| /**CFile*********************************************************************** |
| |
| FileName [testcudd.c] |
| |
| PackageName [cudd] |
| |
| Synopsis [Sanity check tests for some CUDD functions.] |
| |
| Description [testcudd reads a matrix with real coefficients and |
| transforms it into an ADD. It then performs various operations on |
| the ADD and on the BDD corresponding to the ADD pattern. Finally, |
| testcudd tests functions relate to Walsh matrices and matrix |
| multiplication.] |
| |
| SeeAlso [] |
| |
| Author [Fabio Somenzi] |
| |
| Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
| |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| Neither the name of the University of Colorado nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE.] |
| |
| ******************************************************************************/ |
| |
| #include "util.h" |
| #include "cuddInt.h" |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Constant declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #define TESTCUDD_VERSION "TestCudd Version #1.0, Release date 3/17/01" |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Variable declarations */ |
| /*---------------------------------------------------------------------------*/ |
| |
| #ifndef lint |
| static char rcsid[] DD_UNUSED = "$Id: testcudd.c,v 1.20 2009/03/08 02:49:02 fabio Exp $"; |
| #endif |
| |
| static const char *onames[] = { "C", "M" }; /* names of functions to be dumped */ |
| |
| /**AutomaticStart*************************************************************/ |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Static function prototypes */ |
| /*---------------------------------------------------------------------------*/ |
| |
| static void usage (char * prog); |
| static FILE *open_file (char *filename, const char *mode); |
| static int testIterators (DdManager *dd, DdNode *M, DdNode *C, int pr); |
| static int testXor (DdManager *dd, DdNode *f, int pr, int nvars); |
| static int testHamming (DdManager *dd, DdNode *f, int pr); |
| static int testWalsh (DdManager *dd, int N, int cmu, int approach, int pr); |
| |
| /**AutomaticEnd***************************************************************/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Main function for testcudd.] |
| |
| Description [] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| int |
| main(int argc, char **argv) |
| { |
| FILE *fp; /* pointer to input file */ |
| char *file = (char *) ""; /* input file name */ |
| FILE *dfp = NULL; /* pointer to dump file */ |
| char *dfile; /* file for DD dump */ |
| DdNode *dfunc[2]; /* addresses of the functions to be dumped */ |
| DdManager *dd; /* pointer to DD manager */ |
| DdNode *one; /* fast access to constant function */ |
| DdNode *M; |
| DdNode **x; /* pointers to variables */ |
| DdNode **y; /* pointers to variables */ |
| DdNode **xn; /* complements of row variables */ |
| DdNode **yn_; /* complements of column variables */ |
| DdNode **xvars; |
| DdNode **yvars; |
| DdNode *C; /* result of converting from ADD to BDD */ |
| DdNode *ess; /* cube of essential variables */ |
| DdNode *shortP; /* BDD cube of shortest path */ |
| DdNode *largest; /* BDD of largest cube */ |
| DdNode *shortA; /* ADD cube of shortest path */ |
| DdNode *constN; /* value returned by evaluation of ADD */ |
| DdNode *ycube; /* cube of the negated y vars for c-proj */ |
| DdNode *CP; /* C-Projection of C */ |
| DdNode *CPr; /* C-Selection of C */ |
| int length; /* length of the shortest path */ |
| int nx; /* number of variables */ |
| int ny; |
| int maxnx; |
| int maxny; |
| int m; |
| int n; |
| int N; |
| int cmu; /* use CMU multiplication */ |
| int pr; /* verbose printout level */ |
| int harwell; |
| int multiple; /* read multiple matrices */ |
| int ok; |
| int c; /* variable to read in options */ |
| int approach; /* reordering approach */ |
| int autodyn; /* automatic reordering */ |
| int groupcheck; /* option for group sifting */ |
| int profile; /* print heap profile if != 0 */ |
| int keepperm; /* keep track of permutation */ |
| int clearcache; /* clear the cache after each matrix */ |
| int blifOrDot; /* dump format: 0 -> dot, 1 -> blif, ... */ |
| int retval; /* return value */ |
| int i; /* loop index */ |
| long startTime; /* initial time */ |
| long lapTime; |
| int size; |
| unsigned int cacheSize, maxMemory; |
| unsigned int nvars,nslots; |
| |
| startTime = util_cpu_time(); |
| |
| approach = CUDD_REORDER_NONE; |
| autodyn = 0; |
| pr = 0; |
| harwell = 0; |
| multiple = 0; |
| profile = 0; |
| keepperm = 0; |
| cmu = 0; |
| N = 4; |
| nvars = 4; |
| cacheSize = 127; |
| maxMemory = 0; |
| nslots = CUDD_UNIQUE_SLOTS; |
| clearcache = 0; |
| groupcheck = CUDD_GROUP_CHECK7; |
| dfile = NULL; |
| blifOrDot = 0; /* dot format */ |
| |
| /* Parse command line. */ |
| while ((c = util_getopt(argc, argv, (char *) "CDHMPS:a:bcd:g:hkmn:p:v:x:X:")) |
| != EOF) { |
| switch(c) { |
| case 'C': |
| cmu = 1; |
| break; |
| case 'D': |
| autodyn = 1; |
| break; |
| case 'H': |
| harwell = 1; |
| break; |
| case 'M': |
| #ifdef MNEMOSYNE |
| (void) mnem_setrecording(0); |
| #endif |
| break; |
| case 'P': |
| profile = 1; |
| break; |
| case 'S': |
| nslots = atoi(util_optarg); |
| break; |
| case 'X': |
| maxMemory = atoi(util_optarg); |
| break; |
| case 'a': |
| approach = atoi(util_optarg); |
| break; |
| case 'b': |
| blifOrDot = 1; /* blif format */ |
| break; |
| case 'c': |
| clearcache = 1; |
| break; |
| case 'd': |
| dfile = util_optarg; |
| break; |
| case 'g': |
| groupcheck = atoi(util_optarg); |
| break; |
| case 'k': |
| keepperm = 1; |
| break; |
| case 'm': |
| multiple = 1; |
| break; |
| case 'n': |
| N = atoi(util_optarg); |
| break; |
| case 'p': |
| pr = atoi(util_optarg); |
| break; |
| case 'v': |
| nvars = atoi(util_optarg); |
| break; |
| case 'x': |
| cacheSize = atoi(util_optarg); |
| break; |
| case 'h': |
| default: |
| usage(argv[0]); |
| break; |
| } |
| } |
| |
| if (argc - util_optind == 0) { |
| file = (char *) "-"; |
| } else if (argc - util_optind == 1) { |
| file = argv[util_optind]; |
| } else { |
| usage(argv[0]); |
| } |
| if ((approach<0) || (approach>17)) { |
| (void) fprintf(stderr,"Invalid approach: %d \n",approach); |
| usage(argv[0]); |
| } |
| |
| if (pr >= 0) { |
| (void) printf("# %s\n", TESTCUDD_VERSION); |
| /* Echo command line and arguments. */ |
| (void) printf("#"); |
| for (i = 0; i < argc; i++) { |
| (void) printf(" %s", argv[i]); |
| } |
| (void) printf("\n"); |
| (void) fflush(stdout); |
| } |
| |
| /* Initialize manager and provide easy reference to terminals. */ |
| dd = Cudd_Init(nvars,0,nslots,cacheSize,maxMemory); |
| one = DD_ONE(dd); |
| dd->groupcheck = (Cudd_AggregationType) groupcheck; |
| if (autodyn) Cudd_AutodynEnable(dd,CUDD_REORDER_SAME); |
| |
| /* Open input file. */ |
| fp = open_file(file, "r"); |
| |
| /* Open dump file if requested */ |
| if (dfile != NULL) { |
| dfp = open_file(dfile, "w"); |
| } |
| |
| x = y = xn = yn_ = NULL; |
| do { |
| /* We want to start anew for every matrix. */ |
| maxnx = maxny = 0; |
| nx = maxnx; ny = maxny; |
| if (pr>0) lapTime = util_cpu_time(); |
| if (harwell) { |
| if (pr >= 0) (void) printf(":name: "); |
| ok = Cudd_addHarwell(fp, dd, &M, &x, &y, &xn, &yn_, &nx, &ny, |
| &m, &n, 0, 2, 1, 2, pr); |
| } else { |
| ok = Cudd_addRead(fp, dd, &M, &x, &y, &xn, &yn_, &nx, &ny, |
| &m, &n, 0, 2, 1, 2); |
| if (pr >= 0) |
| (void) printf(":name: %s: %d rows %d columns\n", file, m, n); |
| } |
| if (!ok) { |
| (void) fprintf(stderr, "Error reading matrix\n"); |
| exit(1); |
| } |
| |
| if (nx > maxnx) maxnx = nx; |
| if (ny > maxny) maxny = ny; |
| |
| /* Build cube of negated y's. */ |
| ycube = DD_ONE(dd); |
| Cudd_Ref(ycube); |
| for (i = maxny - 1; i >= 0; i--) { |
| DdNode *tmpp; |
| tmpp = Cudd_bddAnd(dd,Cudd_Not(dd->vars[y[i]->index]),ycube); |
| if (tmpp == NULL) exit(2); |
| Cudd_Ref(tmpp); |
| Cudd_RecursiveDeref(dd,ycube); |
| ycube = tmpp; |
| } |
| /* Initialize vectors of BDD variables used by priority func. */ |
| xvars = ALLOC(DdNode *, nx); |
| if (xvars == NULL) exit(2); |
| for (i = 0; i < nx; i++) { |
| xvars[i] = dd->vars[x[i]->index]; |
| } |
| yvars = ALLOC(DdNode *, ny); |
| if (yvars == NULL) exit(2); |
| for (i = 0; i < ny; i++) { |
| yvars[i] = dd->vars[y[i]->index]; |
| } |
| |
| /* Clean up */ |
| for (i=0; i < maxnx; i++) { |
| Cudd_RecursiveDeref(dd, x[i]); |
| Cudd_RecursiveDeref(dd, xn[i]); |
| } |
| FREE(x); |
| FREE(xn); |
| for (i=0; i < maxny; i++) { |
| Cudd_RecursiveDeref(dd, y[i]); |
| Cudd_RecursiveDeref(dd, yn_[i]); |
| } |
| FREE(y); |
| FREE(yn_); |
| |
| if (pr>0) {(void) printf(":1: M"); Cudd_PrintDebug(dd,M,nx+ny,pr);} |
| |
| if (pr>0) (void) printf(":2: time to read the matrix = %s\n", |
| util_print_time(util_cpu_time() - lapTime)); |
| |
| C = Cudd_addBddPattern(dd, M); |
| if (C == 0) exit(2); |
| Cudd_Ref(C); |
| if (pr>0) {(void) printf(":3: C"); Cudd_PrintDebug(dd,C,nx+ny,pr);} |
| |
| /* Test iterators. */ |
| retval = testIterators(dd,M,C,pr); |
| if (retval == 0) exit(2); |
| |
| cuddCacheProfile(dd,stdout); |
| |
| /* Test XOR */ |
| retval = testXor(dd,C,pr,nx+ny); |
| if (retval == 0) exit(2); |
| |
| /* Test Hamming distance functions. */ |
| retval = testHamming(dd,C,pr); |
| if (retval == 0) exit(2); |
| |
| /* Test selection functions. */ |
| CP = Cudd_CProjection(dd,C,ycube); |
| if (CP == NULL) exit(2); |
| Cudd_Ref(CP); |
| if (pr>0) {(void) printf("ycube"); Cudd_PrintDebug(dd,ycube,nx+ny,pr);} |
| if (pr>0) {(void) printf("CP"); Cudd_PrintDebug(dd,CP,nx+ny,pr);} |
| |
| if (nx == ny) { |
| CPr = Cudd_PrioritySelect(dd,C,xvars,yvars,(DdNode **)NULL, |
| (DdNode *)NULL,ny,Cudd_Xgty); |
| if (CPr == NULL) exit(2); |
| Cudd_Ref(CPr); |
| if (pr>0) {(void) printf(":4: CPr"); Cudd_PrintDebug(dd,CPr,nx+ny,pr);} |
| if (CP != CPr) { |
| (void) printf("CP != CPr!\n"); |
| } |
| Cudd_RecursiveDeref(dd, CPr); |
| } |
| |
| /* Test inequality generator. */ |
| { |
| int Nmin = ddMin(nx,ny); |
| int q; |
| DdGen *gen; |
| int *cube; |
| DdNode *f = Cudd_Inequality(dd,Nmin,2,xvars,yvars); |
| if (f == NULL) exit(2); |
| Cudd_Ref(f); |
| if (pr>0) { |
| (void) printf(":4: ineq"); |
| Cudd_PrintDebug(dd,f,nx+ny,pr); |
| if (pr>1) { |
| Cudd_ForeachPrime(dd,Cudd_Not(f),Cudd_Not(f),gen,cube) { |
| for (q = 0; q < dd->size; q++) { |
| switch (cube[q]) { |
| case 0: |
| (void) printf("1"); |
| break; |
| case 1: |
| (void) printf("0"); |
| break; |
| case 2: |
| (void) printf("-"); |
| break; |
| default: |
| (void) printf("?"); |
| } |
| } |
| (void) printf(" 1\n"); |
| } |
| (void) printf("\n"); |
| } |
| } |
| Cudd_IterDerefBdd(dd, f); |
| } |
| FREE(xvars); FREE(yvars); |
| |
| Cudd_RecursiveDeref(dd, CP); |
| Cudd_RecursiveDeref(dd, ycube); |
| |
| /* Test functions for essential variables. */ |
| ess = Cudd_FindEssential(dd,C); |
| if (ess == NULL) exit(2); |
| Cudd_Ref(ess); |
| if (pr>0) {(void) printf(":4: ess"); Cudd_PrintDebug(dd,ess,nx+ny,pr);} |
| Cudd_RecursiveDeref(dd, ess); |
| |
| /* Test functions for shortest paths. */ |
| shortP = Cudd_ShortestPath(dd, M, NULL, NULL, &length); |
| if (shortP == NULL) exit(2); |
| Cudd_Ref(shortP); |
| if (pr>0) { |
| (void) printf(":5: shortP"); Cudd_PrintDebug(dd,shortP,nx+ny,pr); |
| } |
| /* Test functions for largest cubes. */ |
| largest = Cudd_LargestCube(dd, Cudd_Not(C), &length); |
| if (largest == NULL) exit(2); |
| Cudd_Ref(largest); |
| if (pr>0) { |
| (void) printf(":5b: largest"); |
| Cudd_PrintDebug(dd,largest,nx+ny,pr); |
| } |
| Cudd_RecursiveDeref(dd, largest); |
| |
| /* Test Cudd_addEvalConst and Cudd_addIteConstant. */ |
| shortA = Cudd_BddToAdd(dd,shortP); |
| if (shortA == NULL) exit(2); |
| Cudd_Ref(shortA); |
| Cudd_RecursiveDeref(dd, shortP); |
| constN = Cudd_addEvalConst(dd,shortA,M); |
| if (constN == DD_NON_CONSTANT) exit(2); |
| if (Cudd_addIteConstant(dd,shortA,M,constN) != constN) exit(2); |
| if (pr>0) {(void) printf("The value of M along the chosen shortest path is %g\n", cuddV(constN));} |
| Cudd_RecursiveDeref(dd, shortA); |
| |
| shortP = Cudd_ShortestPath(dd, C, NULL, NULL, &length); |
| if (shortP == NULL) exit(2); |
| Cudd_Ref(shortP); |
| if (pr>0) { |
| (void) printf(":6: shortP"); Cudd_PrintDebug(dd,shortP,nx+ny,pr); |
| } |
| |
| /* Test Cudd_bddIteConstant and Cudd_bddLeq. */ |
| if (!Cudd_bddLeq(dd,shortP,C)) exit(2); |
| if (Cudd_bddIteConstant(dd,Cudd_Not(shortP),one,C) != one) exit(2); |
| Cudd_RecursiveDeref(dd, shortP); |
| |
| if (profile) { |
| retval = cuddHeapProfile(dd); |
| } |
| |
| size = dd->size; |
| |
| if (pr>0) { |
| (void) printf("Average distance: %g\n", Cudd_AverageDistance(dd)); |
| } |
| |
| /* Reorder if so requested. */ |
| if (approach != CUDD_REORDER_NONE) { |
| #ifndef DD_STATS |
| retval = Cudd_EnableReorderingReporting(dd); |
| if (retval == 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_EnableReorderingReporting\n"); |
| exit(3); |
| } |
| #endif |
| #ifdef DD_DEBUG |
| retval = Cudd_DebugCheck(dd); |
| if (retval != 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); |
| exit(3); |
| } |
| retval = Cudd_CheckKeys(dd); |
| if (retval != 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_CheckKeys\n"); |
| exit(3); |
| } |
| #endif |
| retval = Cudd_ReduceHeap(dd,(Cudd_ReorderingType)approach,5); |
| if (retval == 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_ReduceHeap\n"); |
| exit(3); |
| } |
| #ifndef DD_STATS |
| retval = Cudd_DisableReorderingReporting(dd); |
| if (retval == 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_DisableReorderingReporting\n"); |
| exit(3); |
| } |
| #endif |
| #ifdef DD_DEBUG |
| retval = Cudd_DebugCheck(dd); |
| if (retval != 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); |
| exit(3); |
| } |
| retval = Cudd_CheckKeys(dd); |
| if (retval != 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_CheckKeys\n"); |
| exit(3); |
| } |
| #endif |
| if (approach == CUDD_REORDER_SYMM_SIFT || |
| approach == CUDD_REORDER_SYMM_SIFT_CONV) { |
| Cudd_SymmProfile(dd,0,dd->size-1); |
| } |
| |
| if (pr>0) { |
| (void) printf("Average distance: %g\n", Cudd_AverageDistance(dd)); |
| } |
| |
| if (keepperm) { |
| /* Print variable permutation. */ |
| (void) printf("Variable Permutation:"); |
| for (i=0; i<size; i++) { |
| if (i%20 == 0) (void) printf("\n"); |
| (void) printf("%d ", dd->invperm[i]); |
| } |
| (void) printf("\n"); |
| (void) printf("Inverse Permutation:"); |
| for (i=0; i<size; i++) { |
| if (i%20 == 0) (void) printf("\n"); |
| (void) printf("%d ", dd->perm[i]); |
| } |
| (void) printf("\n"); |
| } |
| |
| if (pr>0) {(void) printf("M"); Cudd_PrintDebug(dd,M,nx+ny,pr);} |
| |
| if (profile) { |
| retval = cuddHeapProfile(dd); |
| } |
| |
| } |
| |
| /* Dump DDs of C and M if so requested. */ |
| if (dfile != NULL) { |
| dfunc[0] = C; |
| dfunc[1] = M; |
| if (blifOrDot == 1) { |
| /* Only dump C because blif cannot handle ADDs */ |
| retval = Cudd_DumpBlif(dd,1,dfunc,NULL,(char **)onames, |
| NULL,dfp,0); |
| } else { |
| retval = Cudd_DumpDot(dd,2,dfunc,NULL,(char **)onames,dfp); |
| } |
| if (retval != 1) { |
| (void) fprintf(stderr,"abnormal termination\n"); |
| exit(2); |
| } |
| } |
| |
| Cudd_RecursiveDeref(dd, C); |
| Cudd_RecursiveDeref(dd, M); |
| |
| if (clearcache) { |
| if (pr>0) {(void) printf("Clearing the cache... ");} |
| for (i = dd->cacheSlots - 1; i>=0; i--) { |
| dd->cache[i].data = NIL(DdNode); |
| } |
| if (pr>0) {(void) printf("done\n");} |
| } |
| if (pr>0) { |
| (void) printf("Number of variables = %6d\t",dd->size); |
| (void) printf("Number of slots = %6u\n",dd->slots); |
| (void) printf("Number of keys = %6u\t",dd->keys); |
| (void) printf("Number of min dead = %6u\n",dd->minDead); |
| } |
| |
| } while (multiple && !feof(fp)); |
| |
| fclose(fp); |
| if (dfile != NULL) { |
| fclose(dfp); |
| } |
| |
| /* Second phase: experiment with Walsh matrices. */ |
| if (!testWalsh(dd,N,cmu,approach,pr)) { |
| exit(2); |
| } |
| |
| /* Check variable destruction. */ |
| assert(cuddDestroySubtables(dd,3)); |
| assert(Cudd_DebugCheck(dd) == 0); |
| assert(Cudd_CheckKeys(dd) == 0); |
| |
| retval = Cudd_CheckZeroRef(dd); |
| ok = retval != 0; /* ok == 0 means O.K. */ |
| if (retval != 0) { |
| (void) fprintf(stderr, |
| "%d non-zero DD reference counts after dereferencing\n", retval); |
| } |
| |
| if (pr >= 0) { |
| (void) Cudd_PrintInfo(dd,stdout); |
| } |
| |
| Cudd_Quit(dd); |
| |
| #ifdef MNEMOSYNE |
| mnem_writestats(); |
| #endif |
| |
| if (pr>0) (void) printf("total time = %s\n", |
| util_print_time(util_cpu_time() - startTime)); |
| |
| if (pr >= 0) util_print_cpu_stats(stdout); |
| exit(ok); |
| /* NOTREACHED */ |
| |
| } /* end of main */ |
| |
| |
| /*---------------------------------------------------------------------------*/ |
| /* Definition of static functions */ |
| /*---------------------------------------------------------------------------*/ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Prints usage info for testcudd.] |
| |
| Description [] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static void |
| usage(char *prog) |
| { |
| (void) fprintf(stderr, "usage: %s [options] [file]\n", prog); |
| (void) fprintf(stderr, " -C\t\tuse CMU multiplication algorithm\n"); |
| (void) fprintf(stderr, " -D\t\tenable automatic dynamic reordering\n"); |
| (void) fprintf(stderr, " -H\t\tread matrix in Harwell format\n"); |
| (void) fprintf(stderr, " -M\t\tturns off memory allocation recording\n"); |
| (void) fprintf(stderr, " -P\t\tprint BDD heap profile\n"); |
| (void) fprintf(stderr, " -S n\t\tnumber of slots for each subtable\n"); |
| (void) fprintf(stderr, " -X n\t\ttarget maximum memory in bytes\n"); |
| (void) fprintf(stderr, " -a n\t\tchoose reordering approach (0-13)\n"); |
| (void) fprintf(stderr, " \t\t\t0: same as autoMethod\n"); |
| (void) fprintf(stderr, " \t\t\t1: no reordering (default)\n"); |
| (void) fprintf(stderr, " \t\t\t2: random\n"); |
| (void) fprintf(stderr, " \t\t\t3: pivot\n"); |
| (void) fprintf(stderr, " \t\t\t4: sifting\n"); |
| (void) fprintf(stderr, " \t\t\t5: sifting to convergence\n"); |
| (void) fprintf(stderr, " \t\t\t6: symmetric sifting\n"); |
| (void) fprintf(stderr, " \t\t\t7: symmetric sifting to convergence\n"); |
| (void) fprintf(stderr, " \t\t\t8-10: window of size 2-4\n"); |
| (void) fprintf(stderr, " \t\t\t11-13: window of size 2-4 to conv.\n"); |
| (void) fprintf(stderr, " \t\t\t14: group sifting\n"); |
| (void) fprintf(stderr, " \t\t\t15: group sifting to convergence\n"); |
| (void) fprintf(stderr, " \t\t\t16: simulated annealing\n"); |
| (void) fprintf(stderr, " \t\t\t17: genetic algorithm\n"); |
| (void) fprintf(stderr, " -b\t\tuse blif as format for dumps\n"); |
| (void) fprintf(stderr, " -c\t\tclear the cache after each matrix\n"); |
| (void) fprintf(stderr, " -d file\tdump DDs to file\n"); |
| (void) fprintf(stderr, " -g\t\tselect aggregation criterion (0,5,7)\n"); |
| (void) fprintf(stderr, " -h\t\tprints this message\n"); |
| (void) fprintf(stderr, " -k\t\tprint the variable permutation\n"); |
| (void) fprintf(stderr, " -m\t\tread multiple matrices (only with -H)\n"); |
| (void) fprintf(stderr, " -n n\t\tnumber of variables\n"); |
| (void) fprintf(stderr, " -p n\t\tcontrol verbosity\n"); |
| (void) fprintf(stderr, " -v n\t\tinitial variables in the unique table\n"); |
| (void) fprintf(stderr, " -x n\t\tinitial size of the cache\n"); |
| exit(2); |
| } /* end of usage */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Opens a file.] |
| |
| Description [Opens a file, or fails with an error message and exits. |
| Allows '-' as a synonym for standard input.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static FILE * |
| open_file(char *filename, const char *mode) |
| { |
| FILE *fp; |
| |
| if (strcmp(filename, "-") == 0) { |
| return mode[0] == 'r' ? stdin : stdout; |
| } else if ((fp = fopen(filename, mode)) == NULL) { |
| perror(filename); |
| exit(1); |
| } |
| return fp; |
| |
| } /* end of open_file */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Tests Walsh matrix multiplication.] |
| |
| Description [Tests Walsh matrix multiplication. Return 1 if successful; |
| 0 otherwise.] |
| |
| SideEffects [May create new variables in the manager.] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static int |
| testWalsh( |
| DdManager *dd /* manager */, |
| int N /* number of variables */, |
| int cmu /* use CMU approach to matrix multiplication */, |
| int approach /* reordering approach */, |
| int pr /* verbosity level */) |
| { |
| DdNode *walsh1, *walsh2, *wtw; |
| DdNode **x, **v, **z; |
| int i, retval; |
| DdNode *one = DD_ONE(dd); |
| DdNode *zero = DD_ZERO(dd); |
| |
| if (N > 3) { |
| x = ALLOC(DdNode *,N); |
| v = ALLOC(DdNode *,N); |
| z = ALLOC(DdNode *,N); |
| |
| for (i = N-1; i >= 0; i--) { |
| Cudd_Ref(x[i]=cuddUniqueInter(dd,3*i,one,zero)); |
| Cudd_Ref(v[i]=cuddUniqueInter(dd,3*i+1,one,zero)); |
| Cudd_Ref(z[i]=cuddUniqueInter(dd,3*i+2,one,zero)); |
| } |
| Cudd_Ref(walsh1 = Cudd_addWalsh(dd,v,z,N)); |
| if (pr>0) {(void) printf("walsh1"); Cudd_PrintDebug(dd,walsh1,2*N,pr);} |
| Cudd_Ref(walsh2 = Cudd_addWalsh(dd,x,v,N)); |
| if (cmu) { |
| Cudd_Ref(wtw = Cudd_addTimesPlus(dd,walsh2,walsh1,v,N)); |
| } else { |
| Cudd_Ref(wtw = Cudd_addMatrixMultiply(dd,walsh2,walsh1,v,N)); |
| } |
| if (pr>0) {(void) printf("wtw"); Cudd_PrintDebug(dd,wtw,2*N,pr);} |
| |
| if (approach != CUDD_REORDER_NONE) { |
| #ifdef DD_DEBUG |
| retval = Cudd_DebugCheck(dd); |
| if (retval != 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); |
| return(0); |
| } |
| #endif |
| retval = Cudd_ReduceHeap(dd,(Cudd_ReorderingType)approach,5); |
| if (retval == 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_ReduceHeap\n"); |
| return(0); |
| } |
| #ifdef DD_DEBUG |
| retval = Cudd_DebugCheck(dd); |
| if (retval != 0) { |
| (void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n"); |
| return(0); |
| } |
| #endif |
| if (approach == CUDD_REORDER_SYMM_SIFT || |
| approach == CUDD_REORDER_SYMM_SIFT_CONV) { |
| Cudd_SymmProfile(dd,0,dd->size-1); |
| } |
| } |
| /* Clean up. */ |
| Cudd_RecursiveDeref(dd, wtw); |
| Cudd_RecursiveDeref(dd, walsh1); |
| Cudd_RecursiveDeref(dd, walsh2); |
| for (i=0; i < N; i++) { |
| Cudd_RecursiveDeref(dd, x[i]); |
| Cudd_RecursiveDeref(dd, v[i]); |
| Cudd_RecursiveDeref(dd, z[i]); |
| } |
| FREE(x); |
| FREE(v); |
| FREE(z); |
| } |
| return(1); |
| |
| } /* end of testWalsh */ |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Tests iterators.] |
| |
| Description [Tests iterators on cubes and nodes.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static int |
| testIterators( |
| DdManager *dd, |
| DdNode *M, |
| DdNode *C, |
| int pr) |
| { |
| int *cube; |
| CUDD_VALUE_TYPE value; |
| DdGen *gen; |
| int q; |
| |
| /* Test iterator for cubes. */ |
| if (pr>1) { |
| (void) printf("Testing iterator on cubes:\n"); |
| Cudd_ForeachCube(dd,M,gen,cube,value) { |
| for (q = 0; q < dd->size; q++) { |
| switch (cube[q]) { |
| case 0: |
| (void) printf("0"); |
| break; |
| case 1: |
| (void) printf("1"); |
| break; |
| case 2: |
| (void) printf("-"); |
| break; |
| default: |
| (void) printf("?"); |
| } |
| } |
| (void) printf(" %g\n",value); |
| } |
| (void) printf("\n"); |
| } |
| |
| if (pr>1) { |
| (void) printf("Testing prime expansion of cubes:\n"); |
| if (!Cudd_bddPrintCover(dd,C,C)) return(0); |
| } |
| |
| if (pr>1) { |
| (void) printf("Testing iterator on primes (CNF):\n"); |
| Cudd_ForeachPrime(dd,Cudd_Not(C),Cudd_Not(C),gen,cube) { |
| for (q = 0; q < dd->size; q++) { |
| switch (cube[q]) { |
| case 0: |
| (void) printf("1"); |
| break; |
| case 1: |
| (void) printf("0"); |
| break; |
| case 2: |
| (void) printf("-"); |
| break; |
| default: |
| (void) printf("?"); |
| } |
| } |
| (void) printf(" 1\n"); |
| } |
| (void) printf("\n"); |
| } |
| |
| /* Test iterator on nodes. */ |
| if (pr>2) { |
| DdNode *node; |
| (void) printf("Testing iterator on nodes:\n"); |
| Cudd_ForeachNode(dd,M,gen,node) { |
| if (Cudd_IsConstant(node)) { |
| #if SIZEOF_VOID_P == 8 |
| (void) printf("ID = 0x%lx\tvalue = %-9g\n", |
| (ptruint) node / |
| (ptruint) sizeof(DdNode), |
| Cudd_V(node)); |
| #else |
| (void) printf("ID = 0x%x\tvalue = %-9g\n", |
| (ptruint) node / |
| (ptruint) sizeof(DdNode), |
| Cudd_V(node)); |
| #endif |
| } else { |
| #if SIZEOF_VOID_P == 8 |
| (void) printf("ID = 0x%lx\tindex = %u\tr = %u\n", |
| (ptruint) node / |
| (ptruint) sizeof(DdNode), |
| node->index, node->ref); |
| #else |
| (void) printf("ID = 0x%x\tindex = %u\tr = %u\n", |
| (ptruint) node / |
| (ptruint) sizeof(DdNode), |
| node->index, node->ref); |
| #endif |
| } |
| } |
| (void) printf("\n"); |
| } |
| return(1); |
| |
| } /* end of testIterators */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Tests the functions related to the exclusive OR.] |
| |
| Description [Tests the functions related to the exclusive OR. It |
| builds the boolean difference of the given function in three |
| different ways and checks that the results is the same. Returns 1 if |
| successful; 0 otherwise.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static int |
| testXor(DdManager *dd, DdNode *f, int pr, int nvars) |
| { |
| DdNode *f1, *f0, *res1, *res2; |
| int x; |
| |
| /* Extract cofactors w.r.t. mid variable. */ |
| x = nvars / 2; |
| f1 = Cudd_Cofactor(dd,f,dd->vars[x]); |
| if (f1 == NULL) return(0); |
| Cudd_Ref(f1); |
| |
| f0 = Cudd_Cofactor(dd,f,Cudd_Not(dd->vars[x])); |
| if (f0 == NULL) { |
| Cudd_RecursiveDeref(dd,f1); |
| return(0); |
| } |
| Cudd_Ref(f0); |
| |
| /* Compute XOR of cofactors with ITE. */ |
| res1 = Cudd_bddIte(dd,f1,Cudd_Not(f0),f0); |
| if (res1 == NULL) return(0); |
| Cudd_Ref(res1); |
| |
| if (pr>0) {(void) printf("xor1"); Cudd_PrintDebug(dd,res1,nvars,pr);} |
| |
| /* Compute XOR of cofactors with XOR. */ |
| res2 = Cudd_bddXor(dd,f1,f0); |
| if (res2 == NULL) { |
| Cudd_RecursiveDeref(dd,res1); |
| return(0); |
| } |
| Cudd_Ref(res2); |
| |
| if (res1 != res2) { |
| if (pr>0) {(void) printf("xor2"); Cudd_PrintDebug(dd,res2,nvars,pr);} |
| Cudd_RecursiveDeref(dd,res1); |
| Cudd_RecursiveDeref(dd,res2); |
| return(0); |
| } |
| Cudd_RecursiveDeref(dd,res1); |
| Cudd_RecursiveDeref(dd,f1); |
| Cudd_RecursiveDeref(dd,f0); |
| |
| /* Compute boolean difference directly. */ |
| res1 = Cudd_bddBooleanDiff(dd,f,x); |
| if (res1 == NULL) { |
| Cudd_RecursiveDeref(dd,res2); |
| return(0); |
| } |
| Cudd_Ref(res1); |
| |
| if (res1 != res2) { |
| if (pr>0) {(void) printf("xor3"); Cudd_PrintDebug(dd,res1,nvars,pr);} |
| Cudd_RecursiveDeref(dd,res1); |
| Cudd_RecursiveDeref(dd,res2); |
| return(0); |
| } |
| Cudd_RecursiveDeref(dd,res1); |
| Cudd_RecursiveDeref(dd,res2); |
| return(1); |
| |
| } /* end of testXor */ |
| |
| |
| /**Function******************************************************************** |
| |
| Synopsis [Tests the Hamming distance functions.] |
| |
| Description [Tests the Hammming distance functions. Returns |
| 1 if successful; 0 otherwise.] |
| |
| SideEffects [None] |
| |
| SeeAlso [] |
| |
| ******************************************************************************/ |
| static int |
| testHamming( |
| DdManager *dd, |
| DdNode *f, |
| int pr) |
| { |
| DdNode **vars, *minBdd, *zero, *scan; |
| int i; |
| int d; |
| int *minterm; |
| int size = Cudd_ReadSize(dd); |
| |
| vars = ALLOC(DdNode *, size); |
| if (vars == NULL) return(0); |
| for (i = 0; i < size; i++) { |
| vars[i] = Cudd_bddIthVar(dd,i); |
| } |
| |
| minBdd = Cudd_bddPickOneMinterm(dd,Cudd_Not(f),vars,size); |
| Cudd_Ref(minBdd); |
| if (pr > 0) { |
| (void) printf("Chosen minterm for Hamming distance test: "); |
| Cudd_PrintDebug(dd,minBdd,size,pr); |
| } |
| |
| minterm = ALLOC(int,size); |
| if (minterm == NULL) { |
| FREE(vars); |
| Cudd_RecursiveDeref(dd,minBdd); |
| return(0); |
| } |
| scan = minBdd; |
| zero = Cudd_Not(DD_ONE(dd)); |
| while (!Cudd_IsConstant(scan)) { |
| DdNode *R = Cudd_Regular(scan); |
| DdNode *T = Cudd_T(R); |
| DdNode *E = Cudd_E(R); |
| if (R != scan) { |
| T = Cudd_Not(T); |
| E = Cudd_Not(E); |
| } |
| if (T == zero) { |
| minterm[R->index] = 0; |
| scan = E; |
| } else { |
| minterm[R->index] = 1; |
| scan = T; |
| } |
| } |
| Cudd_RecursiveDeref(dd,minBdd); |
| |
| d = Cudd_MinHammingDist(dd,f,minterm,size); |
| |
| (void) printf("Minimum Hamming distance = %d\n", d); |
| |
| FREE(vars); |
| FREE(minterm); |
| return(1); |
| |
| } /* end of testHamming */ |