blob: 9bf64bd22286e04a75a741fc93ecac0c79796db0 [file] [log] [blame]
/**CFile****************************************************************
FileName [fraigNode.c]
PackageName [FRAIG: Functionally reduced AND-INV graphs.]
Synopsis [Implementation of the FRAIG node.]
Author [Alan Mishchenko <alanmi@eecs.berkeley.edu>]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - October 1, 2004]
Revision [$Id: fraigNode.c,v 1.3 2005/07/08 01:01:32 alanmi Exp $]
***********************************************************************/
#include "fraigInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// returns the complemented attribute of the node
#define Fraig_NodeIsSimComplement(p) (Fraig_IsComplement(p)? !(Fraig_Regular(p)->fInv) : (p)->fInv)
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Creates the constant 1 node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fraig_Node_t * Fraig_NodeCreateConst( Fraig_Man_t * p )
{
Fraig_Node_t * pNode;
// create the node
pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
memset( pNode, 0, sizeof(Fraig_Node_t) );
// assign the number and add to the array of nodes
pNode->Num = p->vNodes->nSize;
Fraig_NodeVecPush( p->vNodes, pNode );
pNode->NumPi = -1; // this is not a PI, so its number is -1
pNode->Level = 0; // just like a PI, it has 0 level
pNode->nRefs = 1; // it is a persistent node, which comes referenced
pNode->fInv = 1; // the simulation info is complemented
// create the simulation info
pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
pNode->puSimD = pNode->puSimR + p->nWordsRand;
memset( pNode->puSimR, 0, sizeof(unsigned) * p->nWordsRand );
memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );
// count the number of ones in the simulation vector
pNode->nOnes = p->nWordsRand * sizeof(unsigned) * 8;
// insert it into the hash table
Fraig_HashTableLookupF0( p, pNode );
return pNode;
}
/**Function*************************************************************
Synopsis [Creates a primary input node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fraig_Node_t * Fraig_NodeCreatePi( Fraig_Man_t * p )
{
Fraig_Node_t * pNode, * pNodeRes;
int i;
abctime clk;
// create the node
pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
memset( pNode, 0, sizeof(Fraig_Node_t) );
pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
pNode->puSimD = pNode->puSimR + p->nWordsRand;
memset( pNode->puSimD, 0, sizeof(unsigned) * p->nWordsDyna );
// assign the number and add to the array of nodes
pNode->Num = p->vNodes->nSize;
Fraig_NodeVecPush( p->vNodes, pNode );
// assign the PI number and add to the array of primary inputs
pNode->NumPi = p->vInputs->nSize;
Fraig_NodeVecPush( p->vInputs, pNode );
pNode->Level = 0; // PI has 0 level
pNode->nRefs = 1; // it is a persistent node, which comes referenced
pNode->fInv = 0; // the simulation info of the PI is not complemented
// derive the simulation info for the new node
clk = Abc_Clock();
// set the random simulation info for the primary input
pNode->uHashR = 0;
for ( i = 0; i < p->nWordsRand; i++ )
{
// generate the simulation info
pNode->puSimR[i] = FRAIG_RANDOM_UNSIGNED;
// for reasons that take very long to explain, it makes sense to have (0000000...)
// pattern in the set (this helps if we need to return the counter-examples)
if ( i == 0 )
pNode->puSimR[i] <<= 1;
// compute the hash key
pNode->uHashR ^= pNode->puSimR[i] * s_FraigPrimes[i];
}
// count the number of ones in the simulation vector
pNode->nOnes = Fraig_BitStringCountOnes( pNode->puSimR, p->nWordsRand );
// set the systematic simulation info for the primary input
pNode->uHashD = 0;
for ( i = 0; i < p->iWordStart; i++ )
{
// generate the simulation info
pNode->puSimD[i] = FRAIG_RANDOM_UNSIGNED;
// compute the hash key
pNode->uHashD ^= pNode->puSimD[i] * s_FraigPrimes[i];
}
p->timeSims += Abc_Clock() - clk;
// insert it into the hash table
pNodeRes = Fraig_HashTableLookupF( p, pNode );
assert( pNodeRes == NULL );
// add to the runtime of simulation
return pNode;
}
/**Function*************************************************************
Synopsis [Creates a new node.]
Description [This procedure should be called to create the constant
node and the PI nodes first.]
SideEffects []
SeeAlso []
***********************************************************************/
Fraig_Node_t * Fraig_NodeCreate( Fraig_Man_t * p, Fraig_Node_t * p1, Fraig_Node_t * p2 )
{
Fraig_Node_t * pNode;
abctime clk;
// create the node
pNode = (Fraig_Node_t *)Fraig_MemFixedEntryFetch( p->mmNodes );
memset( pNode, 0, sizeof(Fraig_Node_t) );
// assign the children
pNode->p1 = p1; Fraig_Ref(p1); Fraig_Regular(p1)->nRefs++;
pNode->p2 = p2; Fraig_Ref(p2); Fraig_Regular(p2)->nRefs++;
// assign the number and add to the array of nodes
pNode->Num = p->vNodes->nSize;
Fraig_NodeVecPush( p->vNodes, pNode );
// assign the PI number
pNode->NumPi = -1;
// compute the level of this node
pNode->Level = 1 + Abc_MaxInt(Fraig_Regular(p1)->Level, Fraig_Regular(p2)->Level);
pNode->fInv = Fraig_NodeIsSimComplement(p1) & Fraig_NodeIsSimComplement(p2);
pNode->fFailTfo = Fraig_Regular(p1)->fFailTfo | Fraig_Regular(p2)->fFailTfo;
// derive the simulation info
clk = Abc_Clock();
// allocate memory for the simulation info
pNode->puSimR = (unsigned *)Fraig_MemFixedEntryFetch( p->mmSims );
pNode->puSimD = pNode->puSimR + p->nWordsRand;
// derive random simulation info
pNode->uHashR = 0;
Fraig_NodeSimulate( pNode, 0, p->nWordsRand, 1 );
// derive dynamic simulation info
pNode->uHashD = 0;
Fraig_NodeSimulate( pNode, 0, p->iWordStart, 0 );
// count the number of ones in the random simulation info
pNode->nOnes = Fraig_BitStringCountOnes( pNode->puSimR, p->nWordsRand );
if ( pNode->fInv )
pNode->nOnes = p->nWordsRand * 32 - pNode->nOnes;
// add to the runtime of simulation
p->timeSims += Abc_Clock() - clk;
#ifdef FRAIG_ENABLE_FANOUTS
// create the fanout info
Fraig_NodeAddFaninFanout( Fraig_Regular(p1), pNode );
Fraig_NodeAddFaninFanout( Fraig_Regular(p2), pNode );
#endif
return pNode;
}
/**Function*************************************************************
Synopsis [Simulates the node.]
Description [Simulates the random or dynamic simulation info through
the node. Uses phases of the children to determine their real simulation
info. Uses phase of the node to determine the way its simulation info
is stored. The resulting info is guaranteed to be 0 for the first pattern.]
SideEffects [This procedure modified the hash value of the simulation info.]
SeeAlso []
***********************************************************************/
void Fraig_NodeSimulate( Fraig_Node_t * pNode, int iWordStart, int iWordStop, int fUseRand )
{
unsigned * pSims, * pSims1, * pSims2;
unsigned uHash;
int fCompl, fCompl1, fCompl2, i;
assert( !Fraig_IsComplement(pNode) );
// get hold of the simulation information
pSims = fUseRand? pNode->puSimR : pNode->puSimD;
pSims1 = fUseRand? Fraig_Regular(pNode->p1)->puSimR : Fraig_Regular(pNode->p1)->puSimD;
pSims2 = fUseRand? Fraig_Regular(pNode->p2)->puSimR : Fraig_Regular(pNode->p2)->puSimD;
// get complemented attributes of the children using their random info
fCompl = pNode->fInv;
fCompl1 = Fraig_NodeIsSimComplement(pNode->p1);
fCompl2 = Fraig_NodeIsSimComplement(pNode->p2);
// simulate
uHash = 0;
if ( fCompl1 && fCompl2 )
{
if ( fCompl )
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = (pSims1[i] | pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
else
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = ~(pSims1[i] | pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
}
else if ( fCompl1 && !fCompl2 )
{
if ( fCompl )
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = (pSims1[i] | ~pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
else
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = (~pSims1[i] & pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
}
else if ( !fCompl1 && fCompl2 )
{
if ( fCompl )
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = (~pSims1[i] | pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
else
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = (pSims1[i] & ~pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
}
else // if ( !fCompl1 && !fCompl2 )
{
if ( fCompl )
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = ~(pSims1[i] & pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
else
for ( i = iWordStart; i < iWordStop; i++ )
{
pSims[i] = (pSims1[i] & pSims2[i]);
uHash ^= pSims[i] * s_FraigPrimes[i];
}
}
if ( fUseRand )
pNode->uHashR ^= uHash;
else
pNode->uHashD ^= uHash;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END