| #include <cstdio> |
| #include <ctime> |
| #include <cmath> |
| #include <sstream> |
| #include <map> |
| |
| #include "vtr_assert.h" |
| #include "vtr_memory.h" |
| #include "vtr_util.h" |
| |
| #include "vpr_types.h" |
| #include "vpr_error.h" |
| #include "physical_types.h" |
| #include "globals.h" |
| #include "place.h" |
| #include "read_xml_arch_file.h" |
| #include "place_macro.h" |
| #include "vpr_utils.h" |
| #include "echo_files.h" |
| |
| /******************** File-scope variables declarations **********************/ |
| |
| /* f_idirect_from_blk_pin array allow us to quickly find pins that could be in a * |
| * direct connection. Values stored is the index of the possible direct connection * |
| * as specified in the arch file, OPEN (-1) is stored for pins that could not be * |
| * part of a direct chain conneciton. * |
| * [0...device_ctx.num_block_types-1][0...num_pins-1] */ |
| static int** f_idirect_from_blk_pin = nullptr; |
| |
| /* f_direct_type_from_blk_pin array stores the value SOURCE if the pin is the * |
| * from_pin, SINK if the pin is the to_pin in the direct connection as specified in * |
| * the arch file, OPEN (-1) is stored for pins that could not be part of a direct * |
| * chain conneciton. * |
| * [0...device_ctx.num_block_types-1][0...num_pins-1] */ |
| static int** f_direct_type_from_blk_pin = nullptr; |
| |
| /* f_imacro_from_blk_pin maps a blk_num to the corresponding macro index. * |
| * If the block is not part of a macro, the value OPEN (-1) is stored. * |
| * [0...cluster_ctx.clb_nlist.blocks().size()-1] */ |
| static vtr::vector_map<ClusterBlockId, int> f_imacro_from_iblk; |
| |
| /******************** Subroutine declarations ********************************/ |
| |
| static void find_all_the_macro(int* num_of_macro, std::vector<ClusterBlockId>& pl_macro_member_blk_num_of_this_blk, std::vector<int>& pl_macro_idirect, std::vector<int>& pl_macro_num_members, std::vector<std::vector<ClusterBlockId>>& pl_macro_member_blk_num); |
| |
| static void alloc_and_load_imacro_from_iblk(const std::vector<t_pl_macro>& macros); |
| |
| static void write_place_macros(std::string filename, const std::vector<t_pl_macro>& macros); |
| |
| static bool is_constant_clb_net(ClusterNetId clb_net); |
| |
| static bool net_is_driven_by_direct(ClusterNetId clb_net); |
| |
| static void validate_macros(const std::vector<t_pl_macro>& macros); |
| |
| static bool try_combine_macros(std::vector<std::vector<ClusterBlockId>>& pl_macro_member_blk_num, int matching_macro, int latest_macro); |
| /******************** Subroutine definitions *********************************/ |
| |
| static void find_all_the_macro(int* num_of_macro, std::vector<ClusterBlockId>& pl_macro_member_blk_num_of_this_blk, std::vector<int>& pl_macro_idirect, std::vector<int>& pl_macro_num_members, std::vector<std::vector<ClusterBlockId>>& pl_macro_member_blk_num) { |
| /* Compute required size: * |
| * Go through all the pins with possible direct connections in * |
| * f_idirect_from_blk_pin. Count the number of heads (which is the same * |
| * as the number macros) and also the length of each macro * |
| * Head - blocks with to_pin OPEN and from_pin connected * |
| * Tail - blocks with to_pin connected and from_pin OPEN */ |
| |
| int from_iblk_pin, to_iblk_pin, from_idirect, to_idirect, |
| from_src_or_sink, to_src_or_sink; |
| ClusterNetId to_net_id, from_net_id, next_net_id, curr_net_id; |
| ClusterBlockId next_blk_id; |
| int num_blk_pins, num_macro; |
| int imember; |
| auto& cluster_ctx = g_vpr_ctx.clustering(); |
| |
| // Hash table holding the unique cluster ids and the macro id it belongs to |
| std::unordered_map<ClusterBlockId, int> clusters_macro; |
| |
| num_macro = 0; |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) { |
| num_blk_pins = physical_tile_type(blk_id)->num_pins; |
| for (to_iblk_pin = 0; to_iblk_pin < num_blk_pins; to_iblk_pin++) { |
| to_net_id = cluster_ctx.clb_nlist.block_net(blk_id, to_iblk_pin); |
| to_idirect = f_idirect_from_blk_pin[cluster_ctx.clb_nlist.block_type(blk_id)->index][to_iblk_pin]; |
| to_src_or_sink = f_direct_type_from_blk_pin[cluster_ctx.clb_nlist.block_type(blk_id)->index][to_iblk_pin]; |
| |
| // Identify potential macro head blocks (i.e. start of a macro) |
| // |
| // The input SINK (to_pin) of a potential HEAD macro will have either: |
| // * no connection to any net (OPEN), or |
| // * a connection to a constant net (e.g. gnd/vcc) which is not driven by a direct |
| // |
| // Note that the restriction that constant nets are not driven from another direct ensures that |
| // blocks in the middle of a chain with internal constant signals are not detected as potential |
| // head blocks. |
| if (to_src_or_sink == SINK && to_idirect != OPEN |
| && (to_net_id == ClusterNetId::INVALID() |
| || (is_constant_clb_net(to_net_id) |
| && !net_is_driven_by_direct(to_net_id)))) { |
| for (from_iblk_pin = 0; from_iblk_pin < num_blk_pins; from_iblk_pin++) { |
| from_net_id = cluster_ctx.clb_nlist.block_net(blk_id, from_iblk_pin); |
| from_idirect = f_idirect_from_blk_pin[cluster_ctx.clb_nlist.block_type(blk_id)->index][from_iblk_pin]; |
| from_src_or_sink = f_direct_type_from_blk_pin[cluster_ctx.clb_nlist.block_type(blk_id)->index][from_iblk_pin]; |
| |
| // Confirm whether this is a head macro |
| // |
| // The output SOURCE (from_pin) of a true head macro will: |
| // * drive another block with the same direct connection |
| if (from_src_or_sink == SOURCE && to_idirect == from_idirect && from_net_id != ClusterNetId::INVALID()) { |
| // Mark down that this is the first block in the macro |
| pl_macro_member_blk_num_of_this_blk[0] = blk_id; |
| pl_macro_idirect[num_macro] = to_idirect; |
| |
| // Increment the num_member count. |
| pl_macro_num_members[num_macro]++; |
| |
| // Also find out how many members are in the macros, |
| // there are at least 2 members - 1 head and 1 tail. |
| |
| // Initialize the variables |
| next_net_id = from_net_id; |
| next_blk_id = blk_id; |
| |
| // Start finding the other members |
| while (next_net_id != ClusterNetId::INVALID()) { |
| curr_net_id = next_net_id; |
| |
| // Assume that carry chains only has 1 sink - direct connection |
| VTR_ASSERT(cluster_ctx.clb_nlist.net_sinks(curr_net_id).size() == 1); |
| next_blk_id = cluster_ctx.clb_nlist.net_pin_block(curr_net_id, 1); |
| |
| // Assume that the from_iblk_pin index is the same for the next block |
| VTR_ASSERT(f_idirect_from_blk_pin[cluster_ctx.clb_nlist.block_type(next_blk_id)->index][from_iblk_pin] == from_idirect |
| && f_direct_type_from_blk_pin[cluster_ctx.clb_nlist.block_type(next_blk_id)->index][from_iblk_pin] == SOURCE); |
| next_net_id = cluster_ctx.clb_nlist.block_net(next_blk_id, from_iblk_pin); |
| |
| // Mark down this block as a member of the macro |
| imember = pl_macro_num_members[num_macro]; |
| pl_macro_member_blk_num_of_this_blk[imember] = next_blk_id; |
| |
| // Increment the num_member count. |
| pl_macro_num_members[num_macro]++; |
| |
| } // Found all the members of this macro at this point |
| |
| // Allocate the second dimension of the blk_num array since I now know the size |
| pl_macro_member_blk_num[num_macro].resize(pl_macro_num_members[num_macro]); |
| int matching_macro = -1; |
| // Copy the data from the temporary array to the newly allocated array. |
| for (imember = 0; imember < pl_macro_num_members[num_macro]; imember++) { |
| auto cluster_id = pl_macro_member_blk_num_of_this_blk[imember]; |
| pl_macro_member_blk_num[num_macro][imember] = cluster_id; |
| // check if this cluster block was in a previous macro |
| auto cluster_macro_pair = std::pair<ClusterBlockId, int>(cluster_id, num_macro); |
| if (!clusters_macro.insert(cluster_macro_pair).second) { |
| matching_macro = clusters_macro[cluster_id]; |
| } |
| } |
| |
| // one cluster from this macro is found in a previous macro try to combine both |
| // macros, since otherwise the program will fail when validating the macros. |
| if (matching_macro != -1) { |
| // try to combine the newly created macro with the found match |
| if (try_combine_macros(pl_macro_member_blk_num, matching_macro, num_macro)) { |
| // the newly created macro is combined with a previous macro |
| // reset the number of members of the newly created macro since it's now removed |
| pl_macro_num_members[num_macro] = 0; |
| // update the number of blocks of the matching macro after combining it with the new macro |
| pl_macro_num_members[matching_macro] = pl_macro_member_blk_num[matching_macro].size(); |
| // decrement the number of found macros since the latest one is removed |
| num_macro--; |
| } |
| } |
| |
| // Increment the macro count |
| num_macro++; |
| |
| } // Do nothing if the from_pins does not have same possible direct connection. |
| } // Finish going through all the pins for from_pins. |
| } // Do nothing if the to_pins does not have same possible direct connection. |
| } // Finish going through all the pins for to_pins. |
| } // Finish going through all blocks. |
| |
| // Now, all the data is readily stored in the temporary data structures. |
| *num_of_macro = num_macro; |
| } |
| |
| static bool try_combine_macros(std::vector<std::vector<ClusterBlockId>>& pl_macro_member_blk_num, int matching_macro, int latest_macro) { |
| /* This function takes two placement macro ids which have a common cluster block |
| * or more in between. The function then tries to find if the two macros could |
| * be combined together to form a larger macro. If it's impossible to combine |
| * the two macros together then this design will never place and route. |
| * Arguments: |
| * pl_macro_member_blk_num : [0..num_macros-1][0..num_cluster_blocks-1] 2D array |
| * of macros created so far. |
| * matching_macro : first macro id, which is a previous macro that is found to have the same block |
| * latest_macro : second macro id, which is the macro being created at this iteration */ |
| |
| auto& old_macro_blocks = pl_macro_member_blk_num[matching_macro]; |
| auto& new_macro_blocks = pl_macro_member_blk_num[latest_macro]; |
| |
| // Algorithm: |
| // 1) Combining two macros is valid when the first block of one of the two macros |
| // matches one of the blocks in the other macro. Examples for valid cases: |
| // |
| // Case 1: Macro 2 is a subset of Macro 1 |
| // |
| // Macro 1 (and Combined Macro) |
| // --- |
| // |0|<--- First Macro 2 |
| // --- --- |
| // |1|<---- Match ---->|1|<--- First |
| // --- --- |
| // |2| |2|<---- ClusterBlockId |
| // --- --- |
| // |3| |
| // --- |
| // |
| // Case 2: Macro 2 is an extension of Macro 1 |
| // |
| // Macro 1 Macro 2 Combined Macro |
| // --- --- --- |
| //First --->|0| ---------->|2|<--- First |0| |
| // --- | --- --- |
| // |1| Match |3| |1| |
| // --- | --- ========> --- |
| // |2|<------ |4| |2| |
| // --- --- --- |
| // |3| |5| |3| |
| // --- --- --- |
| // |4| |
| // --- |
| // |5| |
| // --- |
| // |
| // 2) Starting from this match and going forward in both macros all the blocks |
| // should match till we reach the end of one of the macros or both of them. |
| // 3) If combining the macros is valid, create a new macro that is the union |
| // of both macros. |
| // 4) Replace the old macro with this new combined macro. |
| |
| // Step 1) find the staring point of the matching |
| auto new_macro_it = new_macro_blocks.begin(); |
| auto old_macro_it = std::find(old_macro_blocks.begin(), old_macro_blocks.end(), *new_macro_it); |
| if (old_macro_it == old_macro_blocks.end()) { |
| old_macro_it = old_macro_blocks.begin(); |
| new_macro_it = std::find(new_macro_blocks.begin(), new_macro_blocks.end(), *old_macro_it); |
| // if matching is from the middle of the two macros, then combining macros is not possible |
| if (new_macro_it == new_macro_blocks.end()) { |
| return false; |
| } |
| } |
| |
| // Store the first part of the combined macro. Similar to blocks 0 -> 1 in case 2 |
| std::vector<ClusterBlockId> combined_macro; |
| // old_macro is similar to Macro 1 in case 2 |
| if (old_macro_it != old_macro_blocks.begin()) { |
| combined_macro.insert(combined_macro.begin(), old_macro_blocks.begin(), old_macro_it); |
| // new_macro is similar to Macro 1 in case 2 |
| } else { |
| combined_macro.insert(combined_macro.begin(), new_macro_blocks.begin(), new_macro_it); |
| } |
| |
| // Step 2) The matching block between the two macros is found, move forward |
| // from the matching block to find if combining both macros is valid or not |
| while (old_macro_it != old_macro_blocks.end() && new_macro_it != new_macro_blocks.end()) { |
| // block ids should match till the end of one |
| // of the macros or both of them is reached |
| if (*old_macro_it != *new_macro_it) { |
| return false; |
| } |
| // add the block id to the combined macro |
| combined_macro.push_back(*old_macro_it); |
| // go to the next block in both macros |
| old_macro_it++; |
| new_macro_it++; |
| } |
| |
| // Store the last part of the combined macro. Similar to blocks 4 -> 5 in case 2. |
| if (old_macro_it != old_macro_blocks.end()) { |
| // old_macro is similar to Macro 2 in case 2 |
| combined_macro.insert(combined_macro.end(), old_macro_it, old_macro_blocks.end()); |
| } else if (new_macro_it != new_macro_blocks.end()) { |
| // new_macro is similar to Macro 2 in case 2 |
| combined_macro.insert(combined_macro.end(), new_macro_it, new_macro_blocks.end()); |
| } |
| |
| // updated the old macro in the 2D array of macros with the new combined macro |
| pl_macro_member_blk_num[matching_macro] = combined_macro; |
| // remove the newly created macro which is now included in another macro |
| pl_macro_member_blk_num[latest_macro].clear(); |
| |
| return true; |
| } |
| |
| std::vector<t_pl_macro> alloc_and_load_placement_macros(t_direct_inf* directs, int num_directs) { |
| /* This function allocates and loads the macros placement macros * |
| * and returns the total number of macros in 2 steps. * |
| * 1) Allocate temporary data structure for maximum possible * |
| * size and loops through all the blocks storing the data * |
| * relevant to the carry chains. At the same time, also count * |
| * the amount of memory required for the actual variables. * |
| * 2) Allocate the actual variables with the exact amount of * |
| * memory. Then loads the data from the temporary data * |
| * structures before freeing them. * |
| * * |
| * For pl_macro_member_blk_num, allocate for the first dimension * |
| * only at first. Allocate for the second dimension when I know * |
| * the size. Otherwise, the array is going to be of size * |
| * cluster_ctx.clb_nlist.blocks().size()^2 (There are big * |
| * benckmarks VPR that have cluster_ctx.clb_nlist.blocks().size() * |
| * in the 100k's range). * |
| * * |
| * The placement macro array is freed by the caller(s). */ |
| |
| /* Declaration of local variables */ |
| int num_macro; |
| auto& cluster_ctx = g_vpr_ctx.clustering(); |
| |
| /* Allocate maximum memory for temporary variables. */ |
| std::vector<int> pl_macro_idirect(cluster_ctx.clb_nlist.blocks().size()); |
| std::vector<int> pl_macro_num_members(cluster_ctx.clb_nlist.blocks().size()); |
| std::vector<std::vector<ClusterBlockId>> pl_macro_member_blk_num(cluster_ctx.clb_nlist.blocks().size()); |
| std::vector<ClusterBlockId> pl_macro_member_blk_num_of_this_blk(cluster_ctx.clb_nlist.blocks().size()); |
| |
| /* Sets up the required variables. */ |
| alloc_and_load_idirect_from_blk_pin(directs, num_directs, |
| &f_idirect_from_blk_pin, &f_direct_type_from_blk_pin); |
| |
| /* Compute required size: * |
| * Go through all the pins with possible direct connections in * |
| * f_idirect_from_blk_pin. Count the number of heads (which is the same * |
| * as the number macros) and also the length of each macro * |
| * Head - blocks with to_pin OPEN and from_pin connected * |
| * Tail - blocks with to_pin connected and from_pin OPEN */ |
| num_macro = 0; |
| find_all_the_macro(&num_macro, pl_macro_member_blk_num_of_this_blk, |
| pl_macro_idirect, pl_macro_num_members, pl_macro_member_blk_num); |
| |
| /* Allocate the memories for the macro. */ |
| std::vector<t_pl_macro> macros(num_macro); |
| |
| /* Allocate the memories for the chain members. * |
| * Load the values from the temporary data structures. */ |
| for (int imacro = 0; imacro < num_macro; imacro++) { |
| macros[imacro].members = std::vector<t_pl_macro_member>(pl_macro_num_members[imacro]); |
| |
| /* Load the values for each member of the macro */ |
| for (size_t imember = 0; imember < macros[imacro].members.size(); imember++) { |
| macros[imacro].members[imember].offset.x = imember * directs[pl_macro_idirect[imacro]].x_offset; |
| macros[imacro].members[imember].offset.y = imember * directs[pl_macro_idirect[imacro]].y_offset; |
| macros[imacro].members[imember].offset.z = directs[pl_macro_idirect[imacro]].z_offset; |
| macros[imacro].members[imember].blk_index = pl_macro_member_blk_num[imacro][imember]; |
| } |
| } |
| |
| if (isEchoFileEnabled(E_ECHO_PLACE_MACROS)) { |
| write_place_macros(getEchoFileName(E_ECHO_PLACE_MACROS), macros); |
| } |
| |
| validate_macros(macros); |
| |
| return macros; |
| } |
| |
| void get_imacro_from_iblk(int* imacro, ClusterBlockId iblk, const std::vector<t_pl_macro>& macros) { |
| /* This mapping is needed for fast lookup's whether the block with index * |
| * iblk belongs to a placement macro or not. * |
| * * |
| * The array f_imacro_from_iblk is used for the mapping for speed reason * |
| * [0...cluster_ctx.clb_nlist.blocks().size()-1] */ |
| |
| /* If the array is not allocated and loaded, allocate it. */ |
| if (f_imacro_from_iblk.size() == 0) { |
| alloc_and_load_imacro_from_iblk(macros); |
| } |
| |
| if (iblk) { |
| /* Return the imacro for the block. */ |
| *imacro = f_imacro_from_iblk[iblk]; |
| } else { |
| *imacro = OPEN; //No valid block, so no valid macro |
| } |
| } |
| |
| /* Allocates and loads imacro_from_iblk array. */ |
| static void alloc_and_load_imacro_from_iblk(const std::vector<t_pl_macro>& macros) { |
| auto& cluster_ctx = g_vpr_ctx.clustering(); |
| |
| f_imacro_from_iblk.resize(cluster_ctx.clb_nlist.blocks().size()); |
| |
| /* Allocate and initialize the values to OPEN (-1). */ |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) { |
| f_imacro_from_iblk.insert(blk_id, OPEN); |
| } |
| |
| /* Load the values */ |
| for (size_t imacro = 0; imacro < macros.size(); imacro++) { |
| for (size_t imember = 0; imember < macros[imacro].members.size(); imember++) { |
| ClusterBlockId blk_id = macros[imacro].members[imember].blk_index; |
| f_imacro_from_iblk.insert(blk_id, imacro); |
| } |
| } |
| } |
| |
| void free_placement_macros_structs() { |
| /* This function frees up all the static data structures used. */ |
| |
| // This frees up the two arrays and set the pointers to NULL |
| auto& device_ctx = g_vpr_ctx.device(); |
| unsigned int itype; |
| if (f_idirect_from_blk_pin != nullptr) { |
| for (itype = 1; itype < device_ctx.physical_tile_types.size(); itype++) { |
| free(f_idirect_from_blk_pin[itype]); |
| } |
| free(f_idirect_from_blk_pin); |
| f_idirect_from_blk_pin = nullptr; |
| } |
| |
| if (f_direct_type_from_blk_pin != nullptr) { |
| for (itype = 1; itype < device_ctx.physical_tile_types.size(); itype++) { |
| free(f_direct_type_from_blk_pin[itype]); |
| } |
| free(f_direct_type_from_blk_pin); |
| f_direct_type_from_blk_pin = nullptr; |
| } |
| } |
| |
| static void write_place_macros(std::string filename, const std::vector<t_pl_macro>& macros) { |
| FILE* f = vtr::fopen(filename.c_str(), "w"); |
| |
| auto& cluster_ctx = g_vpr_ctx.clustering(); |
| |
| fprintf(f, "#Identified Placement macros\n"); |
| fprintf(f, "Num_Macros: %zu\n", macros.size()); |
| for (size_t imacro = 0; imacro < macros.size(); ++imacro) { |
| const t_pl_macro* macro = ¯os[imacro]; |
| fprintf(f, "Macro_Id: %zu, Num_Blocks: %zu\n", imacro, macro->members.size()); |
| fprintf(f, "------------------------------------------------------\n"); |
| for (size_t imember = 0; imember < macro->members.size(); ++imember) { |
| const t_pl_macro_member* macro_memb = ¯o->members[imember]; |
| fprintf(f, "Block_Id: %zu (%s), x_offset: %d, y_offset: %d, z_offset: %d\n", |
| size_t(macro_memb->blk_index), |
| cluster_ctx.clb_nlist.block_name(macro_memb->blk_index).c_str(), |
| macro_memb->offset.x, |
| macro_memb->offset.y, |
| macro_memb->offset.z); |
| } |
| fprintf(f, "\n"); |
| } |
| |
| fprintf(f, "\n"); |
| |
| fprintf(f, "#Macro-related direct connections\n"); |
| fprintf(f, "type type_pin is_direct direct_type\n"); |
| fprintf(f, "------------------------------------------\n"); |
| auto& device_ctx = g_vpr_ctx.device(); |
| for (const auto& type : device_ctx.physical_tile_types) { |
| int itype = type.index; |
| for (int ipin = 0; ipin < type.num_pins; ++ipin) { |
| if (f_idirect_from_blk_pin[itype][ipin] != OPEN) { |
| if (f_direct_type_from_blk_pin[itype][ipin] == SOURCE) { |
| fprintf(f, "%-9s %-9d true SOURCE \n", type.name, ipin); |
| } else { |
| VTR_ASSERT(f_direct_type_from_blk_pin[itype][ipin] == SINK); |
| fprintf(f, "%-9s %-9d true SINK \n", type.name, ipin); |
| } |
| } else { |
| VTR_ASSERT(f_direct_type_from_blk_pin[itype][ipin] == OPEN); |
| } |
| } |
| } |
| |
| fclose(f); |
| } |
| |
| static bool is_constant_clb_net(ClusterNetId clb_net) { |
| auto& atom_ctx = g_vpr_ctx.atom(); |
| AtomNetId atom_net = atom_ctx.lookup.atom_net(clb_net); |
| |
| return atom_ctx.nlist.net_is_constant(atom_net); |
| } |
| |
| static bool net_is_driven_by_direct(ClusterNetId clb_net) { |
| auto& cluster_ctx = g_vpr_ctx.clustering(); |
| |
| ClusterBlockId block_id = cluster_ctx.clb_nlist.net_driver_block(clb_net); |
| int pin_index = cluster_ctx.clb_nlist.net_pin_physical_index(clb_net, 0); |
| |
| auto direct = f_idirect_from_blk_pin[cluster_ctx.clb_nlist.block_type(block_id)->index][pin_index]; |
| |
| return direct != OPEN; |
| } |
| |
| static void validate_macros(const std::vector<t_pl_macro>& macros) { |
| //Perform sanity checks on macros |
| auto& cluster_ctx = g_vpr_ctx.clustering(); |
| |
| //Verify that blocks only appear in a single macro |
| std::multimap<ClusterBlockId, int> block_to_macro; |
| for (size_t imacro = 0; imacro < macros.size(); ++imacro) { |
| for (size_t imember = 0; imember < macros[imacro].members.size(); ++imember) { |
| ClusterBlockId iblk = macros[imacro].members[imember].blk_index; |
| |
| block_to_macro.emplace(iblk, imacro); |
| } |
| } |
| |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) { |
| auto range = block_to_macro.equal_range(blk_id); |
| |
| int blk_macro_cnt = std::distance(range.first, range.second); |
| if (blk_macro_cnt > 1) { |
| std::stringstream msg; |
| msg << "Block #" << size_t(blk_id) << " '" << cluster_ctx.clb_nlist.block_name(blk_id) << "'" |
| << " appears in " << blk_macro_cnt << " placement macros (should appear in at most one). Related Macros:\n"; |
| |
| for (auto iter = range.first; iter != range.second; ++iter) { |
| int imacro = iter->second; |
| msg << " Macro #: " << imacro << "\n"; |
| } |
| |
| VPR_FATAL_ERROR(VPR_ERROR_PLACE, msg.str().c_str()); |
| } |
| } |
| } |