blob: 9e0ac88e7dc8a3129cbe386ee34c2b51311f2cac [file] [log] [blame]
/**CFile****************************************************************
FileName [ioWriteList.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Command processing package.]
Synopsis [Procedures to write the graph structure of sequential AIG.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: ioWriteList.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ioAbc.h"
ABC_NAMESPACE_IMPL_START
/*
-------- Original Message --------
Subject: Re: abc release and retiming
Date: Sun, 13 Nov 2005 20:31:18 -0500 (EST)
From: Luca Carloni <luca@cs.columbia.edu>
To: Alan Mishchenko <alanmi@eecs.berkeley.edu>
Alan,
My graph-representation file format is based on an adjacency list
representation and is indeed quite simple, in fact maybe too simple... I
used it in order to reason on relatively small weighed direct graphs. I
simply list all vertices, one per line and for each vertex "V_source" I
list all vertices that are "sinks" with respect to it, i.e. such that
there is a distinct arc between "V_source" and each of them (in
parenthesis I list the name of the edge and its weight (number of latency
on that path). For instance, if you look at the following graph, you have
that vertex "v_5" is connected to vertex "v_6" through a directed arc
called "v_5_to_v_6" whose latency is equal to 3, i.e. there are three
flip-flops on this arc. Still, notice that I sometime interpret the graph
also as the representation of a LIS where each node corresponds to a
shell encapsulating a sequential core module (i.e. a module which does not
contain any combinational path between its inputs and its outputs). With
this representation an arc of latency 3 is interpreted as a wire where two
relay stations have been inserted in addition to the flip-flop terminating
the output of the core module.
Finally, notice that the name of the arc does not necessarily have to be
"v_5_to_v_6", but it could have been something like "arc_222" or "xyz" as
long as it is a unique name in the graph.
Thanks,
Luca
Example of graph representation
-----------------------------------------------------------------------------
v_5 > v_6 ([v_5_to_v_6] = 3), v_12 ([v_5_to_v_12] = 2).
v_2 > v_4 ([v_2_to_v_4] = 1), v_10_s0 ([v_2_to_v_10_s0] = 6), v_12 ([v_2_to_v_12] = 3).
v_9 > v_10_s0 ([v_9_to_v_10_s0] = 5), v_12 ([v_9_to_v_12] = 2).
v_12 > v_13 ([v_12_to_v_13] = 5).
v_13 > v_14 ([v_13_to_v_14] = 1).
v_6 > v_7 ([v_6_to_v_7] = 2).
v_4 > v_5 ([v_4_to_v_5] = 2).
v_1 > v_2 ([v_1_to_v_2] = 1).
v_7 > v_8 ([v_7_to_v_8] = 2).
t > .
v_14 > t ([v_14_to_t] = 1), v_5 ([v_14_to_v_5] = 1).
v_8 > v_9 ([v_8_to_v_9] = 2).
s > v_1 ([s_to_v_1] = 1).
v_10_s0 > v_10_s1 ([v_10_s0_to_v_10_s1] = 1).
v_10_s1 > v_4 ([v_10_s1__v_4] = 1), v_8 ([v_10_s1__v_8] = 1).
-----------------------------------------------------------------------------
*/
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static void Io_WriteListEdge( FILE * pFile, Abc_Obj_t * pObj );
static void Io_WriteListHost( FILE * pFile, Abc_Ntk_t * pNtk );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Writes the adjacency list for a sequential AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteList( Abc_Ntk_t * pNtk, char * pFileName, int fUseHost )
{
FILE * pFile;
Abc_Obj_t * pObj;
int i;
// assert( Abc_NtkIsSeq(pNtk) );
// start the output stream
pFile = fopen( pFileName, "w" );
if ( pFile == NULL )
{
fprintf( stdout, "Io_WriteList(): Cannot open the output file \"%s\".\n", pFileName );
return;
}
fprintf( pFile, "# Adjacency list for sequential AIG \"%s\"\n", pNtk->pName );
fprintf( pFile, "# written by ABC on %s\n", Extra_TimeStamp() );
// write the constant node
if ( Abc_ObjFanoutNum( Abc_AigConst1(pNtk) ) > 0 )
Io_WriteListEdge( pFile, Abc_AigConst1(pNtk) );
// write the PI edges
Abc_NtkForEachPi( pNtk, pObj, i )
Io_WriteListEdge( pFile, pObj );
// write the internal nodes
Abc_AigForEachAnd( pNtk, pObj, i )
Io_WriteListEdge( pFile, pObj );
// write the host node
if ( fUseHost )
Io_WriteListHost( pFile, pNtk );
else
Abc_NtkForEachPo( pNtk, pObj, i )
Io_WriteListEdge( pFile, pObj );
fprintf( pFile, "\n" );
fclose( pFile );
}
/**Function*************************************************************
Synopsis [Writes the adjacency list for one edge in a sequential AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteListEdge( FILE * pFile, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanout;
int i;
fprintf( pFile, "%-10s > ", Abc_ObjName(pObj) );
Abc_ObjForEachFanout( pObj, pFanout, i )
{
fprintf( pFile, " %s", Abc_ObjName(pFanout) );
fprintf( pFile, " ([%s_to_", Abc_ObjName(pObj) );
// fprintf( pFile, "%s] = %d)", Abc_ObjName(pFanout), Seq_ObjFanoutL(pObj, pFanout) );
fprintf( pFile, "%s] = %d)", Abc_ObjName(pFanout), 0 );
if ( i != Abc_ObjFanoutNum(pObj) - 1 )
fprintf( pFile, "," );
}
fprintf( pFile, "." );
fprintf( pFile, "\n" );
}
/**Function*************************************************************
Synopsis [Writes the adjacency list for one edge in a sequential AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteListHost( FILE * pFile, Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj;
int i;
Abc_NtkForEachPo( pNtk, pObj, i )
{
fprintf( pFile, "%-10s > ", Abc_ObjName(pObj) );
fprintf( pFile, " %s ([%s_to_%s] = %d)", "HOST", Abc_ObjName(pObj), "HOST", 0 );
fprintf( pFile, "." );
fprintf( pFile, "\n" );
}
fprintf( pFile, "%-10s > ", "HOST" );
Abc_NtkForEachPi( pNtk, pObj, i )
{
fprintf( pFile, " %s", Abc_ObjName(pObj) );
fprintf( pFile, " ([%s_to_%s] = %d)", "HOST", Abc_ObjName(pObj), 0 );
if ( i != Abc_NtkPiNum(pNtk) - 1 )
fprintf( pFile, "," );
}
fprintf( pFile, "." );
fprintf( pFile, "\n" );
}
/**Function*************************************************************
Synopsis [Writes the adjacency list for a sequential AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteCellNet( Abc_Ntk_t * pNtk, char * pFileName )
{
FILE * pFile;
Abc_Obj_t * pObj, * pFanout;
int i, k;
assert( Abc_NtkIsLogic(pNtk) );
// start the output stream
pFile = fopen( pFileName, "w" );
if ( pFile == NULL )
{
fprintf( stdout, "Io_WriteCellNet(): Cannot open the output file \"%s\".\n", pFileName );
return;
}
fprintf( pFile, "# CellNet file for network \"%s\" written by ABC on %s\n", pNtk->pName, Extra_TimeStamp() );
// the only tricky part with writing is handling latches:
// each latch comes with (a) single-input latch-input node, (b) latch proper, (c) single-input latch-output node
// we arbitrarily decide to use the interger ID of the latch-input node to represent the latch in the file
// (this ID is used for both the cell and the net driven by that cell)
// write the PIs
Abc_NtkForEachPi( pNtk, pObj, i )
fprintf( pFile, "cell %d is 0\n", pObj->Id );
// write the POs
Abc_NtkForEachPo( pNtk, pObj, i )
fprintf( pFile, "cell %d is 1\n", pObj->Id );
// write the latches (use the ID of latch input)
Abc_NtkForEachLatch( pNtk, pObj, i )
fprintf( pFile, "cell %d is 2\n", Abc_ObjFanin0(pObj)->Id );
// write the logic nodes
Abc_NtkForEachNode( pNtk, pObj, i )
fprintf( pFile, "cell %d is %d\n", pObj->Id, 3+Abc_ObjFaninNum(pObj) );
// write the nets driven by PIs
Abc_NtkForEachPi( pNtk, pObj, i )
{
fprintf( pFile, "net %d %d 0", pObj->Id, pObj->Id );
Abc_ObjForEachFanout( pObj, pFanout, k )
fprintf( pFile, " %d %d", pFanout->Id, 1 + Abc_ObjFanoutFaninNum(pFanout, pObj) );
fprintf( pFile, "\n" );
}
// write the nets driven by latches
Abc_NtkForEachLatch( pNtk, pObj, i )
{
fprintf( pFile, "net %d %d 0", Abc_ObjFanin0(pObj)->Id, Abc_ObjFanin0(pObj)->Id );
pObj = Abc_ObjFanout0(pObj);
Abc_ObjForEachFanout( pObj, pFanout, k )
fprintf( pFile, " %d %d", pFanout->Id, 1 + Abc_ObjFanoutFaninNum(pFanout, pObj) );
fprintf( pFile, "\n" );
}
// write the nets driven by nodes
Abc_NtkForEachNode( pNtk, pObj, i )
{
fprintf( pFile, "net %d %d 0", pObj->Id, pObj->Id );
Abc_ObjForEachFanout( pObj, pFanout, k )
fprintf( pFile, " %d %d", pFanout->Id, 1 + Abc_ObjFanoutFaninNum(pFanout, pObj) );
fprintf( pFile, "\n" );
}
fprintf( pFile, "\n" );
fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END