blob: bc4e3ffc91f93940239fd0ff3e86660a0e4026d5 [file] [log] [blame]
/**CFile****************************************************************
FileName [pdrInv.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Property driven reachability.]
Synopsis [Invariant computation, printing, verification.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - November 20, 2010.]
Revision [$Id: pdrInv.c,v 1.00 2010/11/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "pdrInt.h"
#include "base/abc/abc.h" // for Abc_NtkCollectCioNames()
#include "base/main/main.h" // for Abc_FrameReadGlobalFrame()
#include "aig/ioa/ioa.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pdr_ManPrintProgress( Pdr_Man_t * p, int fClose, abctime Time )
{
Vec_Ptr_t * vVec;
int i, ThisSize, Length, LengthStart;
if ( Vec_PtrSize(p->vSolvers) < 2 )
{
Abc_Print(1, "Frame " );
Abc_Print(1, "Clauses " );
Abc_Print(1, "Max Queue " );
Abc_Print(1, "Flops " );
Abc_Print(1, "Cex " );
Abc_Print(1, "Time" );
Abc_Print(1, "\n" );
return;
}
if ( Abc_FrameIsBatchMode() && !fClose )
return;
// count the total length of the printout
Length = 0;
Vec_VecForEachLevel( p->vClauses, vVec, i )
Length += 1 + Abc_Base10Log(Vec_PtrSize(vVec)+1);
// determine the starting point
LengthStart = Abc_MaxInt( 0, Length - 60 );
Abc_Print( 1, "%3d :", Vec_PtrSize(p->vSolvers)-1 );
ThisSize = 5;
if ( LengthStart > 0 )
{
Abc_Print( 1, " ..." );
ThisSize += 4;
}
Length = 0;
Vec_VecForEachLevel( p->vClauses, vVec, i )
{
if ( Length < LengthStart )
{
Length += 1 + Abc_Base10Log(Vec_PtrSize(vVec)+1);
continue;
}
Abc_Print( 1, " %d", Vec_PtrSize(vVec) );
Length += 1 + Abc_Base10Log(Vec_PtrSize(vVec)+1);
ThisSize += 1 + Abc_Base10Log(Vec_PtrSize(vVec)+1);
}
for ( i = ThisSize; i < 70; i++ )
Abc_Print( 1, " " );
Abc_Print( 1, "%5d", p->nQueMax );
Abc_Print( 1, "%6d", p->vAbsFlops ? Vec_IntCountPositive(p->vAbsFlops) : p->nAbsFlops );
if ( p->pPars->fUseAbs )
Abc_Print( 1, "%4d", p->nCexes );
Abc_Print( 1, "%10.2f sec", 1.0*Time/CLOCKS_PER_SEC );
if ( p->pPars->fSolveAll )
Abc_Print( 1, " CEX =%4d", p->pPars->nFailOuts );
if ( p->pPars->nTimeOutOne )
Abc_Print( 1, " T/O =%3d", p->pPars->nDropOuts );
Abc_Print( 1, "%s", fClose ? "\n":"\r" );
if ( fClose )
p->nQueMax = 0, p->nCexes = 0;
fflush( stdout );
}
/**Function*************************************************************
Synopsis [Counts how many times each flop appears in the set of cubes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Pdr_ManCountFlops( Pdr_Man_t * p, Vec_Ptr_t * vCubes )
{
Vec_Int_t * vFlopCount;
Pdr_Set_t * pCube;
int i, n;
vFlopCount = Vec_IntStart( Aig_ManRegNum(p->pAig) );
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 )
continue;
for ( n = 0; n < pCube->nLits; n++ )
{
assert( pCube->Lits[n] >= 0 && pCube->Lits[n] < 2*Aig_ManRegNum(p->pAig) );
Vec_IntAddToEntry( vFlopCount, pCube->Lits[n] >> 1, 1 );
}
}
return vFlopCount;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Pdr_ManFindInvariantStart( Pdr_Man_t * p )
{
Vec_Ptr_t * vArrayK;
int k, kMax = Vec_PtrSize(p->vSolvers)-1;
Vec_VecForEachLevelStartStop( p->vClauses, vArrayK, k, 1, kMax+1 )
if ( Vec_PtrSize(vArrayK) == 0 )
return k;
// return -1;
// if there is no starting point (as in case of SAT or undecided), return the last frame
// Abc_Print( 1, "The last timeframe contains %d clauses.\n", Vec_PtrSize(Vec_VecEntry(p->vClauses, kMax)) );
return kMax;
}
/**Function*************************************************************
Synopsis [Counts the number of variables used in the clauses.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Pdr_ManCollectCubes( Pdr_Man_t * p, int kStart )
{
Vec_Ptr_t * vResult;
Vec_Ptr_t * vArrayK;
Pdr_Set_t * pSet;
int i, j;
vResult = Vec_PtrAlloc( 100 );
Vec_VecForEachLevelStart( p->vClauses, vArrayK, i, kStart )
Vec_PtrForEachEntry( Pdr_Set_t *, vArrayK, pSet, j )
Vec_PtrPush( vResult, pSet );
return vResult;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Pdr_ManCountFlopsInv( Pdr_Man_t * p )
{
int kStart = Pdr_ManFindInvariantStart(p);
Vec_Ptr_t *vCubes = Pdr_ManCollectCubes(p, kStart);
Vec_Int_t * vInv = Pdr_ManCountFlops( p, vCubes );
Vec_PtrFree(vCubes);
return vInv;
}
/**Function*************************************************************
Synopsis [Counts the number of variables used in the clauses.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Pdr_ManCountVariables( Pdr_Man_t * p, int kStart )
{
Vec_Int_t * vFlopCounts;
Vec_Ptr_t * vCubes;
int i, Entry, Counter = 0;
if ( p->vInfCubes == NULL )
vCubes = Pdr_ManCollectCubes( p, kStart );
else
vCubes = Vec_PtrDup( p->vInfCubes );
vFlopCounts = Pdr_ManCountFlops( p, vCubes );
Vec_IntForEachEntry( vFlopCounts, Entry, i )
Counter += (Entry > 0);
Vec_IntFreeP( &vFlopCounts );
Vec_PtrFree( vCubes );
return Counter;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pdr_ManPrintClauses( Pdr_Man_t * p, int kStart )
{
Vec_Ptr_t * vArrayK;
Pdr_Set_t * pCube;
int i, k, Counter = 0;
Vec_VecForEachLevelStart( p->vClauses, vArrayK, k, kStart )
{
Vec_PtrSort( vArrayK, (int (*)(void))Pdr_SetCompare );
Vec_PtrForEachEntry( Pdr_Set_t *, vArrayK, pCube, i )
{
Abc_Print( 1, "C=%4d. F=%4d ", Counter++, k );
Pdr_SetPrint( stdout, pCube, Aig_ManRegNum(p->pAig), NULL );
Abc_Print( 1, "\n" );
}
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pdr_SetPrintOne( Pdr_Set_t * p )
{
int i;
Abc_Print(1, "Clause: {" );
for ( i = 0; i < p->nLits; i++ )
Abc_Print(1, " %s%d", Abc_LitIsCompl(p->Lits[i])? "!":"", Abc_Lit2Var(p->Lits[i]) );
Abc_Print(1, " }\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Pdr_ManDupAigWithClauses( Aig_Man_t * p, Vec_Ptr_t * vCubes )
{
Aig_Man_t * pNew;
Aig_Obj_t * pObj, * pObjNew, * pLit;
Pdr_Set_t * pCube;
int i, n;
// create the new manager
pNew = Aig_ManStart( Aig_ManObjNumMax(p) );
pNew->pName = Abc_UtilStrsav( p->pName );
pNew->pSpec = Abc_UtilStrsav( p->pSpec );
// create the PIs
Aig_ManCleanData( p );
Aig_ManConst1(p)->pData = Aig_ManConst1(pNew);
Aig_ManForEachCi( p, pObj, i )
pObj->pData = Aig_ObjCreateCi( pNew );
// create outputs for each cube
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
// Pdr_SetPrintOne( pCube );
pObjNew = Aig_ManConst1(pNew);
for ( n = 0; n < pCube->nLits; n++ )
{
assert( Abc_Lit2Var(pCube->Lits[n]) < Saig_ManRegNum(p) );
pLit = Aig_NotCond( Aig_ManCi(pNew, Saig_ManPiNum(p) + Abc_Lit2Var(pCube->Lits[n])), Abc_LitIsCompl(pCube->Lits[n]) );
pObjNew = Aig_And( pNew, pObjNew, pLit );
}
Aig_ObjCreateCo( pNew, pObjNew );
}
// duplicate internal nodes
Aig_ManForEachNode( p, pObj, i )
pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// add the POs
Saig_ManForEachLi( p, pObj, i )
Aig_ObjCreateCo( pNew, Aig_ObjChild0Copy(pObj) );
Aig_ManCleanup( pNew );
Aig_ManSetRegNum( pNew, Aig_ManRegNum(p) );
// check the resulting network
if ( !Aig_ManCheck(pNew) )
Abc_Print(1, "Aig_ManDupSimple(): The check has failed.\n" );
return pNew;
}
void Pdr_ManDumpAig( Aig_Man_t * p, Vec_Ptr_t * vCubes )
{
Aig_Man_t * pNew = Pdr_ManDupAigWithClauses( p, vCubes );
Ioa_WriteAiger( pNew, "aig_with_clauses.aig", 0, 0 );
Aig_ManStop( pNew );
Abc_Print(1, "Dumped modified AIG into file \"aig_with_clauses.aig\".\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pdr_ManDumpClauses( Pdr_Man_t * p, char * pFileName, int fProved )
{
FILE * pFile;
Vec_Int_t * vFlopCounts;
Vec_Ptr_t * vCubes;
Pdr_Set_t * pCube;
char ** pNamesCi;
int i, kStart, Count = 0;
// create file
pFile = fopen( pFileName, "w" );
if ( pFile == NULL )
{
Abc_Print( 1, "Cannot open file \"%s\" for writing invariant.\n", pFileName );
return;
}
// collect cubes
kStart = Pdr_ManFindInvariantStart( p );
if ( fProved )
vCubes = Pdr_ManCollectCubes( p, kStart );
else
vCubes = Vec_PtrDup( p->vInfCubes );
Vec_PtrSort( vCubes, (int (*)(void))Pdr_SetCompare );
// Pdr_ManDumpAig( p->pAig, vCubes );
// count cubes
Count = 0;
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 )
continue;
Count++;
}
// collect variable appearances
vFlopCounts = p->pPars->fUseSupp ? Pdr_ManCountFlops( p, vCubes ) : NULL;
// output the header
if ( fProved )
fprintf( pFile, "# Inductive invariant for \"%s\"\n", p->pAig->pName );
else
fprintf( pFile, "# Clauses of the last timeframe for \"%s\"\n", p->pAig->pName );
fprintf( pFile, "# generated by PDR in ABC on %s\n", Aig_TimeStamp() );
fprintf( pFile, ".i %d\n", p->pPars->fUseSupp ? Pdr_ManCountVariables(p, kStart) : Aig_ManRegNum(p->pAig) );
fprintf( pFile, ".o 1\n" );
fprintf( pFile, ".p %d\n", Count );
// output flop names
pNamesCi = Abc_NtkCollectCioNames( Abc_FrameReadNtk( Abc_FrameReadGlobalFrame() ), 0 );
if ( pNamesCi )
{
fprintf( pFile, ".ilb" );
for ( i = 0; i < Aig_ManRegNum(p->pAig); i++ )
if ( !p->pPars->fUseSupp || Vec_IntEntry( vFlopCounts, i ) )
fprintf( pFile, " %s", pNamesCi[Saig_ManPiNum(p->pAig) + i] );
fprintf( pFile, "\n" );
ABC_FREE( pNamesCi );
fprintf( pFile, ".ob inv\n" );
}
// output cubes
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 )
continue;
Pdr_SetPrint( pFile, pCube, Aig_ManRegNum(p->pAig), vFlopCounts );
fprintf( pFile, " 1\n" );
}
fprintf( pFile, ".e\n\n" );
fclose( pFile );
Vec_IntFreeP( &vFlopCounts );
Vec_PtrFree( vCubes );
if ( fProved )
Abc_Print( 1, "Inductive invariant was written into file \"%s\".\n", pFileName );
else
Abc_Print( 1, "Clauses of the last timeframe were written into file \"%s\".\n", pFileName );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Str_t * Pdr_ManDumpString( Pdr_Man_t * p )
{
Vec_Str_t * vStr;
Vec_Int_t * vFlopCounts;
Vec_Ptr_t * vCubes;
Pdr_Set_t * pCube;
int i, kStart;
vStr = Vec_StrAlloc( 1000 );
// collect cubes
kStart = Pdr_ManFindInvariantStart( p );
if ( p->vInfCubes == NULL )
vCubes = Pdr_ManCollectCubes( p, kStart );
else
vCubes = Vec_PtrDup( p->vInfCubes );
Vec_PtrSort( vCubes, (int (*)(void))Pdr_SetCompare );
// collect variable appearances
vFlopCounts = p->pPars->fUseSupp ? Pdr_ManCountFlops( p, vCubes ) : NULL;
// output cubes
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 )
continue;
Pdr_SetPrintStr( vStr, pCube, Aig_ManRegNum(p->pAig), vFlopCounts );
}
Vec_IntFreeP( &vFlopCounts );
Vec_PtrFree( vCubes );
Vec_StrPush( vStr, '\0' );
return vStr;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pdr_ManReportInvariant( Pdr_Man_t * p )
{
Vec_Ptr_t * vCubes;
int kStart = Pdr_ManFindInvariantStart( p );
vCubes = Pdr_ManCollectCubes( p, kStart );
Abc_Print( 1, "Invariant F[%d] : %d clauses with %d flops (out of %d) (cex = %d, ave = %.2f)\n",
kStart, Vec_PtrSize(vCubes), Pdr_ManCountVariables(p, kStart), Aig_ManRegNum(p->pAig), p->nCexesTotal, 1.0*p->nXsimLits/p->nXsimRuns );
// Abc_Print( 1, "Invariant F[%d] : %d clauses with %d flops (out of %d)\n",
// kStart, Vec_PtrSize(vCubes), Pdr_ManCountVariables(p, kStart), Aig_ManRegNum(p->pAig) );
Vec_PtrFree( vCubes );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Pdr_ManVerifyInvariant( Pdr_Man_t * p )
{
sat_solver * pSat;
Vec_Int_t * vLits;
Vec_Ptr_t * vCubes;
Pdr_Set_t * pCube;
int i, kStart, kThis, RetValue, Counter = 0;
abctime clk = Abc_Clock();
// collect cubes used in the inductive invariant
kStart = Pdr_ManFindInvariantStart( p );
vCubes = Pdr_ManCollectCubes( p, kStart );
// create solver with the cubes
kThis = Vec_PtrSize(p->vSolvers);
pSat = Pdr_ManCreateSolver( p, kThis );
// add the property output
// Pdr_ManSetPropertyOutput( p, kThis );
// add the clauses
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
vLits = Pdr_ManCubeToLits( p, kThis, pCube, 1, 0 );
RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits) );
assert( RetValue );
sat_solver_compress( pSat );
}
// check each clause
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
vLits = Pdr_ManCubeToLits( p, kThis, pCube, 0, 1 );
RetValue = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), 0, 0, 0, 0 );
if ( RetValue != l_False )
{
Abc_Print( 1, "Verification of clause %d failed.\n", i );
Counter++;
}
}
if ( Counter )
Abc_Print( 1, "Verification of %d clauses has failed.\n", Counter );
else
{
Abc_Print( 1, "Verification of invariant with %d clauses was successful. ", Vec_PtrSize(vCubes) );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
// sat_solver_delete( pSat );
Vec_PtrFree( vCubes );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Pdr_ManDeriveMarkNonInductive( Pdr_Man_t * p, Vec_Ptr_t * vCubes )
{
sat_solver * pSat;
Vec_Int_t * vLits;
Pdr_Set_t * pCube;
int i, kThis, RetValue, fChanges = 0, Counter = 0;
// create solver with the cubes
kThis = Vec_PtrSize(p->vSolvers);
pSat = Pdr_ManCreateSolver( p, kThis );
// add the clauses
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 ) // skip non-inductive
continue;
vLits = Pdr_ManCubeToLits( p, kThis, pCube, 1, 0 );
RetValue = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits) );
assert( RetValue );
sat_solver_compress( pSat );
}
// check each clause
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 ) // skip non-inductive
continue;
vLits = Pdr_ManCubeToLits( p, kThis, pCube, 0, 1 );
RetValue = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), 0, 0, 0, 0 );
if ( RetValue != l_False ) // mark as non-inductive
{
pCube->nRefs = -1;
fChanges = 1;
}
else
Counter++;
}
//Abc_Print(1, "Clauses = %d.\n", Counter );
//sat_solver_delete( pSat );
return fChanges;
}
Vec_Int_t * Pdr_ManDeriveInfinityClauses( Pdr_Man_t * p, int fReduce )
{
Vec_Int_t * vResult;
Vec_Ptr_t * vCubes;
Pdr_Set_t * pCube;
int i, v, kStart;
// collect cubes used in the inductive invariant
kStart = Pdr_ManFindInvariantStart( p );
vCubes = Pdr_ManCollectCubes( p, kStart );
// refine as long as there are changes
if ( fReduce )
while ( Pdr_ManDeriveMarkNonInductive(p, vCubes) );
// collect remaining clauses
vResult = Vec_IntAlloc( 1000 );
Vec_IntPush( vResult, 0 );
Vec_PtrForEachEntry( Pdr_Set_t *, vCubes, pCube, i )
{
if ( pCube->nRefs == -1 ) // skip non-inductive
continue;
Vec_IntAddToEntry( vResult, 0, 1 );
Vec_IntPush( vResult, pCube->nLits );
for ( v = 0; v < pCube->nLits; v++ )
Vec_IntPush( vResult, pCube->Lits[v] );
}
//Vec_PtrFree( vCubes );
Vec_PtrFreeP( &p->vInfCubes );
p->vInfCubes = vCubes;
Vec_IntPush( vResult, Aig_ManRegNum(p->pAig) );
return vResult;
}
/**Function*************************************************************
Synopsis [Remove clauses while maintaining the invariant.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
#define Pdr_ForEachCube( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += pCut[0] + 1 )
Vec_Int_t * Pdr_InvMap( Vec_Int_t * vCounts )
{
int i, k = 0, Count;
Vec_Int_t * vMap = Vec_IntStart( Vec_IntSize(vCounts) );
Vec_IntForEachEntry( vCounts, Count, i )
if ( Count )
Vec_IntWriteEntry( vMap, i, k++ );
return vMap;
}
Vec_Int_t * Pdr_InvCounts( Vec_Int_t * vInv )
{
int i, k, * pCube, * pList = Vec_IntArray(vInv);
Vec_Int_t * vCounts = Vec_IntStart( Vec_IntEntryLast(vInv) );
Pdr_ForEachCube( pList, pCube, i )
for ( k = 0; k < pCube[0]; k++ )
Vec_IntAddToEntry( vCounts, Abc_Lit2Var(pCube[k+1]), 1 );
return vCounts;
}
int Pdr_InvUsedFlopNum( Vec_Int_t * vInv )
{
Vec_Int_t * vCounts = Pdr_InvCounts( vInv );
int nZeros = Vec_IntCountZero( vCounts );
Vec_IntFree( vCounts );
return Vec_IntEntryLast(vInv) - nZeros;
}
Vec_Str_t * Pdr_InvPrintStr( Vec_Int_t * vInv, Vec_Int_t * vCounts )
{
Vec_Str_t * vStr = Vec_StrAlloc( 1000 );
Vec_Int_t * vMap = Pdr_InvMap( vCounts );
int nVars = Vec_IntSize(vCounts) - Vec_IntCountZero(vCounts);
int i, k, * pCube, * pList = Vec_IntArray(vInv);
char * pBuffer = ABC_ALLOC( char, nVars );
for ( i = 0; i < nVars; i++ )
pBuffer[i] = '-';
Pdr_ForEachCube( pList, pCube, i )
{
for ( k = 0; k < pCube[0]; k++ )
pBuffer[Vec_IntEntry(vMap, Abc_Lit2Var(pCube[k+1]))] = '0' + !Abc_LitIsCompl(pCube[k+1]);
for ( k = 0; k < nVars; k++ )
Vec_StrPush( vStr, pBuffer[k] );
Vec_StrPush( vStr, ' ' );
Vec_StrPush( vStr, '1' );
Vec_StrPush( vStr, '\n' );
for ( k = 0; k < pCube[0]; k++ )
pBuffer[Vec_IntEntry(vMap, Abc_Lit2Var(pCube[k+1]))] = '-';
}
Vec_StrPush( vStr, '\0' );
ABC_FREE( pBuffer );
Vec_IntFree( vMap );
return vStr;
}
void Pdr_InvPrint( Vec_Int_t * vInv, int fVerbose )
{
Abc_Print(1, "Invariant contains %d clauses with %d literals and %d flops (out of %d).\n", Vec_IntEntry(vInv, 0), Vec_IntSize(vInv)-Vec_IntEntry(vInv, 0)-2, Pdr_InvUsedFlopNum(vInv), Vec_IntEntryLast(vInv) );
if ( fVerbose )
{
Vec_Int_t * vCounts = Pdr_InvCounts( vInv );
Vec_Str_t * vStr = Pdr_InvPrintStr( vInv, vCounts );
Abc_Print(1, "%s", Vec_StrArray( vStr ) );
Vec_IntFree( vCounts );
Vec_StrFree( vStr );
}
}
int Pdr_InvCheck_int( Gia_Man_t * p, Vec_Int_t * vInv, int fVerbose, sat_solver * pSat, int fSkip )
{
int nBTLimit = 0;
int fCheckProperty = 1;
int i, k, status, nFailed = 0, nFailedOuts = 0;
// collect cubes
int * pCube, * pList = Vec_IntArray(vInv);
// create variables
Vec_Int_t * vLits = Vec_IntAlloc(100);
int iFoVarBeg = sat_solver_nvars(pSat) - Gia_ManRegNum(p);
int iFiVarBeg = 1 + Gia_ManPoNum(p);
// add cubes
Pdr_ForEachCube( pList, pCube, i )
{
// collect literals
Vec_IntClear( vLits );
for ( k = 0; k < pCube[0]; k++ )
if ( pCube[k+1] != -1 )
Vec_IntPush( vLits, Abc_Var2Lit(iFoVarBeg + Abc_Lit2Var(pCube[k+1]), !Abc_LitIsCompl(pCube[k+1])) );
if ( Vec_IntSize(vLits) == 0 )
{
Vec_IntFree( vLits );
return 1;
}
// add it to the solver
status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) );
assert( status == 1 );
}
// verify property output
if ( fCheckProperty )
{
for ( i = 0; i < Gia_ManPoNum(p); i++ )
{
Vec_IntFill( vLits, 1, Abc_Var2Lit(1+i, 0) );
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
if ( status == l_Undef ) // timeout
break;
if ( status == l_True ) // sat - property fails
{
if ( fVerbose )
Abc_Print(1, "Coverage check failed for output %d.\n", i );
nFailedOuts++;
if ( fSkip )
{
Vec_IntFree( vLits );
return 1;
}
continue;
}
assert( status == l_False ); // unsat - property holds
}
}
// iterate through cubes in the direct order
Pdr_ForEachCube( pList, pCube, i )
{
// collect cube
Vec_IntClear( vLits );
for ( k = 0; k < pCube[0]; k++ )
if ( pCube[k+1] != -1 )
Vec_IntPush( vLits, Abc_Var2Lit(iFiVarBeg + Abc_Lit2Var(pCube[k+1]), Abc_LitIsCompl(pCube[k+1])) );
// check if this cube intersects with the complement of other cubes in the solver
// if it does not intersect, then it is redundant and can be skipped
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
if ( status != l_True && fVerbose )
Abc_Print(1, "Finished checking clause %d (out of %d)...\r", i, pList[0] );
if ( status == l_Undef ) // timeout
break;
if ( status == l_False ) // unsat -- correct
continue;
assert( status == l_True );
if ( fVerbose )
Abc_Print(1, "Inductiveness check failed for clause %d.\n", i );
nFailed++;
if ( fSkip )
{
Vec_IntFree( vLits );
return 1;
}
}
Vec_IntFree( vLits );
return nFailed + nFailedOuts;
}
int Pdr_InvCheck( Gia_Man_t * p, Vec_Int_t * vInv, int fVerbose )
{
int RetValue;
Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8, 0, 0, 0, 0 );
sat_solver * pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
assert( sat_solver_nvars(pSat) == pCnf->nVars );
Cnf_DataFree( pCnf );
RetValue = Pdr_InvCheck_int( p, vInv, fVerbose, pSat, 0 );
sat_solver_delete( pSat );
return RetValue;
}
Vec_Int_t * Pdr_InvMinimize( Gia_Man_t * p, Vec_Int_t * vInv, int fVerbose )
{
int nBTLimit = 0;
int fCheckProperty = 1;
abctime clk = Abc_Clock();
int n, i, k, status, nLits, fFailed = 0, fCannot = 0, nRemoved = 0;
Vec_Int_t * vRes = NULL;
// create SAT solver
Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8, 0, 0, 0, 0 );
sat_solver * pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
int * pCube, * pList = Vec_IntArray(vInv), nCubes = pList[0];
// create variables
Vec_Int_t * vLits = Vec_IntAlloc(100);
Vec_Bit_t * vRemoved = Vec_BitStart( nCubes );
int iFoVarBeg = pCnf->nVars - Gia_ManRegNum(p);
int iFiVarBeg = 1 + Gia_ManPoNum(p);
int iAuxVarBeg = sat_solver_nvars(pSat);
// allocate auxiliary variables
assert( sat_solver_nvars(pSat) == pCnf->nVars );
sat_solver_setnvars( pSat, sat_solver_nvars(pSat) + nCubes );
// add clauses
Pdr_ForEachCube( pList, pCube, i )
{
// collect literals
Vec_IntFill( vLits, 1, Abc_Var2Lit(iAuxVarBeg + i, 1) ); // neg aux literal
for ( k = 0; k < pCube[0]; k++ )
Vec_IntPush( vLits, Abc_Var2Lit(iFoVarBeg + Abc_Lit2Var(pCube[k+1]), !Abc_LitIsCompl(pCube[k+1])) );
// add it to the solver
status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) );
assert( status == 1 );
}
// iterate through clauses
Pdr_ForEachCube( pList, pCube, i )
{
if ( Vec_BitEntry(vRemoved, i) )
continue;
// collect aux literals for remaining clauses
Vec_IntClear( vLits );
for ( k = 0; k < nCubes; k++ )
if ( k != i && !Vec_BitEntry(vRemoved, k) ) // skip this cube and already removed cubes
Vec_IntPush( vLits, Abc_Var2Lit(iAuxVarBeg + k, 0) ); // pos aux literal
nLits = Vec_IntSize( vLits );
// check if the property still holds
if ( fCheckProperty )
{
for ( k = 0; k < Gia_ManPoNum(p); k++ )
{
Vec_IntShrink( vLits, nLits );
Vec_IntPush( vLits, Abc_Var2Lit(1+k, 0) );
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
if ( status == l_Undef ) // timeout
{
fFailed = 1;
break;
}
if ( status == l_True ) // sat - property fails
break;
assert( status == l_False ); // unsat - property holds
}
if ( fFailed )
break;
if ( k < Gia_ManPoNum(p) )
continue;
}
// check other clauses
fCannot = 0;
Pdr_ForEachCube( pList, pCube, n )
{
if ( Vec_BitEntry(vRemoved, n) || n == i )
continue;
// collect cube
Vec_IntShrink( vLits, nLits );
for ( k = 0; k < pCube[0]; k++ )
Vec_IntPush( vLits, Abc_Var2Lit(iFiVarBeg + Abc_Lit2Var(pCube[k+1]), Abc_LitIsCompl(pCube[k+1])) );
// check if this cube intersects with the complement of other cubes in the solver
// if it does not intersect, then it is redundant and can be skipped
status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
if ( status == l_Undef ) // timeout
{
fFailed = 1;
break;
}
if ( status == l_False ) // unsat -- correct
continue;
assert( status == l_True );
// cannot remove
fCannot = 1;
break;
}
if ( fFailed )
break;
if ( fCannot )
continue;
if ( fVerbose )
Abc_Print(1, "Removing clause %d.\n", i );
Vec_BitWriteEntry( vRemoved, i, 1 );
nRemoved++;
}
if ( nRemoved )
Abc_Print(1, "Invariant minimization reduced %d clauses (out of %d). ", nRemoved, nCubes );
else
Abc_Print(1, "Invariant minimization did not change the invariant. " );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
// cleanup cover
if ( !fFailed && nRemoved > 0 ) // finished without timeout and removed some cubes
{
vRes = Vec_IntAlloc( 1000 );
Vec_IntPush( vRes, nCubes-nRemoved );
Pdr_ForEachCube( pList, pCube, i )
if ( !Vec_BitEntry(vRemoved, i) )
for ( k = 0; k <= pCube[0]; k++ )
Vec_IntPush( vRes, pCube[k] );
Vec_IntPush( vRes, Vec_IntEntryLast(vInv) );
}
Cnf_DataFree( pCnf );
sat_solver_delete( pSat );
Vec_BitFree( vRemoved );
Vec_IntFree( vLits );
return vRes;
}
Vec_Int_t * Pdr_InvMinimizeLits( Gia_Man_t * p, Vec_Int_t * vInv, int fVerbose )
{
Vec_Int_t * vRes = NULL;
abctime clk = Abc_Clock();
int i, k, nLits = 0, * pCube, * pList = Vec_IntArray(vInv), nRemoved = 0;
Cnf_Dat_t * pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, 8, 0, 0, 0, 0 );
sat_solver * pSat;
// sat_solver * pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
Pdr_ForEachCube( pList, pCube, i )
{
nLits += pCube[0];
for ( k = 0; k < pCube[0]; k++ )
{
int Save = pCube[k+1];
pCube[k+1] = -1;
//sat_solver_bookmark( pSat );
pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 );
if ( Pdr_InvCheck_int(p, vInv, 0, pSat, 1) )
pCube[k+1] = Save;
else
{
if ( fVerbose )
Abc_Print(1, "Removing lit %d from clause %d.\n", k, i );
nRemoved++;
}
sat_solver_delete( pSat );
//sat_solver_rollback( pSat );
//sat_solver_bookmark( pSat );
}
}
Cnf_DataFree( pCnf );
//sat_solver_delete( pSat );
if ( nRemoved )
Abc_Print(1, "Invariant minimization reduced %d literals (out of %d). ", nRemoved, nLits );
else
Abc_Print(1, "Invariant minimization did not change the invariant. " );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
if ( nRemoved > 0 ) // finished without timeout and removed some lits
{
vRes = Vec_IntAlloc( 1000 );
Vec_IntPush( vRes, pList[0] );
Pdr_ForEachCube( pList, pCube, i )
{
int nLits = 0;
for ( k = 0; k < pCube[0]; k++ )
if ( pCube[k+1] != -1 )
nLits++;
Vec_IntPush( vRes, nLits );
for ( k = 0; k < pCube[0]; k++ )
if ( pCube[k+1] != -1 )
Vec_IntPush( vRes, pCube[k+1] );
}
Vec_IntPush( vRes, Vec_IntEntryLast(vInv) );
}
return vRes;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END