blob: 2d8b3d646d102c483a449daa03e3ec81c3545400 [file] [log] [blame]
/**CFile****************************************************************
FileName [fraLcorr.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [New FRAIG package.]
Synopsis [Latch correspondence computation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 30, 2007.]
Revision [$Id: fraLcorr.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $]
***********************************************************************/
#include "fra.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Fra_Lcr_t_ Fra_Lcr_t;
struct Fra_Lcr_t_
{
// original AIG
Aig_Man_t * pAig;
// equivalence class representation
Fra_Cla_t * pCla;
// partitioning information
Vec_Ptr_t * vParts; // output partitions
int * pInToOutPart; // mapping of PI num into PO partition num
int * pInToOutNum; // mapping of PI num into the num of this PO in the partition
// AIGs for the partitions
Vec_Ptr_t * vFraigs;
// other variables
int fRefining;
// parameters
int nFramesP;
int fVerbose;
// statistics
int nIters;
int nLitsBeg;
int nLitsEnd;
int nNodesBeg;
int nNodesEnd;
int nRegsBeg;
int nRegsEnd;
// runtime
abctime timeSim;
abctime timePart;
abctime timeTrav;
abctime timeFraig;
abctime timeUpdate;
abctime timeTotal;
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocates the retiming manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fra_Lcr_t * Lcr_ManAlloc( Aig_Man_t * pAig )
{
Fra_Lcr_t * p;
p = ABC_ALLOC( Fra_Lcr_t, 1 );
memset( p, 0, sizeof(Fra_Lcr_t) );
p->pAig = pAig;
p->pInToOutPart = ABC_ALLOC( int, Aig_ManCiNum(pAig) );
memset( p->pInToOutPart, 0, sizeof(int) * Aig_ManCiNum(pAig) );
p->pInToOutNum = ABC_ALLOC( int, Aig_ManCiNum(pAig) );
memset( p->pInToOutNum, 0, sizeof(int) * Aig_ManCiNum(pAig) );
p->vFraigs = Vec_PtrAlloc( 1000 );
return p;
}
/**Function*************************************************************
Synopsis [Prints stats for the fraiging manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Lcr_ManPrint( Fra_Lcr_t * p )
{
printf( "Iterations = %d. LitBeg = %d. LitEnd = %d. (%6.2f %%).\n",
p->nIters, p->nLitsBeg, p->nLitsEnd, 100.0*p->nLitsEnd/p->nLitsBeg );
printf( "NBeg = %d. NEnd = %d. (Gain = %6.2f %%). RBeg = %d. REnd = %d. (Gain = %6.2f %%).\n",
p->nNodesBeg, p->nNodesEnd, 100.0*(p->nNodesBeg-p->nNodesEnd)/p->nNodesBeg,
p->nRegsBeg, p->nRegsEnd, 100.0*(p->nRegsBeg-p->nRegsEnd)/p->nRegsBeg );
ABC_PRT( "AIG simulation ", p->timeSim );
ABC_PRT( "AIG partitioning", p->timePart );
ABC_PRT( "AIG rebuiding ", p->timeTrav );
ABC_PRT( "FRAIGing ", p->timeFraig );
ABC_PRT( "AIG updating ", p->timeUpdate );
ABC_PRT( "TOTAL RUNTIME ", p->timeTotal );
}
/**Function*************************************************************
Synopsis [Deallocates the retiming manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Lcr_ManFree( Fra_Lcr_t * p )
{
Aig_Obj_t * pObj;
int i;
if ( p->fVerbose )
Lcr_ManPrint( p );
Aig_ManForEachCi( p->pAig, pObj, i )
pObj->pNext = NULL;
Vec_PtrFree( p->vFraigs );
if ( p->pCla ) Fra_ClassesStop( p->pCla );
if ( p->vParts ) Vec_VecFree( (Vec_Vec_t *)p->vParts );
ABC_FREE( p->pInToOutPart );
ABC_FREE( p->pInToOutNum );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Prepare the AIG for class computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fra_Man_t * Fra_LcrAigPrepare( Aig_Man_t * pAig )
{
Fra_Man_t * p;
Aig_Obj_t * pObj;
int i;
p = ABC_ALLOC( Fra_Man_t, 1 );
memset( p, 0, sizeof(Fra_Man_t) );
// Aig_ManForEachCi( pAig, pObj, i )
Aig_ManForEachObj( pAig, pObj, i )
pObj->pData = p;
return p;
}
/**Function*************************************************************
Synopsis [Prepare the AIG for class computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fra_LcrAigPrepareTwo( Aig_Man_t * pAig, Fra_Man_t * p )
{
Aig_Obj_t * pObj;
int i;
Aig_ManForEachCi( pAig, pObj, i )
pObj->pData = p;
}
/**Function*************************************************************
Synopsis [Compares two nodes for equivalence after partitioned fraiging.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_LcrNodesAreEqual( Aig_Obj_t * pObj0, Aig_Obj_t * pObj1 )
{
Fra_Man_t * pTemp = (Fra_Man_t *)pObj0->pData;
Fra_Lcr_t * pLcr = (Fra_Lcr_t *)pTemp->pBmc;
Aig_Man_t * pFraig;
Aig_Obj_t * pOut0, * pOut1;
int nPart0, nPart1;
assert( Aig_ObjIsCi(pObj0) );
assert( Aig_ObjIsCi(pObj1) );
// find the partition to which these nodes belong
nPart0 = pLcr->pInToOutPart[(long)pObj0->pNext];
nPart1 = pLcr->pInToOutPart[(long)pObj1->pNext];
// if this is the result of refinement of the class created const-1 nodes
// the nodes may end up in different partions - we assume them equivalent
if ( nPart0 != nPart1 )
{
assert( 0 );
return 1;
}
assert( nPart0 == nPart1 );
pFraig = (Aig_Man_t *)Vec_PtrEntry( pLcr->vFraigs, nPart0 );
// get the fraig outputs
pOut0 = Aig_ManCo( pFraig, pLcr->pInToOutNum[(long)pObj0->pNext] );
pOut1 = Aig_ManCo( pFraig, pLcr->pInToOutNum[(long)pObj1->pNext] );
return Aig_ObjFanin0(pOut0) == Aig_ObjFanin0(pOut1);
}
/**Function*************************************************************
Synopsis [Compares the node with a constant after partioned fraiging.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fra_LcrNodeIsConst( Aig_Obj_t * pObj )
{
Fra_Man_t * pTemp = (Fra_Man_t *)pObj->pData;
Fra_Lcr_t * pLcr = (Fra_Lcr_t *)pTemp->pBmc;
Aig_Man_t * pFraig;
Aig_Obj_t * pOut;
int nPart;
assert( Aig_ObjIsCi(pObj) );
// find the partition to which these nodes belong
nPart = pLcr->pInToOutPart[(long)pObj->pNext];
pFraig = (Aig_Man_t *)Vec_PtrEntry( pLcr->vFraigs, nPart );
// get the fraig outputs
pOut = Aig_ManCo( pFraig, pLcr->pInToOutNum[(long)pObj->pNext] );
return Aig_ObjFanin0(pOut) == Aig_ManConst1(pFraig);
}
/**Function*************************************************************
Synopsis [Duplicates the AIG manager recursively.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Obj_t * Fra_LcrManDup_rec( Aig_Man_t * pNew, Aig_Man_t * p, Aig_Obj_t * pObj )
{
Aig_Obj_t * pObjNew;
if ( pObj->pData )
return (Aig_Obj_t *)pObj->pData;
Fra_LcrManDup_rec( pNew, p, Aig_ObjFanin0(pObj) );
if ( Aig_ObjIsBuf(pObj) )
return (Aig_Obj_t *)(pObj->pData = Aig_ObjChild0Copy(pObj));
Fra_LcrManDup_rec( pNew, p, Aig_ObjFanin1(pObj) );
pObjNew = Aig_Oper( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj), Aig_ObjType(pObj) );
return (Aig_Obj_t *)(pObj->pData = pObjNew);
}
/**Function*************************************************************
Synopsis [Give the AIG and classes, reduces AIG for partitioning.]
Description [Ignores registers that are not in the classes.
Places candidate equivalent classes of registers into single outputs
(for ease of partitioning). The resulting combinational AIG contains
outputs in the same order as equivalence classes of registers,
followed by constant-1 registers. Preserves the set of all inputs.
Complemented attributes of the outputs do not matter because we need
then only for collecting the structural info.]
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Fra_LcrDeriveAigForPartitioning( Fra_Lcr_t * pLcr )
{
Aig_Man_t * pNew;
Aig_Obj_t * pObj, * pObjPo, * pObjNew, ** ppClass, * pMiter;
int i, c, Offset;
// remember the numbers of the inputs of the original AIG
Aig_ManForEachCi( pLcr->pAig, pObj, i )
{
pObj->pData = pLcr;
pObj->pNext = (Aig_Obj_t *)(long)i;
}
// compute the LO/LI offset
Offset = Aig_ManCoNum(pLcr->pAig) - Aig_ManCiNum(pLcr->pAig);
// create the PIs
Aig_ManCleanData( pLcr->pAig );
pNew = Aig_ManStartFrom( pLcr->pAig );
// go over the equivalence classes
Vec_PtrForEachEntry( Aig_Obj_t **, pLcr->pCla->vClasses, ppClass, i )
{
pMiter = Aig_ManConst0(pNew);
for ( c = 0; ppClass[c]; c++ )
{
assert( Aig_ObjIsCi(ppClass[c]) );
pObjPo = Aig_ManCo( pLcr->pAig, Offset+(long)ppClass[c]->pNext );
pObjNew = Fra_LcrManDup_rec( pNew, pLcr->pAig, Aig_ObjFanin0(pObjPo) );
pMiter = Aig_Exor( pNew, pMiter, pObjNew );
}
Aig_ObjCreateCo( pNew, pMiter );
}
// go over the constant candidates
Vec_PtrForEachEntry( Aig_Obj_t *, pLcr->pCla->vClasses1, pObj, i )
{
assert( Aig_ObjIsCi(pObj) );
pObjPo = Aig_ManCo( pLcr->pAig, Offset+(long)pObj->pNext );
pMiter = Fra_LcrManDup_rec( pNew, pLcr->pAig, Aig_ObjFanin0(pObjPo) );
Aig_ObjCreateCo( pNew, pMiter );
}
return pNew;
}
/**Function*************************************************************
Synopsis [Remaps partitions into the inputs of original AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fra_LcrRemapPartitions( Vec_Ptr_t * vParts, Fra_Cla_t * pCla, int * pInToOutPart, int * pInToOutNum )
{
Vec_Int_t * vOne, * vOneNew;
Aig_Obj_t ** ppClass, * pObjPi;
int Out, Offset, i, k, c;
// compute the LO/LI offset
Offset = Aig_ManCoNum(pCla->pAig) - Aig_ManCiNum(pCla->pAig);
Vec_PtrForEachEntry( Vec_Int_t *, vParts, vOne, i )
{
vOneNew = Vec_IntAlloc( Vec_IntSize(vOne) );
Vec_IntForEachEntry( vOne, Out, k )
{
if ( Out < Vec_PtrSize(pCla->vClasses) )
{
ppClass = (Aig_Obj_t **)Vec_PtrEntry( pCla->vClasses, Out );
for ( c = 0; ppClass[c]; c++ )
{
pInToOutPart[(long)ppClass[c]->pNext] = i;
pInToOutNum[(long)ppClass[c]->pNext] = Vec_IntSize(vOneNew);
Vec_IntPush( vOneNew, Offset+(long)ppClass[c]->pNext );
}
}
else
{
pObjPi = (Aig_Obj_t *)Vec_PtrEntry( pCla->vClasses1, Out - Vec_PtrSize(pCla->vClasses) );
pInToOutPart[(long)pObjPi->pNext] = i;
pInToOutNum[(long)pObjPi->pNext] = Vec_IntSize(vOneNew);
Vec_IntPush( vOneNew, Offset+(long)pObjPi->pNext );
}
}
// replace the class
Vec_PtrWriteEntry( vParts, i, vOneNew );
Vec_IntFree( vOne );
}
}
/**Function*************************************************************
Synopsis [Creates AIG of one partition with speculative reduction.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Obj_t * Fra_LcrCreatePart_rec( Fra_Cla_t * pCla, Aig_Man_t * pNew, Aig_Man_t * p, Aig_Obj_t * pObj )
{
assert( !Aig_IsComplement(pObj) );
if ( Aig_ObjIsTravIdCurrent(p, pObj) )
return (Aig_Obj_t *)pObj->pData;
Aig_ObjSetTravIdCurrent(p, pObj);
if ( Aig_ObjIsCi(pObj) )
{
// Aig_Obj_t * pRepr = Fra_ClassObjRepr(pObj);
Aig_Obj_t * pRepr = pCla->pMemRepr[pObj->Id];
if ( pRepr == NULL )
pObj->pData = Aig_ObjCreateCi( pNew );
else
{
pObj->pData = Fra_LcrCreatePart_rec( pCla, pNew, p, pRepr );
pObj->pData = Aig_NotCond( (Aig_Obj_t *)pObj->pData, pRepr->fPhase ^ pObj->fPhase );
}
return (Aig_Obj_t *)pObj->pData;
}
Fra_LcrCreatePart_rec( pCla, pNew, p, Aig_ObjFanin0(pObj) );
Fra_LcrCreatePart_rec( pCla, pNew, p, Aig_ObjFanin1(pObj) );
return (Aig_Obj_t *)(pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) ));
}
/**Function*************************************************************
Synopsis [Creates AIG of one partition with speculative reduction.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Fra_LcrCreatePart( Fra_Lcr_t * p, Vec_Int_t * vPart )
{
Aig_Man_t * pNew;
Aig_Obj_t * pObj, * pObjNew;
int Out, i;
// create new AIG for this partition
pNew = Aig_ManStartFrom( p->pAig );
Aig_ManIncrementTravId( p->pAig );
Aig_ObjSetTravIdCurrent( p->pAig, Aig_ManConst1(p->pAig) );
Aig_ManConst1(p->pAig)->pData = Aig_ManConst1(pNew);
Vec_IntForEachEntry( vPart, Out, i )
{
pObj = Aig_ManCo( p->pAig, Out );
if ( pObj->fMarkA )
{
pObjNew = Fra_LcrCreatePart_rec( p->pCla, pNew, p->pAig, Aig_ObjFanin0(pObj) );
pObjNew = Aig_NotCond( pObjNew, Aig_ObjFaninC0(pObj) );
}
else
pObjNew = Aig_ManConst1( pNew );
Aig_ObjCreateCo( pNew, pObjNew );
}
return pNew;
}
/**Function*************************************************************
Synopsis [Marks the nodes belonging to the equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fra_ClassNodesMark( Fra_Lcr_t * p )
{
Aig_Obj_t * pObj, ** ppClass;
int i, c, Offset;
// compute the LO/LI offset
Offset = Aig_ManCoNum(p->pCla->pAig) - Aig_ManCiNum(p->pCla->pAig);
// mark the nodes remaining in the classes
Vec_PtrForEachEntry( Aig_Obj_t *, p->pCla->vClasses1, pObj, i )
{
pObj = Aig_ManCo( p->pCla->pAig, Offset+(long)pObj->pNext );
pObj->fMarkA = 1;
}
Vec_PtrForEachEntry( Aig_Obj_t **, p->pCla->vClasses, ppClass, i )
{
for ( c = 0; ppClass[c]; c++ )
{
pObj = Aig_ManCo( p->pCla->pAig, Offset+(long)ppClass[c]->pNext );
pObj->fMarkA = 1;
}
}
}
/**Function*************************************************************
Synopsis [Unmarks the nodes belonging to the equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fra_ClassNodesUnmark( Fra_Lcr_t * p )
{
Aig_Obj_t * pObj, ** ppClass;
int i, c, Offset;
// compute the LO/LI offset
Offset = Aig_ManCoNum(p->pCla->pAig) - Aig_ManCiNum(p->pCla->pAig);
// mark the nodes remaining in the classes
Vec_PtrForEachEntry( Aig_Obj_t *, p->pCla->vClasses1, pObj, i )
{
pObj = Aig_ManCo( p->pCla->pAig, Offset+(long)pObj->pNext );
pObj->fMarkA = 0;
}
Vec_PtrForEachEntry( Aig_Obj_t **, p->pCla->vClasses, ppClass, i )
{
for ( c = 0; ppClass[c]; c++ )
{
pObj = Aig_ManCo( p->pCla->pAig, Offset+(long)ppClass[c]->pNext );
pObj->fMarkA = 0;
}
}
}
/**Function*************************************************************
Synopsis [Performs choicing of the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Fra_FraigLatchCorrespondence( Aig_Man_t * pAig, int nFramesP, int nConfMax, int fProve, int fVerbose, int * pnIter, float TimeLimit )
{
int nPartSize = 200;
int fReprSelect = 0;
Fra_Lcr_t * p;
Fra_Sml_t * pSml;
Fra_Man_t * pTemp;
Aig_Man_t * pAigPart, * pAigTemp, * pAigNew = NULL;
Vec_Int_t * vPart;
int i, nIter;
abctime timeSim, clk2, clk3, clk = Abc_Clock();
abctime TimeToStop = TimeLimit ? TimeLimit * CLOCKS_PER_SEC + Abc_Clock() : 0;
if ( Aig_ManNodeNum(pAig) == 0 )
{
if ( pnIter ) *pnIter = 0;
// Ntl_ManFinalize() requires the following to satisfy an assertion.
Aig_ManReprStart(pAig,Aig_ManObjNumMax(pAig));
return Aig_ManDupOrdered(pAig);
}
assert( Aig_ManRegNum(pAig) > 0 );
// simulate the AIG
clk2 = Abc_Clock();
if ( fVerbose )
printf( "Simulating AIG with %d nodes for %d cycles ... ", Aig_ManNodeNum(pAig), nFramesP + 32 );
pSml = Fra_SmlSimulateSeq( pAig, nFramesP, 32, 1, 1 );
if ( fVerbose )
{
ABC_PRT( "Time", Abc_Clock() - clk2 );
}
timeSim = Abc_Clock() - clk2;
// check if simulation discovered non-constant-0 POs
if ( fProve && pSml->fNonConstOut )
{
pAig->pSeqModel = Fra_SmlGetCounterExample( pSml );
Fra_SmlStop( pSml );
return NULL;
}
// start the manager
p = Lcr_ManAlloc( pAig );
p->nFramesP = nFramesP;
p->fVerbose = fVerbose;
p->timeSim += timeSim;
pTemp = Fra_LcrAigPrepare( pAig );
pTemp->pBmc = (Fra_Bmc_t *)p;
pTemp->pSml = pSml;
// get preliminary info about equivalence classes
pTemp->pCla = p->pCla = Fra_ClassesStart( p->pAig );
Fra_ClassesPrepare( p->pCla, 1, 0 );
p->pCla->pFuncNodeIsConst = Fra_LcrNodeIsConst;
p->pCla->pFuncNodesAreEqual = Fra_LcrNodesAreEqual;
Fra_SmlStop( pTemp->pSml );
// partition the AIG for latch correspondence computation
clk2 = Abc_Clock();
if ( fVerbose )
printf( "Partitioning AIG ... " );
pAigPart = Fra_LcrDeriveAigForPartitioning( p );
p->vParts = (Vec_Ptr_t *)Aig_ManPartitionSmart( pAigPart, nPartSize, 0, NULL );
Fra_LcrRemapPartitions( p->vParts, p->pCla, p->pInToOutPart, p->pInToOutNum );
Aig_ManStop( pAigPart );
if ( fVerbose )
{
ABC_PRT( "Time", Abc_Clock() - clk2 );
p->timePart += Abc_Clock() - clk2;
}
// get the initial stats
p->nLitsBeg = Fra_ClassesCountLits( p->pCla );
p->nNodesBeg = Aig_ManNodeNum(p->pAig);
p->nRegsBeg = Aig_ManRegNum(p->pAig);
// perforn interative reduction of the partitions
p->fRefining = 1;
for ( nIter = 0; p->fRefining; nIter++ )
{
p->fRefining = 0;
clk3 = Abc_Clock();
// derive AIGs for each partition
Fra_ClassNodesMark( p );
Vec_PtrClear( p->vFraigs );
Vec_PtrForEachEntry( Vec_Int_t *, p->vParts, vPart, i )
{
if ( TimeLimit != 0.0 && Abc_Clock() > TimeToStop )
{
Vec_PtrForEachEntry( Aig_Man_t *, p->vFraigs, pAigPart, i )
Aig_ManStop( pAigPart );
Aig_ManCleanMarkA( pAig );
Aig_ManCleanMarkB( pAig );
printf( "Fra_FraigLatchCorrespondence(): Runtime limit exceeded.\n" );
goto finish;
}
clk2 = Abc_Clock();
pAigPart = Fra_LcrCreatePart( p, vPart );
p->timeTrav += Abc_Clock() - clk2;
clk2 = Abc_Clock();
pAigTemp = Fra_FraigEquivence( pAigPart, nConfMax, 0 );
p->timeFraig += Abc_Clock() - clk2;
Vec_PtrPush( p->vFraigs, pAigTemp );
/*
{
char Name[1000];
sprintf( Name, "part%04d.blif", i );
Aig_ManDumpBlif( pAigPart, Name, NULL, NULL );
}
printf( "Finished part %4d (out of %4d). ", i, Vec_PtrSize(p->vParts) );
ABC_PRT( "Time", Abc_Clock() - clk3 );
*/
Aig_ManStop( pAigPart );
}
Fra_ClassNodesUnmark( p );
// report the intermediate results
if ( fVerbose )
{
printf( "%3d : Const = %6d. Class = %6d. L = %6d. Part = %3d. ",
nIter, Vec_PtrSize(p->pCla->vClasses1), Vec_PtrSize(p->pCla->vClasses),
Fra_ClassesCountLits(p->pCla), Vec_PtrSize(p->vParts) );
ABC_PRT( "T", Abc_Clock() - clk3 );
}
// refine the classes
Fra_LcrAigPrepareTwo( p->pAig, pTemp );
if ( Fra_ClassesRefine( p->pCla ) )
p->fRefining = 1;
if ( Fra_ClassesRefine1( p->pCla, 0, NULL ) )
p->fRefining = 1;
// clean the fraigs
Vec_PtrForEachEntry( Aig_Man_t *, p->vFraigs, pAigPart, i )
Aig_ManStop( pAigPart );
// repartition if needed
if ( 1 )
{
clk2 = Abc_Clock();
Vec_VecFree( (Vec_Vec_t *)p->vParts );
pAigPart = Fra_LcrDeriveAigForPartitioning( p );
p->vParts = (Vec_Ptr_t *)Aig_ManPartitionSmart( pAigPart, nPartSize, 0, NULL );
Fra_LcrRemapPartitions( p->vParts, p->pCla, p->pInToOutPart, p->pInToOutNum );
Aig_ManStop( pAigPart );
p->timePart += Abc_Clock() - clk2;
}
}
p->nIters = nIter;
// move the classes into representatives and reduce AIG
clk2 = Abc_Clock();
// Fra_ClassesPrint( p->pCla, 1 );
if ( fReprSelect )
Fra_ClassesSelectRepr( p->pCla );
Fra_ClassesCopyReprs( p->pCla, NULL );
pAigNew = Aig_ManDupRepr( p->pAig, 0 );
Aig_ManSeqCleanup( pAigNew );
// Aig_ManCountMergeRegs( pAigNew );
p->timeUpdate += Abc_Clock() - clk2;
p->timeTotal = Abc_Clock() - clk;
// get the final stats
p->nLitsEnd = Fra_ClassesCountLits( p->pCla );
p->nNodesEnd = Aig_ManNodeNum(pAigNew);
p->nRegsEnd = Aig_ManRegNum(pAigNew);
finish:
ABC_FREE( pTemp );
Lcr_ManFree( p );
if ( pnIter ) *pnIter = nIter;
return pAigNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END