blob: 35260029d7a7b14822c17782a1a9cdd00573391a [file] [log] [blame]
/**CFile****************************************************************
FileName [fpgaVec.c]
PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]
Synopsis [Technology mapping for variable-size-LUT FPGAs.]
Author [MVSIS Group]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - August 18, 2004.]
Revision [$Id: fpgaVec.c,v 1.3 2005/01/23 06:59:42 alanmi Exp $]
***********************************************************************/
#include "fpgaInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static int Fpga_NodeVecCompareLevels( Fpga_Node_t ** pp1, Fpga_Node_t ** pp2 );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocates a vector with the given capacity.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_NodeVecAlloc( int nCap )
{
Fpga_NodeVec_t * p;
p = ABC_ALLOC( Fpga_NodeVec_t, 1 );
if ( nCap > 0 && nCap < 16 )
nCap = 16;
p->nSize = 0;
p->nCap = nCap;
p->pArray = p->nCap? ABC_ALLOC( Fpga_Node_t *, p->nCap ) : NULL;
return p;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecFree( Fpga_NodeVec_t * p )
{
ABC_FREE( p->pArray );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_Node_t ** Fpga_NodeVecReadArray( Fpga_NodeVec_t * p )
{
return p->pArray;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_NodeVecReadSize( Fpga_NodeVec_t * p )
{
return p->nSize;
}
/**Function*************************************************************
Synopsis [Resizes the vector to the given capacity.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecGrow( Fpga_NodeVec_t * p, int nCapMin )
{
if ( p->nCap >= nCapMin )
return;
p->pArray = ABC_REALLOC( Fpga_Node_t *, p->pArray, nCapMin );
p->nCap = nCapMin;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecShrink( Fpga_NodeVec_t * p, int nSizeNew )
{
assert( p->nSize >= nSizeNew );
p->nSize = nSizeNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecClear( Fpga_NodeVec_t * p )
{
p->nSize = 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecPush( Fpga_NodeVec_t * p, Fpga_Node_t * Entry )
{
if ( p->nSize == p->nCap )
{
if ( p->nCap < 16 )
Fpga_NodeVecGrow( p, 16 );
else
Fpga_NodeVecGrow( p, 2 * p->nCap );
}
p->pArray[p->nSize++] = Entry;
}
/**Function*************************************************************
Synopsis [Add the element while ensuring uniqueness.]
Description [Returns 1 if the element was found, and 0 if it was new. ]
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_NodeVecPushUnique( Fpga_NodeVec_t * p, Fpga_Node_t * Entry )
{
int i;
for ( i = 0; i < p->nSize; i++ )
if ( p->pArray[i] == Entry )
return 1;
Fpga_NodeVecPush( p, Entry );
return 0;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_Node_t * Fpga_NodeVecPop( Fpga_NodeVec_t * p )
{
return p->pArray[--p->nSize];
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecWriteEntry( Fpga_NodeVec_t * p, int i, Fpga_Node_t * Entry )
{
assert( i >= 0 && i < p->nSize );
p->pArray[i] = Entry;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_Node_t * Fpga_NodeVecReadEntry( Fpga_NodeVec_t * p, int i )
{
assert( i >= 0 && i < p->nSize );
return p->pArray[i];
}
/**Function*************************************************************
Synopsis [Comparison procedure for two nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_NodeVecCompareLevels( Fpga_Node_t ** pp1, Fpga_Node_t ** pp2 )
{
int Level1 = Fpga_Regular(*pp1)->Level;
int Level2 = Fpga_Regular(*pp2)->Level;
if ( Level1 < Level2 )
return -1;
if ( Level1 > Level2 )
return 1;
if ( Fpga_Regular(*pp1)->Num < Fpga_Regular(*pp2)->Num )
return -1;
if ( Fpga_Regular(*pp1)->Num > Fpga_Regular(*pp2)->Num )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Sorting the entries by their integer value.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecSortByLevel( Fpga_NodeVec_t * p )
{
qsort( (void *)p->pArray, p->nSize, sizeof(Fpga_Node_t *),
(int (*)(const void *, const void *)) Fpga_NodeVecCompareLevels );
}
/**Function*************************************************************
Synopsis [Compares the arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_NodeVecCompareArrivals( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
if ( (*ppS1)->pCutBest->tArrival < (*ppS2)->pCutBest->tArrival )
return -1;
if ( (*ppS1)->pCutBest->tArrival > (*ppS2)->pCutBest->tArrival )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Orders the nodes in the increasing order of the arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_SortNodesByArrivalTimes( Fpga_NodeVec_t * p )
{
qsort( (void *)p->pArray, p->nSize, sizeof(Fpga_Node_t *),
(int (*)(const void *, const void *)) Fpga_NodeVecCompareArrivals );
// assert( Fpga_CompareNodesByLevel( p->pArray, p->pArray + p->nSize - 1 ) <= 0 );
}
/**Function*************************************************************
Synopsis [Computes the union of nodes in two arrays.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecUnion( Fpga_NodeVec_t * p, Fpga_NodeVec_t * p1, Fpga_NodeVec_t * p2 )
{
int i;
Fpga_NodeVecClear( p );
for ( i = 0; i < p1->nSize; i++ )
Fpga_NodeVecPush( p, p1->pArray[i] );
for ( i = 0; i < p2->nSize; i++ )
Fpga_NodeVecPush( p, p2->pArray[i] );
}
/**Function*************************************************************
Synopsis [Inserts a new node in the order by arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecPushOrder( Fpga_NodeVec_t * vNodes, Fpga_Node_t * pNode, int fIncreasing )
{
Fpga_Node_t * pNode1, * pNode2;
int i;
Fpga_NodeVecPush( vNodes, pNode );
// find the place of the node
for ( i = vNodes->nSize-1; i > 0; i-- )
{
pNode1 = vNodes->pArray[i ];
pNode2 = vNodes->pArray[i-1];
if (( fIncreasing && pNode1->pCutBest->tArrival >= pNode2->pCutBest->tArrival) ||
(!fIncreasing && pNode1->pCutBest->tArrival <= pNode2->pCutBest->tArrival) )
break;
vNodes->pArray[i ] = pNode2;
vNodes->pArray[i-1] = pNode1;
}
}
/**Function*************************************************************
Synopsis [Inserts a new node in the order by arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_NodeVecReverse( Fpga_NodeVec_t * vNodes )
{
Fpga_Node_t * pNode1, * pNode2;
int i;
for ( i = 0; i < vNodes->nSize/2; i++ )
{
pNode1 = vNodes->pArray[i];
pNode2 = vNodes->pArray[vNodes->nSize-1-i];
vNodes->pArray[i] = pNode2;
vNodes->pArray[vNodes->nSize-1-i] = pNode1;
}
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END