blob: c975e3756dbb011fbf0deaebbea88891bffa5bd4 [file] [log] [blame]
/**CFile****************************************************************
FileName [acecPo.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [CEC for arithmetic circuits.]
Synopsis [Core procedures.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: acecPo.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "acecInt.h"
#include "misc/vec/vecWec.h"
#include "misc/vec/vecHsh.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Checks that items are unique and in order.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Vec_IntPushOrderAbs( Vec_Int_t * p, int Entry )
{
int i;
for ( i = 0; i < p->nSize; i++ )
assert( Entry != p->pArray[i] );
if ( p->nSize == p->nCap )
{
if ( p->nCap < 16 )
Vec_IntGrow( p, 16 );
else
Vec_IntGrow( p, 2 * p->nCap );
}
p->nSize++;
for ( i = p->nSize-2; i >= 0; i-- )
if ( Abc_AbsInt(p->pArray[i]) < Abc_AbsInt(Entry) )
p->pArray[i+1] = p->pArray[i];
else
break;
p->pArray[i+1] = Entry;
}
static inline void Vec_IntAppendMinusAbs( Vec_Int_t * vVec1, Vec_Int_t * vVec2, int fMinus )
{
int Entry, i;
Vec_IntClear( vVec1 );
Vec_IntForEachEntry( vVec2, Entry, i )
Vec_IntPushOrderAbs( vVec1, fMinus ? -Entry : Entry );
}
static inline void Vec_IntCheckUniqueOrderAbs( Vec_Int_t * p )
{
int i;
for ( i = 1; i < p->nSize; i++ )
assert( Abc_AbsInt(p->pArray[i-1]) > Abc_AbsInt(p->pArray[i]) );
}
static inline void Vec_IntCheckUniqueOrder( Vec_Int_t * p )
{
int i;
for ( i = 1; i < p->nSize; i++ )
assert( p->pArray[i-1] < p->pArray[i] );
}
/**Function*************************************************************
Synopsis [Prints polynomial.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Gia_PolynPrintMono( Vec_Int_t * vConst, Vec_Int_t * vMono, int Prev )
{
int k, Entry;
printf( "%c ", Prev != Abc_AbsInt(Vec_IntEntry(vConst, 0)) ? '|' : ' ' );
Vec_IntForEachEntry( vConst, Entry, k )
printf( "%s2^%d", Entry < 0 ? "-" : "+", Abc_AbsInt(Entry)-1 );
Vec_IntForEachEntry( vMono, Entry, k )
printf( " * %d", Entry-1 );
printf( "\n" );
}
void Gia_PolynPrint( Vec_Wec_t * vPolyn )
{
Vec_Int_t * vConst, * vMono;
int i, Prev = -1;
printf( "Polynomial with %d monomials:\n", Vec_WecSize(vPolyn)/2 );
for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ )
{
vConst = Vec_WecEntry( vPolyn, 2*i+0 );
vMono = Vec_WecEntry( vPolyn, 2*i+1 );
Gia_PolynPrintMono( vConst, vMono, Prev );
Prev = Abc_AbsInt( Vec_IntEntry(vConst, 0) );
}
}
void Gia_PolynPrintStats( Vec_Wec_t * vPolyn )
{
Vec_Int_t * vConst, * vCountsP, * vCountsN;
int i, Entry, Max = 0;
printf( "Polynomial with %d monomials:\n", Vec_WecSize(vPolyn)/2 );
for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ )
{
vConst = Vec_WecEntry( vPolyn, 2*i+0 );
Max = Abc_MaxInt( Max, Abc_AbsInt(Abc_AbsInt(Vec_IntEntry(vConst, 0))) );
}
vCountsP = Vec_IntStart( Max + 1 );
vCountsN = Vec_IntStart( Max + 1 );
for ( i = 0; i < Vec_WecSize(vPolyn)/2; i++ )
{
vConst = Vec_WecEntry( vPolyn, 2*i+0 );
Entry = Vec_IntEntry(vConst, 0);
if ( Entry > 0 )
Vec_IntAddToEntry( vCountsP, Entry, 1 );
else
Vec_IntAddToEntry( vCountsN, -Entry, 1 );
}
Vec_IntForEachEntry( vCountsN, Entry, i )
if ( Entry )
printf( "-2^%d appears %d times\n", Abc_AbsInt(i)-1, Entry );
Vec_IntForEachEntry( vCountsP, Entry, i )
if ( Entry )
printf( "+2^%d appears %d times\n", Abc_AbsInt(i)-1, Entry );
Vec_IntFree( vCountsP );
Vec_IntFree( vCountsN );
}
/**Function*************************************************************
Synopsis [Collects polynomial.]
Description [Collects non-trivial monomials in the increasing order
of the absolute value of the their first coefficients.]
SideEffects []
SeeAlso []
***********************************************************************/
int Gia_PolynGetResultCompare( int * p0, int * p1 )
{
if ( p0[2] < p1[2] ) return -1;
if ( p0[2] > p1[2] ) return 1;
return 0;
}
Vec_Wec_t * Gia_PolynGetResult( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs )
{
Vec_Int_t * vClass, * vLevel, * vArray;
Vec_Wec_t * vPolyn, * vSorted;
int i, k, iConst, iMono, iFirst;
// find the largest
int nLargest = 0, nNonConst = 0;
Vec_IntForEachEntry( vCoefs, iConst, iMono )
{
//Vec_IntPrint( Hsh_VecReadEntry(pHashM, iMono) );
if ( iConst == 0 )
continue;
vArray = Hsh_VecReadEntry( pHashC, iConst );
nLargest = Abc_MaxInt( nLargest, Abc_AbsInt(Vec_IntEntry(vArray, 0)) );
nNonConst++;
}
// sort by the size of the largest coefficient
vSorted = Vec_WecStart( nLargest+1 );
Vec_IntForEachEntry( vCoefs, iConst, iMono )
{
if ( iConst == 0 )
continue;
vArray = Hsh_VecReadEntry( pHashC, iConst );
vLevel = Vec_WecEntry( vSorted, Abc_AbsInt(Vec_IntEntry(vArray, 0)) );
vArray = Hsh_VecReadEntry( pHashM, iMono );
iFirst = Vec_IntSize(vArray) ? Vec_IntEntry(vArray, 0) : -1;
Vec_IntPushThree( vLevel, iConst, iMono, iFirst );
}
// reload in the given order
vPolyn = Vec_WecAlloc( 2*nNonConst );
Vec_WecForEachLevel( vSorted, vClass, i )
{
// sort monomials by the index of the first variable
qsort( Vec_IntArray(vClass), Vec_IntSize(vClass)/3, 12, (int (*)(const void *, const void *))Gia_PolynGetResultCompare );
Vec_IntForEachEntryTriple( vClass, iConst, iMono, iFirst, k )
{
vArray = Hsh_VecReadEntry( pHashC, iConst );
Vec_IntCheckUniqueOrderAbs( vArray );
vLevel = Vec_WecPushLevel( vPolyn );
Vec_IntGrow( vLevel, Vec_IntSize(vArray) );
Vec_IntAppend( vLevel, vArray );
vArray = Hsh_VecReadEntry( pHashM, iMono );
Vec_IntCheckUniqueOrder( vArray );
vLevel = Vec_WecPushLevel( vPolyn );
Vec_IntGrow( vLevel, Vec_IntSize(vArray) );
Vec_IntAppend( vLevel, vArray );
}
}
assert( Vec_WecSize(vPolyn) == 2*nNonConst );
Vec_WecFree( vSorted );
return vPolyn;
}
/**Function*************************************************************
Synopsis [Derives new constant.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_PolynMergeConstOne( Vec_Int_t * vConst, int New )
{
int i, Old;
assert( New != 0 );
Vec_IntForEachEntry( vConst, Old, i )
{
assert( Old != 0 );
if ( Old == New ) // A == B
{
Vec_IntDrop( vConst, i );
Gia_PolynMergeConstOne( vConst, New > 0 ? New + 1 : New - 1 );
return;
}
if ( Abc_AbsInt(Old) == Abc_AbsInt(New) ) // A == -B
{
Vec_IntDrop( vConst, i );
return;
}
if ( Old + New == 1 || Old + New == -1 ) // sign(A) != sign(B) && abs(abs(A)-abs(B)) == 1
{
int Value = Abc_MinInt( Abc_AbsInt(Old), Abc_AbsInt(New) );
Vec_IntDrop( vConst, i );
Gia_PolynMergeConstOne( vConst, (Old + New == 1) ? Value : -Value );
return;
}
}
Vec_IntPushOrderAbs( vConst, New );
}
static inline void Gia_PolynMergeConst( Vec_Int_t * vTempC, Hsh_VecMan_t * pHashC, int iConstAdd )
{
int i, New;
Vec_Int_t * vConstAdd = Hsh_VecReadEntry( pHashC, iConstAdd );
Vec_IntForEachEntry( vConstAdd, New, i )
{
Gia_PolynMergeConstOne( vTempC, New );
vConstAdd = Hsh_VecReadEntry( pHashC, iConstAdd );
}
Vec_IntCheckUniqueOrderAbs( vConstAdd );
//Vec_IntPrint( vConstAdd );
}
static inline int Gia_PolynBuildAdd( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs,
Vec_Wec_t * vLit2Mono, Vec_Int_t * vTempC, Vec_Int_t * vTempM )
{
int i, iLit, iConst, iConstNew;
int iMono = Hsh_VecManAdd(pHashM, vTempM);
if ( iMono == Vec_IntSize(vCoefs) ) // new monomial
{
// map monomial into a constant
assert( Vec_IntSize(vTempC) > 0 );
iConst = Hsh_VecManAdd( pHashC, vTempC );
Vec_IntPush( vCoefs, iConst );
// map literals into monomial
assert( Vec_IntSize(vTempM) > 0 );
Vec_IntForEachEntry( vTempM, iLit, i )
Vec_WecPush( vLit2Mono, iLit, iMono );
//printf( "New monomial: \n" );
//Gia_PolynPrintMono( vTempC, vTempM );
return 1;
}
// this monomial exists
iConst = Vec_IntEntry( vCoefs, iMono );
if ( iConst )
Gia_PolynMergeConst( vTempC, pHashC, iConst );
iConstNew = Hsh_VecManAdd( pHashC, vTempC );
Vec_IntWriteEntry( vCoefs, iMono, iConstNew );
//printf( "Old monomial: \n" );
//Gia_PolynPrintMono( vTempC, vTempM );
if ( iConst && !iConstNew )
return -1;
if ( !iConst && iConstNew )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Computing for literals.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Gia_PolynHandleOne( Hsh_VecMan_t * pHashC, Hsh_VecMan_t * pHashM, Vec_Int_t * vCoefs,
Vec_Wec_t * vLit2Mono, Vec_Int_t * vTempC, Vec_Int_t * vTempM,
int iMono, int iLitOld, int iLitNew0, int iLitNew1 )
{
int status, iConst = Vec_IntEntry( vCoefs, iMono );
Vec_Int_t * vArrayC = Hsh_VecReadEntry( pHashC, iConst );
Vec_Int_t * vArrayM = Hsh_VecReadEntry( pHashM, iMono );
// create new monomial
Vec_IntClear( vTempM );
Vec_IntAppend( vTempM, vArrayM );
status = Vec_IntRemove( vTempM, iLitOld );
assert( status );
// create new monomial
if ( iLitNew0 == -1 && iLitNew1 == -1 ) // no new lit - the same const
Vec_IntAppendMinusAbs( vTempC, vArrayC, 0 );
else if ( iLitNew0 > -1 && iLitNew1 == -1 ) // one new lit - opposite const
{
Vec_IntAppendMinusAbs( vTempC, vArrayC, 1 );
Vec_IntPushUniqueOrder( vTempM, iLitNew0 );
}
else if ( iLitNew0 > -1 && iLitNew1 > -1 ) // both new lit - the same const
{
Vec_IntAppendMinusAbs( vTempC, vArrayC, 0 );
Vec_IntPushUniqueOrder( vTempM, iLitNew0 );
Vec_IntPushUniqueOrder( vTempM, iLitNew1 );
}
else assert( 0 );
return Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM );
}
Vec_Wec_t * Gia_PolynBuildNew2( Gia_Man_t * pGia, Vec_Int_t * vRootLits, int nExtra, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, int fSigned, int fVerbose, int fVeryVerbose )
{
abctime clk = Abc_Clock();
Vec_Wec_t * vPolyn;
Vec_Wec_t * vLit2Mono = Vec_WecStart( 2 * Gia_ManObjNum(pGia) ); // mapping AIG literals into monomials
Hsh_VecMan_t * pHashC = Hsh_VecManStart( 1000 ); // hash table for constants
Hsh_VecMan_t * pHashM = Hsh_VecManStart( 1000 ); // hash table for monomials
Vec_Int_t * vCoefs = Vec_IntAlloc( 1000 ); // monomial coefficients
Vec_Int_t * vTempC = Vec_IntAlloc( 10 ); // temporary array
Vec_Int_t * vTempM = Vec_IntAlloc( 10 ); // temporary array
int i, k, iObj, iLit, iMono, nMonos = 0, nBuilds = 0;
// add 0-constant and 1-monomial
Hsh_VecManAdd( pHashC, vTempC );
Hsh_VecManAdd( pHashM, vTempM );
Vec_IntPush( vCoefs, 0 );
// create output signature
Vec_IntForEachEntry( vRootLits, iLit, i )
{
int Value = 1 + Abc_MinInt( i, Vec_IntSize(vRootLits)-nExtra );
Vec_IntFill( vTempC, 1, (fSigned && i == Vec_IntSize(vRootLits)-1-nExtra) ? -Value : Value );
Vec_IntFill( vTempM, 1, iLit );
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM );
nBuilds++;
}
// perform construction for internal nodes
Vec_IntForEachEntryReverse( vNodes, iObj, i )
{
Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj );
int iLits[2] = { Abc_Var2Lit(iObj, 0), Abc_Var2Lit(iObj, 1) };
int iFans[2] = { Gia_ObjFaninLit0(pObj, iObj), Gia_ObjFaninLit1(pObj, iObj) };
// add inverter
Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iLits[1] );
Vec_IntForEachEntry( vArray, iMono, k )
if ( Vec_IntEntry(vCoefs, iMono) > 0 )
{
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], -1, -1 );
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], iLits[0], -1 );
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
nBuilds++;
}
// add AND gate
vArray = Vec_WecEntry( vLit2Mono, iLits[0] );
Vec_IntForEachEntry( vArray, iMono, k )
if ( Vec_IntEntry(vCoefs, iMono) > 0 )
{
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[0], iFans[0], iFans[1] );
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
}
//printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos );
}
// complement leave nodes
Vec_IntForEachEntry( vLeaves, iObj, i )
{
int iLits[2] = { Abc_Var2Lit(iObj, 0), Abc_Var2Lit(iObj, 1) };
// add inverter
Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iLits[1] );
Vec_IntForEachEntry( vArray, iMono, k )
if ( Vec_IntEntry(vCoefs, iMono) > 0 )
{
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], -1, -1 );
nMonos += Gia_PolynHandleOne( pHashC, pHashM, vCoefs, vLit2Mono, vTempC, vTempM, iMono, iLits[1], iLits[0], -1 );
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
}
}
// get the results
vPolyn = Gia_PolynGetResult( pHashC, pHashM, vCoefs );
printf( "HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. ",
Hsh_VecSize(pHashC), Hsh_VecSize(pHashM), nBuilds, nMonos, Vec_WecSize(vPolyn)/2 );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
Vec_IntFree( vTempC );
Vec_IntFree( vTempM );
Vec_IntFree( vCoefs );
Vec_WecFree( vLit2Mono );
Hsh_VecManStop( pHashC );
Hsh_VecManStop( pHashM );
return vPolyn;
}
/**Function*************************************************************
Synopsis [Computing for objects.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_PolynPrepare2( Vec_Int_t * vTempC[2], Vec_Int_t * vTempM[2], int iObj, int iCst )
{
Vec_IntFill( vTempC[0], 1, iCst );
Vec_IntFill( vTempC[1], 1, -iCst );
Vec_IntClear( vTempM[0] );
Vec_IntFill( vTempM[1], 1, iObj );
}
static inline void Gia_PolynPrepare4( Vec_Int_t * vTempC[4], Vec_Int_t * vTempM[4], Vec_Int_t * vConst, Vec_Int_t * vMono, int iObj, int iFan0, int iFan1 )
{
int i, k, Entry;
for ( i = 0; i < 4; i++ )
Vec_IntAppendMinusAbs( vTempC[i], vConst, i & 1 );
for ( i = 0; i < 4; i++ )
Vec_IntClear( vTempM[i] );
Vec_IntForEachEntry( vMono, Entry, k )
if ( Entry != iObj )
for ( i = 0; i < 4; i++ )
Vec_IntPush( vTempM[i], Entry );
Vec_IntPushUniqueOrder( vTempM[1], iFan0 );
Vec_IntPushUniqueOrder( vTempM[2], iFan1 );
Vec_IntPushUniqueOrder( vTempM[3], iFan0 );
Vec_IntPushUniqueOrder( vTempM[3], iFan1 );
}
Vec_Wec_t * Gia_PolynBuildNew( Gia_Man_t * pGia, Vec_Int_t * vRootLits, int nExtra, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, int fSigned, int fVerbose, int fVeryVerbose )
{
abctime clk = Abc_Clock();
Vec_Wec_t * vPolyn;
Vec_Wec_t * vLit2Mono = Vec_WecStart( Gia_ManObjNum(pGia) ); // mapping AIG literals into monomials
Hsh_VecMan_t * pHashC = Hsh_VecManStart( 1000 ); // hash table for constants
Hsh_VecMan_t * pHashM = Hsh_VecManStart( 1000 ); // hash table for monomials
Vec_Int_t * vCoefs = Vec_IntAlloc( 1000 ); // monomial coefficients
Vec_Int_t * vTempC[4], * vTempM[4]; // temporary array
int i, k, iObj, iLit, iMono, iConst, nMonos = 0, nBuilds = 0;
for ( i = 0; i < 4; i++ )
vTempC[i] = Vec_IntAlloc( 10 );
for ( i = 0; i < 4; i++ )
vTempM[i] = Vec_IntAlloc( 10 );
// add 0-constant and 1-monomial
Hsh_VecManAdd( pHashC, vTempC[0] );
Hsh_VecManAdd( pHashM, vTempM[0] );
Vec_IntPush( vCoefs, 0 );
if ( nExtra )
printf( "Assigning %d outputs from %d to %d rank %d.\n", nExtra, Vec_IntSize(vRootLits)-nExtra, Vec_IntSize(vRootLits)-1, Vec_IntSize(vRootLits)-nExtra );
// create output signature
Vec_IntForEachEntry( vRootLits, iLit, i )
{
int Value = 1 + Abc_MinInt( i, Vec_IntSize(vRootLits)-nExtra );
Gia_PolynPrepare2( vTempC, vTempM, Abc_Lit2Var(iLit), Value );
if ( fSigned && i >= Vec_IntSize(vRootLits)-nExtra-1 )
{
if ( fVeryVerbose ) printf( "Out %d : Negative Value = %d\n", i, Value-1 );
if ( Abc_LitIsCompl(iLit) )
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[0] ); // -C
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * Driver
nBuilds++;
}
else
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * Driver
}
else
{
if ( fVeryVerbose ) printf( "Out %d : Positive Value = %d\n", i, Value-1 );
if ( Abc_LitIsCompl(iLit) )
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // C
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * Driver
nBuilds++;
}
else
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * Driver
}
nBuilds++;
}
// perform construction for internal nodes
Vec_IntForEachEntryReverse( vNodes, iObj, i )
{
Gia_Obj_t * pObj = Gia_ManObj( pGia, iObj );
Vec_Int_t * vArray = Vec_WecEntry( vLit2Mono, iObj );
Vec_IntForEachEntry( vArray, iMono, k )
if ( (iConst = Vec_IntEntry(vCoefs, iMono)) > 0 )
{
Vec_Int_t * vArrayC = Hsh_VecReadEntry( pHashC, iConst );
Vec_Int_t * vArrayM = Hsh_VecReadEntry( pHashM, iMono );
Gia_PolynPrepare4( vTempC, vTempM, vArrayC, vArrayM, iObj, Gia_ObjFaninId0(pObj, iObj), Gia_ObjFaninId1(pObj, iObj) );
if ( Gia_ObjIsXor(pObj) )
{
}
else if ( Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) ) // C * (1 - x) * (1 - y)
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[0] ); // C * 1
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[1] ); // -C * x
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[3], vTempM[2] ); // -C * y
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[2], vTempM[3] ); // C * x * y
nBuilds += 3;
}
else if ( Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) ) // C * (1 - x) * y
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[2] ); // C * y
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[3] ); // -C * x * y
nBuilds += 2;
}
else if ( !Gia_ObjFaninC0(pObj) && Gia_ObjFaninC1(pObj) ) // C * x * (1 - y)
{
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[1] ); // C * x
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[1], vTempM[3] ); // -C * x * y
nBuilds++;
}
else
nMonos += Gia_PolynBuildAdd( pHashC, pHashM, vCoefs, vLit2Mono, vTempC[0], vTempM[3] ); // C * x * y
Vec_IntWriteEntry( vCoefs, iMono, 0 );
nMonos--;
nBuilds++;
}
//printf( "Obj %5d : nMonos = %6d nUsed = %6d\n", iObj, nBuilds, nMonos );
}
// get the results
vPolyn = Gia_PolynGetResult( pHashC, pHashM, vCoefs );
printf( "HashC = %d. HashM = %d. Total = %d. Left = %d. Used = %d. ",
Hsh_VecSize(pHashC), Hsh_VecSize(pHashM), nBuilds, nMonos, Vec_WecSize(vPolyn)/2 );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
for ( i = 0; i < 4; i++ )
Vec_IntFree( vTempC[i] );
for ( i = 0; i < 4; i++ )
Vec_IntFree( vTempM[i] );
Vec_IntFree( vCoefs );
Vec_WecFree( vLit2Mono );
Hsh_VecManStop( pHashC );
Hsh_VecManStop( pHashM );
return vPolyn;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Gia_PolynBuild2Test( Gia_Man_t * pGia, int nExtra, int fSigned, int fVerbose, int fVeryVerbose )
{
Vec_Wec_t * vPolyn;
Vec_Int_t * vRootLits = Vec_IntAlloc( Gia_ManCoNum(pGia) );
Vec_Int_t * vLeaves = Vec_IntAlloc( Gia_ManCiNum(pGia) );
Vec_Int_t * vNodes = Vec_IntAlloc( Gia_ManAndNum(pGia) );
Gia_Obj_t * pObj;
int i;
// print logic level
if ( nExtra == -1 )
{
int LevelMax = -1, iMax = -1;
Gia_ManLevelNum( pGia );
Gia_ManForEachCo( pGia, pObj, i )
if ( LevelMax < Gia_ObjLevel(pGia, pObj) )
{
LevelMax = Gia_ObjLevel(pGia, pObj);
iMax = i;
}
nExtra = Gia_ManCoNum(pGia) - iMax - 1;
printf( "Determined the number of extra outputs to be %d.\n", nExtra );
}
Gia_ManForEachObj( pGia, pObj, i )
if ( Gia_ObjIsCi(pObj) )
Vec_IntPush( vLeaves, i );
else if ( Gia_ObjIsAnd(pObj) )
Vec_IntPush( vNodes, i );
else if ( Gia_ObjIsCo(pObj) )
Vec_IntPush( vRootLits, Gia_ObjFaninLit0p(pGia, pObj) );
vPolyn = Gia_PolynBuildNew( pGia, vRootLits, nExtra, vLeaves, vNodes, fSigned, fVerbose, fVeryVerbose );
//printf( "Polynomial has %d monomials.\n", Vec_WecSize(vPolyn)/2 );
if ( fVerbose || fVeryVerbose )
Gia_PolynPrintStats( vPolyn );
if ( fVeryVerbose )
Gia_PolynPrint( vPolyn );
Vec_WecFree( vPolyn );
Vec_IntFree( vRootLits );
Vec_IntFree( vLeaves );
Vec_IntFree( vNodes );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END