, i )
{
if ( !Abc_SclComputeParametersPin( p, pCell, i, Slew, &ld, &pd ) )
return 0;
LD += ld; PD += pd;
}
*pLD = LD / Abc_MaxInt(1, pCell->n_inputs);
*pPD = PD / Abc_MaxInt(1, pCell->n_inputs);
return 1;
}
void Abc_SclComputeParametersClass( SC_Lib * p, SC_Cell * pRepr, float Slew, float * pLD, float * pPD )
{
SC_Cell * pCell;
float LD, PD, ld, pd;
int i, Count = 0;
LD = PD = ld = pd = 0;
SC_RingForEachCell( pRepr, pCell, i )
{
Abc_SclComputeParametersCell( p, pCell, Slew, &ld, &pd );
LD += ld; PD += pd;
Count++;
}
*pLD = LD / Abc_MaxInt(1, Count);
*pPD = PD / Abc_MaxInt(1, Count);
}
void Abc_SclComputeParametersClassPin( SC_Lib * p, SC_Cell * pRepr, int iPin, float Slew, float * pLD, float * pPD )
{
SC_Cell * pCell;
float LD, PD, ld, pd;
int i, Count = 0;
LD = PD = ld = pd = 0;
SC_RingForEachCell( pRepr, pCell, i )
{
Abc_SclComputeParametersPin( p, pCell, iPin, Slew, &ld, &pd );
LD += ld; PD += pd;
Count++;
}
*pLD = LD / Abc_MaxInt(1, Count);
*pPD = PD / Abc_MaxInt(1, Count);
}
float Abc_SclComputeDelayCellPin( SC_Lib * p, SC_Cell * pCell, int iPin, float Slew, float Gain )
{
float LD = 0, PD = 0;
Abc_SclComputeParametersPin( p, pCell, iPin, Slew, &LD, &PD );
return 0.01 * LD * Gain + PD;
}
float Abc_SclComputeDelayClassPin( SC_Lib * p, SC_Cell * pRepr, int iPin, float Slew, float Gain )
{
SC_Cell * pCell;
float Delay = 0;
int i, Count = 0;
SC_RingForEachCell( pRepr, pCell, i )
{
if ( pCell->fSkip )
continue;
// if ( pRepr == pCell ) // skip the first gate
// continue;
Delay += Abc_SclComputeDelayCellPin( p, pCell, iPin, Slew, Gain );
Count++;
}
return Delay / Abc_MaxInt(1, Count);
}
float Abc_SclComputeAreaClass( SC_Cell * pRepr )
{
SC_Cell * pCell;
float Area = 0;
int i, Count = 0;
SC_RingForEachCell( pRepr, pCell, i )
{
if ( pCell->fSkip )
continue;
Area += pCell->area;
Count++;
}
return Area / Abc_MaxInt(1, Count);
}
/**Function*************************************************************
Synopsis [Print cells]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_SclMarkSkippedCells( SC_Lib * p )
{
char FileName[1000];
char Buffer[1000], * pName;
SC_Cell * pCell;
FILE * pFile;
int CellId, nSkipped = 0;
sprintf( FileName, "%s.skip", p->pName );
pFile = fopen( FileName, "rb" );
if ( pFile == NULL )
return;
while ( fgets( Buffer, 999, pFile ) != NULL )
{
pName = strtok( Buffer, "\r\n\t " );
if ( pName == NULL )
continue;
CellId = Abc_SclCellFind( p, pName );
if ( CellId == -1 )
{
printf( "Cannot find cell \"%s\" in the library \"%s\".\n", pName, p->pName );
continue;
}
pCell = SC_LibCell( p, CellId );
pCell->fSkip = 1;
nSkipped++;
}
fclose( pFile );
printf( "Marked %d cells for skipping in the library \"%s\".\n", nSkipped, p->pName );
}
void Abc_SclPrintCells( SC_Lib * p, float SlewInit, float Gain, int fInvOnly, int fShort )
{
SC_Cell * pCell, * pRepr;
SC_Pin * pPin;
int i, j, k, nLength = 0;
float Slew = (SlewInit == 0) ? Abc_SclComputeAverageSlew(p) : SlewInit;
float LD = 0, PD = 0;
assert( Vec_PtrSize(&p->vCellClasses) > 0 );
printf( "Library \"%s\" ", p->pName );
printf( "has %d cells in %d classes. ",
Vec_PtrSize(&p->vCells), Vec_PtrSize(&p->vCellClasses) );
if ( !fShort )
printf( "Delay estimate is based on slew %.2f ps and gain %.2f.", Slew, Gain );
printf( "\n" );
Abc_SclMarkSkippedCells( p );
// find the longest name
SC_LibForEachCellClass( p, pRepr, k )
SC_RingForEachCell( pRepr, pCell, i )
nLength = Abc_MaxInt( nLength, strlen(pRepr->pName) );
// print cells
SC_LibForEachCellClass( p, pRepr, k )
{
if ( fInvOnly && pRepr->n_inputs != 1 )
continue;
SC_CellForEachPinOut( pRepr, pPin, i )
{
if ( i == pRepr->n_inputs )
{
printf( "Class%4d : ", k );
printf( "Cells =%3d ", Abc_SclClassCellNum(pRepr) );
printf( "Ins =%2d ", pRepr->n_inputs );
printf( "Outs =%2d ", pRepr->n_outputs );
}
else
printf( " " );
if ( pPin->func_text )
printf( "%-30s", pPin->func_text );
printf( " " );
Kit_DsdPrintFromTruth( (unsigned *)Vec_WrdArray(&pPin->vFunc), pRepr->n_inputs );
printf( "\n" );
if ( fShort )
continue;
SC_RingForEachCell( pRepr, pCell, j )
{
printf( " %3d ", j+1 );
printf( "%s", pCell->fSkip ? "s" : " " );
printf( " : " );
printf( "%-*s ", nLength, pCell->pName );
printf( "%2d ", pCell->drive_strength );
printf( "A =%8.2f ", pCell->area );
printf( "L =%8.2f ", pCell->leakage );
if ( pCell->n_outputs == 1 )
{
if ( Abc_SclComputeParametersCell( p, pCell, Slew, &LD, &PD ) )
{
printf( "D =%6.1f ps ", 0.01 * Gain * LD + PD );
printf( "LD =%6.1f ps ", LD );
printf( "PD =%6.1f ps ", PD );
printf( "C =%5.1f ff ", SC_CellPinCapAve(pCell) );
printf( "Cm =%5.0f ff ", SC_CellPin(pCell, pCell->n_inputs)->max_out_cap );
printf( "Sm =%5.1f ps ", SC_CellPin(pCell, pCell->n_inputs)->max_out_slew );
}
}
printf( "\n" );
}
break;
}
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_SclConvertLeakageIntoArea( SC_Lib * p, float A, float B )
{
SC_Cell * pCell; int i;
SC_LibForEachCell( p, pCell, i )
pCell->area = A * pCell->area + B * pCell->leakage;
}
/**Function*************************************************************
Synopsis [Print cells]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_SclLibNormalizeSurface( SC_Surface * p, float Time, float Load )
{
Vec_Flt_t * vArray;
int i, k; float Entry;
Vec_FltForEachEntry( &p->vIndex0, Entry, i ) // slew
Vec_FltWriteEntry( &p->vIndex0, i, Time * Entry );
Vec_FltForEachEntry( &p->vIndex1, Entry, i ) // load
Vec_FltWriteEntry( &p->vIndex1, i, Load * Entry );
Vec_PtrForEachEntry( Vec_Flt_t *, &p->vData, vArray, k )
Vec_FltForEachEntry( vArray, Entry, i ) // delay/slew
Vec_FltWriteEntry( vArray, i, Time * Entry );
}
void Abc_SclLibNormalize( SC_Lib * p )
{
SC_WireLoad * pWL;
SC_Cell * pCell;
SC_Pin * pPin;
SC_Timings * pTimings;
SC_Timing * pTiming;
int i, k, m, n;
float Time = 1.0 * pow(10.0, 12 - p->unit_time);
float Load = p->unit_cap_fst * pow(10.0, 15 - p->unit_cap_snd);
if ( Time == 1 && Load == 1 )
return;
p->unit_time = 12;
p->unit_cap_fst = 1;
p->unit_cap_snd = 15;
p->default_max_out_slew *= Time;
SC_LibForEachWireLoad( p, pWL, i )
pWL->cap *= Load;
SC_LibForEachCell( p, pCell, i )
SC_CellForEachPin( pCell, pPin, k )
{
pPin->cap *= Load;
pPin->rise_cap *= Load;
pPin->fall_cap *= Load;
pPin->max_out_cap *= Load;
pPin->max_out_slew *= Time;
SC_PinForEachRTiming( pPin, pTimings, m )
Vec_PtrForEachEntry( SC_Timing *, &pTimings->vTimings, pTiming, n )
{
Abc_SclLibNormalizeSurface( &pTiming->pCellRise, Time, Load );
Abc_SclLibNormalizeSurface( &pTiming->pCellFall, Time, Load );
Abc_SclLibNormalizeSurface( &pTiming->pRiseTrans, Time, Load );
Abc_SclLibNormalizeSurface( &pTiming->pFallTrans, Time, Load );
}
}
}
/**Function*************************************************************
Synopsis [Derives simple GENLIB library.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Str_t * Abc_SclProduceGenlibStrSimple( SC_Lib * p )
{
char Buffer[200];
Vec_Str_t * vStr;
SC_Cell * pCell;
SC_Pin * pPin, * pPinOut;
int i, j, k, Count = 2;
// mark skipped cells
// Abc_SclMarkSkippedCells( p );
vStr = Vec_StrAlloc( 1000 );
Vec_StrPrintStr( vStr, "GATE _const0_ 0.00 z=CONST0;\n" );
Vec_StrPrintStr( vStr, "GATE _const1_ 0.00 z=CONST1;\n" );
SC_LibForEachCell( p, pCell, i )
{
if ( pCell->n_inputs == 0 )
continue;
assert( strlen(pCell->pName) < 200 );
SC_CellForEachPinOut( pCell, pPinOut, j )
{
Vec_StrPrintStr( vStr, "GATE " );
sprintf( Buffer, "%-16s", pCell->pName );
Vec_StrPrintStr( vStr, Buffer );
Vec_StrPrintStr( vStr, " " );
sprintf( Buffer, "%7.2f", pCell->area );
Vec_StrPrintStr( vStr, Buffer );
Vec_StrPrintStr( vStr, " " );
Vec_StrPrintStr( vStr, pPinOut->pName );
Vec_StrPrintStr( vStr, "=" );
Vec_StrPrintStr( vStr, pPinOut->func_text ? pPinOut->func_text : "?" );
Vec_StrPrintStr( vStr, ";\n" );
SC_CellForEachPinIn( pCell, pPin, k )
{
Vec_StrPrintStr( vStr, " PIN " );
sprintf( Buffer, "%-4s", pPin->pName );
Vec_StrPrintStr( vStr, Buffer );
sprintf( Buffer, " UNKNOWN 1 999 1.00 0.00 1.00 0.00\n" );
Vec_StrPrintStr( vStr, Buffer );
}
Count++;
}
}
Vec_StrPrintStr( vStr, "\n.end\n" );
Vec_StrPush( vStr, '\0' );
// printf( "GENLIB library with %d gates is produced:\n", Count );
// printf( "%s", Vec_StrArray(vStr) );
return vStr;
}
Mio_Library_t * Abc_SclDeriveGenlibSimple( void * pScl )
{
SC_Lib * p = (SC_Lib *)pScl;
Vec_Str_t * vStr = Abc_SclProduceGenlibStrSimple( p );
Mio_Library_t * pLib = Mio_LibraryRead( p->pFileName, Vec_StrArray(vStr), NULL, 0 );
Vec_StrFree( vStr );
if ( pLib )
printf( "Derived GENLIB library \"%s\" with %d gates.\n", p->pName, SC_LibCellNum(p) );
else
printf( "Reading library has filed.\n" );
return pLib;
}
/**Function*************************************************************
Synopsis [Derive GENLIB library.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Str_t * Abc_SclProduceGenlibStr( SC_Lib * p, float Slew, float Gain, int nGatesMin, int * pnCellCount )
{
char Buffer[200];
Vec_Str_t * vStr;
SC_Cell * pRepr;
SC_Pin * pPin;
int i, k, Count = 2, nClassMax = 0;
// find the largest number of cells in a class
SC_LibForEachCellClass( p, pRepr, i )
if ( pRepr->n_outputs == 1 )
nClassMax = Abc_MaxInt( nClassMax, Abc_SclClassCellNum(pRepr) );
// update the number
if ( nGatesMin && nGatesMin >= nClassMax )
nGatesMin = 0;
// mark skipped cells
Abc_SclMarkSkippedCells( p );
vStr = Vec_StrAlloc( 1000 );
Vec_StrPrintStr( vStr, "GATE _const0_ 0.00 z=CONST0;\n" );
Vec_StrPrintStr( vStr, "GATE _const1_ 0.00 z=CONST1;\n" );
SC_LibForEachCellClass( p, pRepr, i )
{
if ( pRepr->n_inputs == 0 )
continue;
if ( pRepr->n_outputs > 1 )
continue;
if ( nGatesMin && pRepr->n_inputs > 2 && Abc_SclClassCellNum(pRepr) < nGatesMin )
continue;
assert( strlen(pRepr->pName) < 200 );
Vec_StrPrintStr( vStr, "GATE " );
sprintf( Buffer, "%-16s", pRepr->pName );
Vec_StrPrintStr( vStr, Buffer );
Vec_StrPrintStr( vStr, " " );
// sprintf( Buffer, "%7.2f", Abc_SclComputeAreaClass(pRepr) );
sprintf( Buffer, "%7.2f", pRepr->area );
Vec_StrPrintStr( vStr, Buffer );
Vec_StrPrintStr( vStr, " " );
Vec_StrPrintStr( vStr, SC_CellPinName(pRepr, pRepr->n_inputs) );
Vec_StrPrintStr( vStr, "=" );
Vec_StrPrintStr( vStr, SC_CellPinOutFunc(pRepr, 0) ? SC_CellPinOutFunc(pRepr, 0) : "?" );
Vec_StrPrintStr( vStr, ";\n" );
SC_CellForEachPinIn( pRepr, pPin, k )
{
float Delay = Abc_SclComputeDelayClassPin( p, pRepr, k, Slew, Gain );
assert( Delay > 0 );
Vec_StrPrintStr( vStr, " PIN " );
sprintf( Buffer, "%-4s", pPin->pName );
Vec_StrPrintStr( vStr, Buffer );
sprintf( Buffer, " UNKNOWN 1 999 %7.2f 0.00 %7.2f 0.00\n", Delay, Delay );
Vec_StrPrintStr( vStr, Buffer );
}
Count++;
}
Vec_StrPrintStr( vStr, "\n.end\n" );
Vec_StrPush( vStr, '\0' );
// printf( "GENLIB library with %d gates is produced:\n", Count );
// printf( "%s", Vec_StrArray(vStr) );
if ( pnCellCount )
*pnCellCount = Count;
return vStr;
}
Vec_Str_t * Abc_SclProduceGenlibStrProfile( SC_Lib * p, Mio_Library_t * pLib, float Slew, float Gain, int nGatesMin, int * pnCellCount )
{
char Buffer[200];
Vec_Str_t * vStr;
SC_Cell * pRepr;
SC_Pin * pPin;
int i, k, Count = 2, nClassMax = 0;
// find the largest number of cells in a class
SC_LibForEachCellClass( p, pRepr, i )
if ( pRepr->n_outputs == 1 )
nClassMax = Abc_MaxInt( nClassMax, Abc_SclClassCellNum(pRepr) );
// update the number
if ( nGatesMin && nGatesMin >= nClassMax )
nGatesMin = 0;
// mark skipped cells
Abc_SclMarkSkippedCells( p );
vStr = Vec_StrAlloc( 1000 );
Vec_StrPrintStr( vStr, "GATE _const0_ 0.00 z=CONST0;\n" );
Vec_StrPrintStr( vStr, "GATE _const1_ 0.00 z=CONST1;\n" );
SC_LibForEachCell( p, pRepr, i )
{
if ( pRepr->n_inputs == 0 )
continue;
if ( pRepr->n_outputs > 1 )
continue;
if ( nGatesMin && pRepr->n_inputs > 2 && Abc_SclClassCellNum(pRepr) < nGatesMin )
continue;
// check if the gate is in the profile
if ( pRepr->n_inputs > 1 )
{
Mio_Gate_t * pGate = Mio_LibraryReadGateByName( pLib, pRepr->pName, NULL );
if ( pGate == NULL || Mio_GateReadProfile(pGate) == 0 )
continue;
}
// process gate
assert( strlen(pRepr->pName) < 200 );
Vec_StrPrintStr( vStr, "GATE " );
sprintf( Buffer, "%-16s", pRepr->pName );
Vec_StrPrintStr( vStr, Buffer );
Vec_StrPrintStr( vStr, " " );
// sprintf( Buffer, "%7.2f", Abc_SclComputeAreaClass(pRepr) );
sprintf( Buffer, "%7.2f", pRepr->area );
Vec_StrPrintStr( vStr, Buffer );
Vec_StrPrintStr( vStr, " " );
Vec_StrPrintStr( vStr, SC_CellPinName(pRepr, pRepr->n_inputs) );
Vec_StrPrintStr( vStr, "=" );
Vec_StrPrintStr( vStr, SC_CellPinOutFunc(pRepr, 0) ? SC_CellPinOutFunc(pRepr, 0) : "?" );
Vec_StrPrintStr( vStr, ";\n" );
SC_CellForEachPinIn( pRepr, pPin, k )
{
float Delay = Abc_SclComputeDelayClassPin( p, pRepr, k, Slew, Gain );
assert( Delay > 0 );
Vec_StrPrintStr( vStr, " PIN " );
sprintf( Buffer, "%-4s", pPin->pName );
Vec_StrPrintStr( vStr, Buffer );
sprintf( Buffer, " UNKNOWN 1 999 %7.2f 0.00 %7.2f 0.00\n", Delay, Delay );
Vec_StrPrintStr( vStr, Buffer );
}
Count++;
}
Vec_StrPrintStr( vStr, "\n.end\n" );
Vec_StrPush( vStr, '\0' );
// printf( "GENLIB library with %d gates is produced:\n", Count );
// printf( "%s", Vec_StrArray(vStr) );
if ( pnCellCount )
*pnCellCount = Count;
return vStr;
}
void Abc_SclDumpGenlib( char * pFileName, SC_Lib * p, float SlewInit, float Gain, int nGatesMin )
{
int nCellCount = 0;
char FileName[1000];
float Slew = (SlewInit == 0) ? Abc_SclComputeAverageSlew(p) : SlewInit;
Vec_Str_t * vStr;
FILE * pFile;
if ( pFileName == NULL )
sprintf( FileName, "%s_s%03d_g%03d_m%d.genlib", p->pName, (int)Slew, (int)Gain, nGatesMin );
else
sprintf( FileName, "%s", pFileName );
pFile = fopen( FileName, "wb" );
if ( pFile == NULL )
{
printf( "Cannot open file \"%s\" for writing.\n", FileName );
return;
}
vStr = Abc_SclProduceGenlibStr( p, Slew, Gain, nGatesMin, &nCellCount );
fprintf( pFile, "%s", Vec_StrArray(vStr) );
Vec_StrFree( vStr );
fclose( pFile );
printf( "Written GENLIB library with %d gates into file \"%s\".\n", nCellCount, FileName );
}
Mio_Library_t * Abc_SclDeriveGenlib( void * pScl, void * pMio, float SlewInit, float Gain, int nGatesMin, int fVerbose )
{
int nCellCount = 0;
SC_Lib * p = (SC_Lib *)pScl;
float Slew = (SlewInit == 0) ? Abc_SclComputeAverageSlew(p) : SlewInit;
Vec_Str_t * vStr;
Mio_Library_t * pLib;
if ( pMio == NULL )
vStr = Abc_SclProduceGenlibStr( p, Slew, Gain, nGatesMin, &nCellCount );
else
vStr = Abc_SclProduceGenlibStrProfile( p, (Mio_Library_t *)pMio, Slew, Gain, nGatesMin, &nCellCount );
pLib = Mio_LibraryRead( p->pFileName, Vec_StrArray(vStr), NULL, 0 );
Vec_StrFree( vStr );
if ( !pLib )
printf( "Reading library has filed.\n" );
else if ( fVerbose )
printf( "Derived GENLIB library \"%s\" with %d gates using slew %.2f ps and gain %.2f.\n", p->pName, nCellCount, Slew, Gain );
return pLib;
}
/**Function*************************************************************
Synopsis [Install library.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_SclInstallGenlib( void * pScl, float SlewInit, float Gain, int nGatesMin )
{
SC_Lib * p = (SC_Lib *)pScl;
Vec_Str_t * vStr, * vStr2;
float Slew = (SlewInit == 0) ? Abc_SclComputeAverageSlew(p) : SlewInit;
int RetValue, nGateCount = SC_LibCellNum(p);
if ( Gain == 0 )
vStr = Abc_SclProduceGenlibStrSimple(p);
else
vStr = Abc_SclProduceGenlibStr( p, Slew, Gain, nGatesMin, &nGateCount );
vStr2 = Vec_StrDup( vStr );
RetValue = Mio_UpdateGenlib2( vStr, vStr2, p->pName, 0 );
Vec_StrFree( vStr );
Vec_StrFree( vStr2 );
if ( !RetValue )
printf( "Reading library has filed.\n" );
else if ( Gain != 0 )
printf( "Derived GENLIB library \"%s\" with %d gates using slew %.2f ps and gain %.2f.\n", p->pName, nGateCount, Slew, Gain );
// else
// printf( "Derived unit-delay GENLIB library \"%s\" with %d gates.\n", p->pName, nGateCount );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END