blob: 9a374ddad33c0074bc4b931431956d3c56e13a36 [file] [log] [blame]
/**CFile****************************************************************
FileName [giaNf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [Standard-cell mapper.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaNf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include <float.h>
#include "gia.h"
#include "misc/st/st.h"
#include "map/mio/mio.h"
#include "misc/util/utilTruth.h"
#include "misc/extra/extra.h"
#include "base/main/main.h"
#include "misc/vec/vecMem.h"
#include "misc/vec/vecWec.h"
#include "opt/dau/dau.h"
#include "misc/util/utilNam.h"
#include "map/scl/sclCon.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define NF_LEAF_MAX 6
#define NF_CUT_MAX 32
#define NF_NO_LEAF 31
#define NF_NO_FUNC 0x3FFFFFF
#define NF_EPSILON 0.001
typedef struct Nf_Cut_t_ Nf_Cut_t;
struct Nf_Cut_t_
{
word Sign; // signature
int Delay; // delay
float Flow; // flow
unsigned iFunc : 26; // function (NF_NO_FUNC)
unsigned Useless : 1; // function
unsigned nLeaves : 5; // leaf number (NF_NO_LEAF)
int pLeaves[NF_LEAF_MAX+1]; // leaves
};
typedef struct Nf_Cfg_t_ Nf_Cfg_t;
struct Nf_Cfg_t_
{
unsigned fCompl : 1; // complemented
unsigned Phase : 7; // match phase
unsigned Perm : 24; // match permutation
};
typedef struct Nf_Mat_t_ Nf_Mat_t;
struct Nf_Mat_t_
{
unsigned Gate : 20; // gate
unsigned CutH : 10; // cut handle
unsigned fCompl : 1; // complemented
unsigned fBest : 1; // best cut
Nf_Cfg_t Cfg; // input literals
int D; // delay
float F; // area
};
typedef struct Nf_Obj_t_ Nf_Obj_t;
struct Nf_Obj_t_
{
Nf_Mat_t M[2][2]; // del/area (2x)
};
typedef struct Nf_Man_t_ Nf_Man_t;
struct Nf_Man_t_
{
// user data
Gia_Man_t * pGia; // derived manager
Jf_Par_t * pPars; // parameters
// matching
Vec_Mem_t * vTtMem; // truth tables
Vec_Wec_t * vTt2Match; // matches for truth tables
Mio_Cell2_t * pCells; // library gates
int nCells; // library gate count
// cut data
Nf_Obj_t * pNfObjs; // best cuts
Vec_Ptr_t vPages; // cut memory
Vec_Int_t vCutSets; // cut offsets
Vec_Int_t vMapRefs; // mapping refs (2x)
Vec_Flt_t vFlowRefs; // flow refs (2x)
Vec_Int_t vRequired; // required times (2x)
Vec_Flt_t vCutFlows; // temporary cut area
Vec_Int_t vCutDelays; // temporary cut delay
Vec_Int_t vBackup; // backup literals
int iCur; // current position
int Iter; // mapping iterations
int fUseEla; // use exact area
int nInvs; // the inverter count
int InvDelayI; // inverter delay
word InvAreaW; // inverter delay
float InvAreaF; // inverter area
// statistics
abctime clkStart; // starting time
double CutCount[6]; // cut counts
int nCutUseAll; // objects with useful cuts
};
static inline int Nf_Cfg2Int( Nf_Cfg_t Mat ) { union { int x; Nf_Cfg_t y; } v; v.y = Mat; return v.x; }
static inline Nf_Cfg_t Nf_Int2Cfg( int Int ) { union { int x; Nf_Cfg_t y; } v; v.x = Int; return v.y; }
static inline Nf_Obj_t * Nf_ManObj( Nf_Man_t * p, int i ) { return p->pNfObjs + i; }
static inline Mio_Cell2_t* Nf_ManCell( Nf_Man_t * p, int i ) { return p->pCells + i; }
static inline int * Nf_ManCutSet( Nf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); }
static inline int Nf_ObjCutSetId( Nf_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); }
static inline int * Nf_ObjCutSet( Nf_Man_t * p, int i ) { return Nf_ManCutSet(p, Nf_ObjCutSetId(p, i)); }
static inline int Nf_ObjHasCuts( Nf_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); }
static inline int * Nf_ObjCutBest( Nf_Man_t * p, int i ) { return NULL; }
static inline int Nf_ObjCutUseless( Nf_Man_t * p, int TruthId ) { return (int)(TruthId >= Vec_WecSize(p->vTt2Match)); }
static inline float Nf_ObjCutFlow( Nf_Man_t * p, int i ) { return Vec_FltEntry(&p->vCutFlows, i); }
static inline int Nf_ObjCutDelay( Nf_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); }
static inline void Nf_ObjSetCutFlow( Nf_Man_t * p, int i, float a ) { Vec_FltWriteEntry(&p->vCutFlows, i, a); }
static inline void Nf_ObjSetCutDelay( Nf_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); }
static inline int Nf_ObjMapRefNum( Nf_Man_t * p, int i, int c ) { return Vec_IntEntry(&p->vMapRefs, Abc_Var2Lit(i,c)); }
static inline int Nf_ObjMapRefInc( Nf_Man_t * p, int i, int c ) { return (*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c)))++; }
static inline int Nf_ObjMapRefDec( Nf_Man_t * p, int i, int c ) { return --(*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c))); }
static inline float Nf_ObjFlowRefs( Nf_Man_t * p, int i, int c ) { return Vec_FltEntry(&p->vFlowRefs, Abc_Var2Lit(i,c)); }
static inline int Nf_ObjRequired( Nf_Man_t * p, int i, int c ) { return Vec_IntEntry(&p->vRequired, Abc_Var2Lit(i,c)); }
static inline void Nf_ObjSetRequired( Nf_Man_t * p,int i, int c, int f ) { Vec_IntWriteEntry(&p->vRequired, Abc_Var2Lit(i,c), f); }
static inline void Nf_ObjUpdateRequired( Nf_Man_t * p,int i, int c, int f ) { if (Nf_ObjRequired(p, i, c) > f) Nf_ObjSetRequired(p, i, c, f); }
static inline Nf_Mat_t * Nf_ObjMatchD( Nf_Man_t * p, int i, int c ) { return &Nf_ManObj(p, i)->M[c][0]; }
static inline Nf_Mat_t * Nf_ObjMatchA( Nf_Man_t * p, int i, int c ) { return &Nf_ManObj(p, i)->M[c][1]; }
static inline int Nf_CutSize( int * pCut ) { return pCut[0] & NF_NO_LEAF; }
static inline int Nf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); }
static inline int * Nf_CutLeaves( int * pCut ) { return pCut + 1; }
static inline int Nf_CutSetBoth( int n, int f ) { return n | (f << 5); }
static inline int Nf_CutIsTriv( int * pCut, int i ) { return Nf_CutSize(pCut) == 1 && pCut[1] == i; }
static inline int Nf_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; }
static inline int * Nf_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; }
static inline int Nf_CfgVar( Nf_Cfg_t Cfg, int i ) { return (Cfg.Perm >> (i<<2)) & 15; }
static inline int Nf_CfgCompl( Nf_Cfg_t Cfg, int i ) { return (Cfg.Phase >> i) & 1; }
#define Nf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Nf_CutSize(pCut) + 1 )
#define Nf_CutForEachVarCompl( pCut, Cfg, iVar, fCompl, i ) for ( i = 0; i < Nf_CutSize(pCut) && (iVar = Nf_CutLeaves(pCut)[Nf_CfgVar(Cfg, i)]) && ((fCompl = Nf_CfgCompl(Cfg, i)), 1); i++ )
#define Nf_CfgForEachVarCompl( Cfg, Size, iVar, fCompl, i ) for ( i = 0; i < Size && ((iVar = Nf_CfgVar(Cfg, i)), 1) && ((fCompl = Nf_CfgCompl(Cfg, i)), 1); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nf_StoCellIsDominated( Mio_Cell2_t * pCell, int * pFans, int * pProf )
{
int k;
if ( pCell->AreaF + NF_EPSILON < Abc_Int2Float(pProf[0]) )
return 0;
for ( k = 0; k < (int)pCell->nFanins; k++ )
if ( pCell->iDelays[Abc_Lit2Var(pFans[k])] < pProf[k+1] )
return 0;
return 1; // pCell is dominated
}
void Nf_StoCreateGateAdd( Vec_Mem_t * vTtMem, Vec_Wec_t * vTt2Match, Mio_Cell2_t * pCell, word uTruth, int * pFans, int nFans, Vec_Wec_t * vProfs, Vec_Int_t * vStore, int fPinFilter, int fPinPerm, int fPinQuick )
{
Vec_Int_t * vArray, * vArrayProfs = NULL;
int i, k, GateId, Entry, fCompl = (int)(uTruth & 1);
word uFunc = fCompl ? ~uTruth : uTruth;
int iFunc = Vec_MemHashInsert( vTtMem, &uFunc );
Nf_Cfg_t Mat = Nf_Int2Cfg(0);
// get match array
if ( iFunc == Vec_WecSize(vTt2Match) )
Vec_WecPushLevel( vTt2Match );
vArray = Vec_WecEntry( vTt2Match, iFunc );
// create match
Mat.fCompl = fCompl;
assert( nFans == (int)pCell->nFanins );
for ( i = 0; i < nFans; i++ )
{
Mat.Perm |= (unsigned)(i << (Abc_Lit2Var(pFans[i]) << 2));
Mat.Phase |= (unsigned)(Abc_LitIsCompl(pFans[i]) << Abc_Lit2Var(pFans[i]));
}
// check other profiles
if ( fPinFilter )
{
// get profile array
assert( Vec_WecSize(vTt2Match) == Vec_WecSize(vProfs) );
if ( iFunc == Vec_WecSize(vProfs) )
Vec_WecPushLevel( vProfs );
vArrayProfs = Vec_WecEntry( vProfs, iFunc );
assert( Vec_IntSize(vArray) == 2 * Vec_IntSize(vArrayProfs) );
// skip dominated matches
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( Nf_Int2Cfg(Entry).Phase == Mat.Phase && Nf_Int2Cfg(Entry).fCompl == Mat.fCompl )
{
int Offset = Vec_IntEntry(vArrayProfs, i/2);
int * pProf = Vec_IntEntryP(vStore, Offset);
if ( Nf_StoCellIsDominated(pCell, pFans, pProf) )
return;
}
}
// check pin permutation
if ( !fPinPerm ) // do not use pin-permutation (improves delay when pin-delays differ)
{
if ( fPinQuick ) // reduce the number of matches agressively
{
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( GateId == (int)pCell->Id && Abc_TtBitCount8[Nf_Int2Cfg(Entry).Phase] == Abc_TtBitCount8[Mat.Phase] )
return;
}
else // reduce the number of matches less agressively
{
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( GateId == (int)pCell->Id && Nf_Int2Cfg(Entry).Phase == Mat.Phase )
return;
}
}
// save data and profile
Vec_IntPush( vArray, pCell->Id );
Vec_IntPush( vArray, Nf_Cfg2Int(Mat) );
// add delay profile
if ( fPinFilter )
{
Vec_IntPush( vArrayProfs, Vec_IntSize(vStore) );
Vec_IntPush( vStore, Abc_Float2Int(pCell->AreaF) );
for ( k = 0; k < nFans; k++ )
Vec_IntPush( vStore, pCell->iDelays[Abc_Lit2Var(pFans[k])] );
}
}
void Nf_StoCreateGateMaches( Vec_Mem_t * vTtMem, Vec_Wec_t * vTt2Match, Mio_Cell2_t * pCell, int ** pComp, int ** pPerm, int * pnPerms, Vec_Wec_t * vProfs, Vec_Int_t * vStore, int fPinFilter, int fPinPerm, int fPinQuick )
{
int Perm[NF_LEAF_MAX], * Perm1, * Perm2;
int nPerms = pnPerms[pCell->nFanins];
int nMints = (1 << pCell->nFanins);
word tCur, tTemp1, tTemp2;
int i, p, c;
assert( pCell->nFanins <= 6 );
for ( i = 0; i < (int)pCell->nFanins; i++ )
Perm[i] = Abc_Var2Lit( i, 0 );
tCur = tTemp1 = pCell->uTruth;
for ( p = 0; p < nPerms; p++ )
{
tTemp2 = tCur;
for ( c = 0; c < nMints; c++ )
{
Nf_StoCreateGateAdd( vTtMem, vTt2Match, pCell, tCur, Perm, pCell->nFanins, vProfs, vStore, fPinFilter, fPinPerm, fPinQuick );
// update
tCur = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] );
Perm1 = Perm + pComp[pCell->nFanins][c];
*Perm1 = Abc_LitNot( *Perm1 );
}
assert( tTemp2 == tCur );
if ( nPerms == 1 )
continue;
// update
tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[pCell->nFanins][p] );
Perm1 = Perm + pPerm[pCell->nFanins][p];
Perm2 = Perm1 + 1;
ABC_SWAP( int, *Perm1, *Perm2 );
}
assert( tTemp1 == tCur );
}
Mio_Cell2_t * Nf_StoDeriveMatches( Vec_Mem_t * vTtMem, Vec_Wec_t * vTt2Match, int * pnCells, int fPinFilter, int fPinPerm, int fPinQuick )
{
int fVerbose = 0;
//abctime clk = Abc_Clock();
Vec_Wec_t * vProfs = Vec_WecAlloc( 1000 );
Vec_Int_t * vStore = Vec_IntAlloc( 10000 );
int * pComp[7], * pPerm[7], nPerms[7], i;
Mio_Cell2_t * pCells;
Vec_WecPushLevel( vProfs );
Vec_WecPushLevel( vProfs );
for ( i = 1; i <= 6; i++ )
pComp[i] = Extra_GreyCodeSchedule( i );
for ( i = 1; i <= 6; i++ )
pPerm[i] = Extra_PermSchedule( i );
for ( i = 1; i <= 6; i++ )
nPerms[i] = Extra_Factorial( i );
pCells = Mio_CollectRootsNewDefault2( 6, pnCells, fVerbose );
if ( pCells != NULL )
for ( i = 2; i < *pnCells; i++ )
Nf_StoCreateGateMaches( vTtMem, vTt2Match, pCells+i, pComp, pPerm, nPerms, vProfs, vStore, fPinFilter, fPinPerm, fPinQuick );
for ( i = 1; i <= 6; i++ )
ABC_FREE( pComp[i] );
for ( i = 1; i <= 6; i++ )
ABC_FREE( pPerm[i] );
Vec_WecFree( vProfs );
Vec_IntFree( vStore );
//Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
return pCells;
}
void Nf_StoPrintOne( Nf_Man_t * p, int Count, int t, int i, int GateId, Nf_Cfg_t Mat )
{
Mio_Cell2_t * pC = p->pCells + GateId;
word * pTruth = Vec_MemReadEntry(p->vTtMem, t);
int k, nSuppSize = Abc_TtSupportSize(pTruth, 6);
printf( "%6d : ", Count );
printf( "%6d : ", t );
printf( "%6d : ", i );
printf( "Gate %16s ", pC->pName );
printf( "Area =%8.2f ", pC->AreaF );
printf( "In = %d ", pC->nFanins );
if ( Mat.fCompl )
printf( " compl " );
else
printf( " " );
for ( k = 0; k < (int)pC->nFanins; k++ )
{
int fComplF = (Mat.Phase >> k) & 1;
int iFanin = (Mat.Perm >> (3*k)) & 7;
printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') );
}
printf( " " );
Dau_DsdPrintFromTruth( pTruth, nSuppSize );
}
void Nf_StoPrint( Nf_Man_t * p, int fVerbose )
{
int t, i, GateId, Entry, Count = 0;
for ( t = 2; t < Vec_WecSize(p->vTt2Match); t++ )
{
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, t );
Vec_IntForEachEntryDouble( vArr, GateId, Entry, i )
{
Count++;
if ( !fVerbose )
continue;
//if ( t < 10 )
// Nf_StoPrintOne( p, Count, t, i/2, GateId, Pf_Int2Mat(Entry) );
}
}
printf( "Gates = %d. Truths = %d. Matches = %d.\n",
p->nCells, Vec_MemEntryNum(p->vTtMem), Count );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Nf_Man_t * Nf_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs );
Vec_Int_t * vFlowRefs;
Nf_Man_t * p;
int i, Entry;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= NF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= NF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vCellMapping );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
// create
p = ABC_CALLOC( Nf_Man_t, 1 );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->pNfObjs = ABC_CALLOC( Nf_Obj_t, Gia_ManObjNum(pGia) );
p->iCur = 2;
// other
Vec_PtrGrow( &p->vPages, 256 ); // cut memory
Vec_IntFill( &p->vMapRefs, 2*Gia_ManObjNum(pGia), 0 ); // mapping refs (2x)
Vec_FltFill( &p->vFlowRefs, 2*Gia_ManObjNum(pGia), 0 ); // flow refs (2x)
Vec_IntFill( &p->vRequired, 2*Gia_ManObjNum(pGia), SCL_INFINITY ); // required times (2x)
Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets
Vec_FltFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area
Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay
Vec_IntGrow( &p->vBackup, 1000 );
// references
vFlowRefs = Vec_IntAlloc(0);
Mf_ManSetFlowRefs( pGia, vFlowRefs );
Vec_IntForEachEntry( vFlowRefs, Entry, i )
{
Vec_FltWriteEntry( &p->vFlowRefs, 2*i, /*0.5* */Entry );
Vec_FltWriteEntry( &p->vFlowRefs, 2*i+1, /*0.5* */Entry );
}
Vec_IntFree(vFlowRefs);
// matching
Mio_LibraryMatchesFetch( (Mio_Library_t *)Abc_FrameReadLibGen(), &p->vTtMem, &p->vTt2Match, &p->pCells, &p->nCells, p->pPars->fPinFilter, p->pPars->fPinPerm, p->pPars->fPinQuick );
if ( p->pCells == NULL )
return NULL;
p->InvDelayI = p->pCells[3].iDelays[0];
p->InvAreaW = p->pCells[3].AreaW;
p->InvAreaF = p->pCells[3].AreaF;
Nf_ObjMatchD(p, 0, 0)->Gate = 0;
Nf_ObjMatchD(p, 0, 1)->Gate = 1;
// prepare cuts
return p;
}
void Nf_StoDelete( Nf_Man_t * p )
{
Vec_PtrFreeData( &p->vPages );
ABC_FREE( p->vPages.pArray );
ABC_FREE( p->vMapRefs.pArray );
ABC_FREE( p->vFlowRefs.pArray );
ABC_FREE( p->vRequired.pArray );
ABC_FREE( p->vCutSets.pArray );
ABC_FREE( p->vCutFlows.pArray );
ABC_FREE( p->vCutDelays.pArray );
ABC_FREE( p->vBackup.pArray );
ABC_FREE( p->pNfObjs );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutComputeTruth6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, int fCompl0, int fCompl1, Nf_Cut_t * pCutR, int fIsXor )
{
// extern int Nf_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
pCutR->Useless = Nf_ObjCutUseless( p, truthId );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Nf_CutComputeTruthMux6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Nf_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
pCutR->Useless = Nf_ObjCutUseless( p, truthId );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline word Nf_CutGetSign( int * pLeaves, int nLeaves )
{
word Sign = 0; int i;
for ( i = 0; i < nLeaves; i++ )
Sign |= ((word)1) << (pLeaves[i] & 0x3F);
return Sign;
}
static inline int Nf_CutCreateUnit( Nf_Cut_t * p, int i )
{
p->Delay = 0;
p->Flow = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline void Nf_CutPrint( Nf_Man_t * p, Nf_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } Useless = %d. D = %4d A = %9.4f F = %6d ",
pCut->Useless, pCut->Delay, pCut->Flow, pCut->iFunc );
if ( p->vTtMem )
Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves );
else
printf( "\n" );
}
static inline int Nf_ManPrepareCuts( Nf_Cut_t * pCuts, Nf_Man_t * p, int iObj, int fAddUnit )
{
if ( Nf_ObjHasCuts(p, iObj) )
{
Nf_Cut_t * pMfCut = pCuts;
int i, * pCut, * pList = Nf_ObjCutSet(p, iObj);
Nf_SetForEachCut( pList, pCut, i )
{
pMfCut->Delay = 0;
pMfCut->Flow = 0;
pMfCut->iFunc = Nf_CutFunc( pCut );
pMfCut->nLeaves = Nf_CutSize( pCut );
pMfCut->Sign = Nf_CutGetSign( pCut+1, Nf_CutSize(pCut) );
pMfCut->Useless = Nf_ObjCutUseless( p, Abc_Lit2Var(pMfCut->iFunc) );
memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Nf_CutSize(pCut) );
pMfCut++;
}
if ( fAddUnit && pCuts->nLeaves > 1 )
return pList[0] + Nf_CutCreateUnit( pMfCut, iObj );
return pList[0];
}
return Nf_CutCreateUnit( pCuts, iObj );
}
static inline int Nf_ManSaveCuts( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts, int fUseful )
{
int i, * pPlace, iCur, nInts = 1, nCutsNew = 0;
for ( i = 0; i < nCuts; i++ )
if ( !fUseful || !pCuts[i]->Useless )
nInts += pCuts[i]->nLeaves + 1, nCutsNew++;
if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF )
p->iCur = ((p->iCur >> 16) + 1) << 16;
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) )
Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) );
iCur = p->iCur; p->iCur += nInts;
pPlace = Nf_ManCutSet( p, iCur );
*pPlace++ = nCutsNew;
for ( i = 0; i < nCuts; i++ )
if ( !fUseful || !pCuts[i]->Useless )
{
*pPlace++ = Nf_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc );
memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves );
pPlace += pCuts[i]->nLeaves;
}
return iCur;
}
static inline int Nf_ManCountUseful( Nf_Cut_t ** pCuts, int nCuts )
{
int i, Count = 0;
for ( i = 0; i < nCuts; i++ )
Count += !pCuts[i]->Useless;
return Count;
}
static inline int Nf_ManCountMatches( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts )
{
int i, Count = 0;
for ( i = 0; i < nCuts; i++ )
if ( !pCuts[i]->Useless )
Count += Vec_IntSize(Vec_WecEntry(p->vTt2Match, Abc_Lit2Var(pCuts[i]->iFunc))) / 2;
return Count;
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutCheck( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Nf_SetCheckArray( Nf_Cut_t ** ppCuts, int nCuts )
{
Nf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( pCut0->nLeaves <= NF_LEAF_MAX );
assert( pCut0->Sign == Nf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Nf_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Nf_CutMergeOrder( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = NF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = NF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = NF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Nf_CutMergeOrderMux( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut2, Nf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = NF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Nf_SetCutIsContainedOrder( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Nf_SetLastCutIsContained( Nf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Nf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
static inline int Nf_SetLastCutContainsArea( Nf_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Nf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = NF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 0; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == NF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Nf_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline int Nf_CutCompareArea( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1 )
{
if ( pCut0->Useless < pCut1->Useless ) return -1;
if ( pCut0->Useless > pCut1->Useless ) return 1;
if ( pCut0->Flow < pCut1->Flow - NF_EPSILON ) return -1;
if ( pCut0->Flow > pCut1->Flow + NF_EPSILON ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline void Nf_SetSortByArea( Nf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 0; i-- )
{
if ( Nf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Nf_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Nf_SetAddCut( Nf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Nf_SetLastCutContainsArea(pCuts, nCuts);
Nf_SetSortByArea( pCuts, nCuts );
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline int Nf_CutArea( Nf_Man_t * p, int nLeaves )
{
if ( nLeaves < 2 )
return 0;
return nLeaves + p->pPars->nAreaTuner;
}
static inline void Nf_CutParams( Nf_Man_t * p, Nf_Cut_t * pCut, float FlowRefs )
{
int i, nLeaves = pCut->nLeaves;
assert( nLeaves <= p->pPars->nLutSize );
pCut->Delay = 0;
pCut->Flow = 0;
for ( i = 0; i < nLeaves; i++ )
{
pCut->Delay = Abc_MaxInt( pCut->Delay, Nf_ObjCutDelay(p, pCut->pLeaves[i]) );
pCut->Flow += Nf_ObjCutFlow(p, pCut->pLeaves[i]);
}
pCut->Delay += (int)(nLeaves > 1);
pCut->Flow = (pCut->Flow + Nf_CutArea(p, nLeaves)) / FlowRefs;
}
void Nf_ObjMergeOrder( Nf_Man_t * p, int iObj )
{
Nf_Cut_t pCuts0[NF_CUT_MAX], pCuts1[NF_CUT_MAX], pCuts[NF_CUT_MAX], * pCutsR[NF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
//Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
float dFlowRefs = Nf_ObjFlowRefs(p, iObj, 0) + Nf_ObjFlowRefs(p, iObj, 1);
int nLutSize = p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCuts0 = Nf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1);
int nCuts1 = Nf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1);
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int iSibl = Gia_ObjSibl(p->pGia, iObj);
Nf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1;
int i, nCutsUse, nCutsR = 0;
assert( !Gia_ObjIsBuf(pObj) );
for ( i = 0; i < nCutNum; i++ )
pCutsR[i] = pCuts + i;
if ( iSibl )
{
Nf_Cut_t pCuts2[NF_CUT_MAX];
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, iSibl, 0);
Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
*pCutsR[nCutsR] = *pCut2;
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
Nf_Cut_t pCuts2[NF_CUT_MAX];
int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1);
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
if ( Nf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Nf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( Nf_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Nf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Nf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( Nf_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs );
nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
// if ( iObj % 10000 == 0 )
// if ( iObj == 1090 )
{
printf( "*** Obj = %d Useful = %d\n", iObj, Nf_ManCountUseful(pCutsR, nCutsR) );
for ( i = 0; i < nCutsR; i++ )
Nf_CutPrint( p, pCutsR[i] );
printf( "\n" );
}
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
// assert( Nf_SetCheckArray(pCutsR, nCutsR) );
// store the cutset
Nf_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow );
Nf_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay );
*Vec_IntEntryP(&p->vCutSets, iObj) = Nf_ManSaveCuts(p, pCutsR, nCutsR, 0);
p->CutCount[3] += nCutsR;
nCutsUse = Nf_ManCountUseful(pCutsR, nCutsR);
p->CutCount[4] += nCutsUse;
p->nCutUseAll += nCutsUse == nCutsR;
p->CutCount[5] += Nf_ManCountMatches(p, pCutsR, nCutsR);
}
void Nf_ManComputeCuts( Nf_Man_t * p )
{
Gia_Obj_t * pObj; int i, iFanin;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
{
iFanin = Gia_ObjFaninId0(pObj, i);
Nf_ObjSetCutFlow( p, i, Nf_ObjCutFlow(p, iFanin) );
Nf_ObjSetCutDelay( p, i, Nf_ObjCutDelay(p, iFanin) );
}
else
Nf_ObjMergeOrder( p, i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManPrintStats( Nf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Delay =%8.2f ", Scl_Int2Flt(p->pPars->MapDelay) );
printf( "Area =%12.2f ", p->pPars->MapAreaF );
printf( "Gate =%6d ", (int)p->pPars->Area );
printf( "Inv =%6d ", (int)p->nInvs );
printf( "Edge =%7d ", (int)p->pPars->Edge );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Nf_ManPrintInit( Nf_Man_t * p )
{
int nChoices;
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds );//+ p->pPars->nRoundsEla );
printf( "Coarse = %d ", p->pPars->fCoarsen );
printf( "Cells = %d ", p->nCells );
printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) );
printf( "Matches = %d ", Vec_WecSizeSize(p->vTt2Match)/2 );
printf( "And = %d ", Gia_ManAndNum(p->pGia) );
nChoices = Gia_ManChoiceNum( p->pGia );
if ( nChoices )
printf( "Choices = %d ", nChoices );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Nf_ManPrintQuit( Nf_Man_t * p )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan =(1.0 * sizeof(Nf_Obj_t) + 8.0 * sizeof(int)) * Gia_ManObjNum(p->pGia) / (1<<20);
float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
return;
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) );
printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) );
printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) );
printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) );
printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) );
// printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Cut = %.2f MB ", MemCuts );
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt );
// printf( "\n" );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManCutMatchPrint( Nf_Man_t * p, int iObj, char * pStr, Nf_Mat_t * pM )
{
Mio_Cell2_t * pCell;
int i, * pCut;
printf( "%5d %s : ", iObj, pStr );
if ( pM->CutH == 0 )
{
printf( "Unassigned\n" );
return;
}
pCell = Nf_ManCell( p, pM->Gate );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH );
printf( "D =%6.2f ", Scl_Int2Flt(pM->D) );
printf( "A =%6.2f ", pM->F );
printf( "C = %d ", pM->fCompl );
// printf( "B = %d ", pM->fBest );
printf( " " );
printf( "Cut = {" );
for ( i = 0; i < (int)pCell->nFanins; i++ )
printf( "%4d ", Nf_CutLeaves(pCut)[i] );
for ( ; i < 6; i++ )
printf( " " );
printf( "} " );
printf( "%10s ", pCell->pName );
printf( "%d ", pCell->nFanins );
printf( "{" );
for ( i = 0; i < (int)pCell->nFanins; i++ )
printf( "%6.2f ", Scl_Int2Flt(pCell->iDelays[i]) );
for ( ; i < 6; i++ )
printf( " " );
printf( " } " );
for ( i = 0; i < (int)pCell->nFanins; i++ )
printf( "%s%d ", Nf_CfgCompl(pM->Cfg, i) ? "!":" ", Nf_CfgVar(pM->Cfg, i) );
for ( ; i < 6; i++ )
printf( " " );
Dau_DsdPrintFromTruth( &pCell->uTruth, pCell->nFanins );
}
void Nf_ManCutMatchOne( Nf_Man_t * p, int iObj, int * pCut, int * pCutSet )
{
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
int * pFans = Nf_CutLeaves(pCut);
int nFans = Nf_CutSize(pCut);
int iFuncLit = Nf_CutFunc(pCut);
int fComplExt = Abc_LitIsCompl(iFuncLit);
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
int i, k, c, Info, Offset, iFanin, fComplF;
int ArrivalD, ArrivalA;
Nf_Mat_t * pD, * pA;
// assign fanins matches
Nf_Obj_t * pBestF[NF_LEAF_MAX];
for ( i = 0; i < nFans; i++ )
pBestF[i] = Nf_ManObj( p, pFans[i] );
// special cases
if ( nFans == 0 )
{
int Const = (iFuncLit == 1);
assert( iFuncLit == 0 || iFuncLit == 1 );
for ( c = 0; c < 2; c++ )
{
pD = Nf_ObjMatchD( p, iObj, c );
pA = Nf_ObjMatchA( p, iObj, c );
pD->D = pA->D = 0;
pD->F = pA->F = p->pCells[c ^ Const].AreaF;
pD->CutH = pA->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pA->Gate = c ^ Const;
// pD->Conf = pA->Conf = 0;
pD->Cfg = pA->Cfg = Nf_Int2Cfg(0);
}
return;
}
// consider matches of this function
Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
{
Nf_Cfg_t Cfg = Nf_Int2Cfg(Offset);
Mio_Cell2_t*pC = Nf_ManCell( p, Info );
int fCompl = Cfg.fCompl ^ fComplExt;
int Required = Nf_ObjRequired( p, iObj, fCompl ), Delay = 0;
Nf_Mat_t * pD = &pBest->M[fCompl][0];
Nf_Mat_t * pA = &pBest->M[fCompl][1];
float AreaF = pC->AreaF;
assert( nFans == (int)pC->nFanins );
Nf_CfgForEachVarCompl( Cfg, nFans, iFanin, fComplF, k )
{
ArrivalD = pBestF[iFanin]->M[fComplF][0].D;
ArrivalA = pBestF[iFanin]->M[fComplF][1].D;
if ( ArrivalA + pC->iDelays[k] <= Required && Required != SCL_INFINITY )
{
Delay = Abc_MaxInt( Delay, ArrivalA + pC->iDelays[k] );
AreaF += pBestF[iFanin]->M[fComplF][1].F;
}
else
{
if ( pD->D < SCL_INFINITY && pA->D < SCL_INFINITY && ArrivalD + pC->iDelays[k] > Required )
break;
Delay = Abc_MaxInt( Delay, ArrivalD + pC->iDelays[k] );
//AreaF += pBestF[iFanin]->M[fComplF][0].F;
if ( AreaF >= (float)1e32 || pBestF[iFanin]->M[fComplF][0].F >= (float)1e32 )
AreaF = (float)1e32;
else
AreaF += pBestF[iFanin]->M[fComplF][0].F;
}
}
if ( k < nFans )
continue;
// select best Cfgch
if ( pD->D > Delay )
{
pD->D = Delay;
pD->F = AreaF;
pD->CutH = Nf_CutHandle(pCutSet, pCut);
pD->Gate = pC->Id;
pD->Cfg = Cfg;
pD->Cfg.fCompl = 0;
}
if ( pA->F > AreaF + NF_EPSILON )
{
pA->D = Delay;
pA->F = AreaF;
pA->CutH = Nf_CutHandle(pCutSet, pCut);
pA->Gate = pC->Id;
pA->Cfg = Cfg;
pA->Cfg.fCompl = 0;
}
}
}
static inline void Nf_ObjPrepareCi( Nf_Man_t * p, int iObj, int Time )
{
Nf_Mat_t * pD0 = Nf_ObjMatchD( p, iObj, 0 );
Nf_Mat_t * pA0 = Nf_ObjMatchA( p, iObj, 0 );
Nf_Mat_t * pD = Nf_ObjMatchD( p, iObj, 1 );
Nf_Mat_t * pA = Nf_ObjMatchA( p, iObj, 1 );
pD0->D = pA0->D = pD->D = pA->D = Time;
pD->fCompl = 1;
pD->D += p->InvDelayI;
pD->F = p->InvAreaF;
pA->fCompl = 1;
pA->D += p->InvDelayI;
pA->F = p->InvAreaF;
Nf_ObjMatchD( p, iObj, 0 )->fBest = 1;
Nf_ObjMatchD( p, iObj, 1 )->fBest = 1;
}
static inline void Nf_ObjPrepareBuf( Nf_Man_t * p, Gia_Obj_t * pObj )
{
// get fanin info
int iObj = Gia_ObjId( p->pGia, pObj );
int iFanin = Gia_ObjFaninId0( pObj, iObj );
Nf_Mat_t * pDf = Nf_ObjMatchD( p, iFanin, Gia_ObjFaninC0(pObj) );
//Nf_Mat_t * pAf = Nf_ObjMatchA( p, iFanin, Gia_ObjFaninC0(pObj) );
// set the direct phase
Nf_Mat_t * pDp = Nf_ObjMatchD( p, iObj, 0 );
Nf_Mat_t * pAp = Nf_ObjMatchA( p, iObj, 0 );
Nf_Mat_t * pDn = Nf_ObjMatchD( p, iObj, 1 );
Nf_Mat_t * pAn = Nf_ObjMatchA( p, iObj, 1 );
assert( Gia_ObjIsBuf(pObj) );
memset( Nf_ManObj(p, iObj), 0, sizeof(Nf_Obj_t) );
// set the direct phase
pDp->D = pAp->D = pDf->D;
pDp->F = pAp->F = pDf->F; // do not pass flow???
pDp->fBest = 1;
// set the inverted phase
pDn->D = pAn->D = pDf->D + p->InvDelayI;
pDn->F = pAn->F = pDf->F + p->InvAreaF;
pDn->fCompl = pAn->fCompl = 1;
pDn->fBest = 1;
}
static inline int Nf_CutRequired( Nf_Man_t * p, Nf_Mat_t * pM, int * pCutSet )
{
Mio_Cell2_t * pCell = Nf_ManCell( p, pM->Gate );
int * pCut = Nf_CutFromHandle( pCutSet, pM->CutH );
int i, iVar, fCompl;
int Arr, Req, Arrival = 0, Required = 0;
Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, i )
{
Arr = Nf_ManObj(p, iVar)->M[fCompl][0].D + pCell->iDelays[i];
Req = Nf_ObjRequired(p, iVar, fCompl);
Arrival = Abc_MaxInt( Arrival, Arr );
if ( Req < SCL_INFINITY )
Required = Abc_MaxInt( Required, Req + pCell->iDelays[i] );
}
return Abc_MaxInt( Required + p->pPars->nReqTimeFlex*p->InvDelayI, Arrival );
}
static inline void Nf_ObjComputeRequired( Nf_Man_t * p, int iObj )
{
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
int c, * pCutSet = Nf_ObjCutSet( p, iObj );
for ( c = 0; c < 2; c++ )
if ( Nf_ObjRequired(p, iObj, c) == SCL_INFINITY )
Nf_ObjSetRequired( p, iObj, c, Nf_CutRequired(p, &pBest->M[c][0], pCutSet) );
}
void Nf_ManCutMatch( Nf_Man_t * p, int iObj )
{
Nf_Obj_t * pBest = Nf_ManObj(p, iObj);
Nf_Mat_t * pDp = &pBest->M[0][0];
Nf_Mat_t * pDn = &pBest->M[1][0];
Nf_Mat_t * pAp = &pBest->M[0][1];
Nf_Mat_t * pAn = &pBest->M[1][1];
float FlowRefPf = Nf_ObjFlowRefs(p, iObj, 0);
float FlowRefNf = Nf_ObjFlowRefs(p, iObj, 1);
int i, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj );
int Required[2] = {0};
if ( p->Iter )
{
Nf_ObjComputeRequired( p, iObj );
Required[0] = Nf_ObjRequired( p, iObj, 0 );
Required[1] = Nf_ObjRequired( p, iObj, 1 );
}
memset( pBest, 0, sizeof(Nf_Obj_t) );
pDp->D = SCL_INFINITY; pDp->F = FLT_MAX;
pDn->D = SCL_INFINITY; pDn->F = FLT_MAX;
pAp->D = SCL_INFINITY; pAp->F = FLT_MAX;
pAn->D = SCL_INFINITY; pAn->F = FLT_MAX;
Nf_SetForEachCut( pCutSet, pCut, i )
{
if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) )
continue;
assert( !Nf_CutIsTriv(pCut, iObj) );
assert( Nf_CutSize(pCut) <= p->pPars->nLutSize );
assert( Abc_Lit2Var(Nf_CutFunc(pCut)) < Vec_WecSize(p->vTt2Match) );
Nf_ManCutMatchOne( p, iObj, pCut, pCutSet );
}
/*
if ( 461 == iObj && p->Iter == 0 )
{
printf( "\nObj %6d (%.2f %.2f):\n", iObj, Scl_Int2Flt(Required[0]), Scl_Int2Flt(Required[1]) );
Nf_ManCutMatchPrint( p, iObj, "Dp", &pBest->M[0][0] );
Nf_ManCutMatchPrint( p, iObj, "Dn", &pBest->M[1][0] );
Nf_ManCutMatchPrint( p, iObj, "Ap", &pBest->M[0][1] );
Nf_ManCutMatchPrint( p, iObj, "An", &pBest->M[1][1] );
printf( "\n" );
}
*/
// divide by ref count
pDp->F = pDp->F / FlowRefPf;
pAp->F = pAp->F / FlowRefPf;
pDn->F = pDn->F / FlowRefNf;
pAn->F = pAn->F / FlowRefNf;
// add the inverters
assert( pDp->D < SCL_INFINITY || pDn->D < SCL_INFINITY );
if ( pDp->D > pDn->D + p->InvDelayI )
{
*pDp = *pDn;
pDp->D += p->InvDelayI;
pDp->F += p->InvAreaF;
pDp->fCompl = 1;
if ( pAp->D == SCL_INFINITY )
*pAp = *pDp;
//printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 1 );
}
else if ( pDn->D > pDp->D + p->InvDelayI )
{
*pDn = *pDp;
pDn->D += p->InvDelayI;
pDn->F += p->InvAreaF;
pDn->fCompl = 1;
if ( pAn->D == SCL_INFINITY )
*pAn = *pDn;
//printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 0 );
}
//assert( pAp->F < FLT_MAX || pAn->F < FLT_MAX );
// try replacing pos with neg
if ( pAp->D == SCL_INFINITY || (pAp->F > pAn->F + p->InvAreaF + NF_EPSILON && pAn->D + p->InvDelayI <= Required[0]) )
{
assert( p->Iter > 0 );
*pAp = *pAn;
pAp->D += p->InvDelayI;
pAp->F += p->InvAreaF;
pAp->fCompl = 1;
if ( pDp->D == SCL_INFINITY )
*pDp = *pAp;
//printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 1 );
}
// try replacing neg with pos
else if ( pAn->D == SCL_INFINITY || (pAn->F > pAp->F + p->InvAreaF + NF_EPSILON && pAp->D + p->InvDelayI <= Required[1]) )
{
assert( p->Iter > 0 );
*pAn = *pAp;
pAn->D += p->InvDelayI;
pAn->F += p->InvAreaF;
pAn->fCompl = 1;
if ( pDn->D == SCL_INFINITY )
*pDn = *pAn;
//printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 0 );
}
if ( pDp->D == SCL_INFINITY )
printf( "Object %d has pDp unassigned.\n", iObj );
if ( pDn->D == SCL_INFINITY )
printf( "Object %d has pDn unassigned.\n", iObj );
if ( pAp->D == SCL_INFINITY )
printf( "Object %d has pAp unassigned.\n", iObj );
if ( pAn->D == SCL_INFINITY )
printf( "Object %d has pAn unassigned.\n", iObj );
/*
pDp->F = Abc_MinFloat( pDp->F, FLT_MAX/SCL_NUM );
pDn->F = Abc_MinFloat( pDn->F, FLT_MAX/SCL_NUM );
pAp->F = Abc_MinFloat( pAp->F, FLT_MAX/SCL_NUM );
pAn->F = Abc_MinFloat( pAn->F, FLT_MAX/SCL_NUM );
*/
assert( pDp->D < SCL_INFINITY );
assert( pDn->D < SCL_INFINITY );
assert( pAp->D < SCL_INFINITY );
assert( pAn->D < SCL_INFINITY );
assert( pDp->F < FLT_MAX );
assert( pDn->F < FLT_MAX );
assert( pAp->F < FLT_MAX );
assert( pAn->F < FLT_MAX );
/*
if ( p->Iter && (pDp->D > Required[0] || pDn->D > Required[1]) )
{
printf( "%5d : ", iObj );
printf( "Dp = %6.2f ", Scl_Int2Flt(pDp->D) );
printf( "Dn = %6.2f ", Scl_Int2Flt(pDn->D) );
printf( " " );
printf( "Ap = %6.2f ", Scl_Int2Flt(pAp->D) );
printf( "An = %6.2f ", Scl_Int2Flt(pAn->D) );
printf( " " );
printf( "Rp = %6.2f ", Scl_Int2Flt(Required[0]) );
printf( "Rn = %6.2f ", Scl_Int2Flt(Required[1]) );
printf( "\n" );
}
*/
}
void Nf_ManComputeMapping( Nf_Man_t * p )
{
Gia_Obj_t * pObj; int i;
Gia_ManForEachAnd( p->pGia, pObj, i )
if ( Gia_ObjIsBuf(pObj) )
Nf_ObjPrepareBuf( p, pObj );
else
Nf_ManCutMatch( p, i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Nf_Mat_t * Nf_ObjMatchBest( Nf_Man_t * p, int i, int c )
{
Nf_Mat_t * pD = Nf_ObjMatchD(p, i, c);
Nf_Mat_t * pA = Nf_ObjMatchA(p, i, c);
assert( pD->fBest != pA->fBest );
//assert( Nf_ObjMapRefNum(p, i, c) > 0 );
if ( pA->fBest )
return pA;
if ( pD->fBest )
return pD;
return NULL;
}
void Nf_ManSetOutputRequireds( Nf_Man_t * p, int fPropCompl )
{
Gia_Obj_t * pObj;
int Required = 0, MapDelayOld = p->pPars->MapDelay;
int fUseConMan = Scl_ConIsRunning() && Scl_ConHasOutReqs();
int i, iObj, fCompl, nLits = 2*Gia_ManObjNum(p->pGia);
Vec_IntFill( &p->vRequired, nLits, SCL_INFINITY );
// compute delay
p->pPars->MapDelay = 0;
Gia_ManForEachCo( p->pGia, pObj, i )
{
Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D;
p->pPars->MapDelay = Abc_MaxInt( p->pPars->MapDelay, Required );
}
if ( p->Iter && MapDelayOld < p->pPars->MapDelay && p->pGia->vOutReqs == NULL )
printf( "******** Critical delay violation %.2f -> %.2f ********\n", Scl_Int2Flt(MapDelayOld), Scl_Int2Flt(p->pPars->MapDelay) );
p->pPars->MapDelay = Abc_MaxInt( p->pPars->MapDelay, MapDelayOld );
// check delay target
if ( p->pPars->MapDelayTarget == 0 && p->pPars->nRelaxRatio )
p->pPars->MapDelayTarget = p->pPars->MapDelay * (100 + p->pPars->nRelaxRatio) / 100;
if ( p->pPars->MapDelayTarget > 0 )
{
if ( p->pPars->MapDelay < p->pPars->MapDelayTarget )
p->pPars->MapDelay = p->pPars->MapDelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", Scl_Int2Flt(p->pPars->MapDelayTarget), Scl_Int2Flt(p->pPars->MapDelay) );
}
//assert( p->pPars->MapDelayTarget == 0 );
// set required times
Gia_ManForEachCo( p->pGia, pObj, i )
{
iObj = Gia_ObjFaninId0p(p->pGia, pObj);
fCompl = Gia_ObjFaninC0(pObj);
Required = Nf_ObjMatchD(p, iObj, fCompl)->D;
Required = p->pPars->fDoAverage ? Required * (100 + p->pPars->nRelaxRatio) / 100 : p->pPars->MapDelay;
// if external required time can be achieved, use it
if ( fUseConMan )
{
if ( Scl_ConGetOutReq(i) > 0 && Required <= Scl_ConGetOutReq(i) )
Required = Scl_ConGetOutReq(i);
}
else if ( p->pGia->vOutReqs )
{
int NewRequired = Scl_Flt2Int(Vec_FltEntry(p->pGia->vOutReqs, i));
if ( NewRequired > 0 && Required <= NewRequired )
Required = Abc_MinInt( 2*Required, NewRequired );
}
// if external required cannot be achieved, set the earliest possible arrival time
// else if ( p->pGia->vOutReqs && Vec_FltEntry(p->pGia->vOutReqs, i) > 0 && Required > Vec_FltEntry(p->pGia->vOutReqs, i) )
// ptTime->Rise = ptTime->Fall = ptTime->Worst = Required;
// otherwise, set the global required time
Nf_ObjUpdateRequired( p, iObj, fCompl, Required );
if ( fPropCompl && iObj > 0 && Nf_ObjMatchBest(p, iObj, fCompl)->fCompl )
Nf_ObjUpdateRequired( p, iObj, !fCompl, Required - p->InvDelayI );
//Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
}
}
void Nf_ManSetMapRefsGate( Nf_Man_t * p, int iObj, int Required, Nf_Mat_t * pM )
{
int k, iVar, fCompl;
Mio_Cell2_t * pCell = Nf_ManCell( p, pM->Gate );
int * pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH );
Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k )
{
Nf_ObjMapRefInc( p, iVar, fCompl );
Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->iDelays[k] );
}
assert( Nf_CutSize(pCut) == (int)pCell->nFanins );
// update global stats
p->pPars->MapAreaF += pCell->AreaF;
p->pPars->Edge += Nf_CutSize(pCut);
p->pPars->Area++;
// update status of the gate
assert( pM->fBest == 0 );
pM->fBest = 1;
}
void Nf_ManPrintMatches( Nf_Man_t * p )
{
Gia_Obj_t * pObj; int i;
Gia_ManForEachAnd( p->pGia, pObj, i )
{
Nf_Mat_t * pDp = Nf_ObjMatchD( p, i, 0 );
Nf_Mat_t * pAp = Nf_ObjMatchA( p, i, 0 );
Nf_Mat_t * pDn = Nf_ObjMatchD( p, i, 1 );
Nf_Mat_t * pAn = Nf_ObjMatchA( p, i, 1 );
printf( "%5d : ", i );
printf( "Dp = %6.2f ", Scl_Int2Flt(pDp->D) );
printf( "Dn = %6.2f ", Scl_Int2Flt(pDn->D) );
printf( " " );
printf( "Ap = %6.2f ", Scl_Int2Flt(pAp->D) );
printf( "An = %6.2f ", Scl_Int2Flt(pAn->D) );
printf( " " );
printf( "Dp = %8s ", Nf_ManCell(p, pDp->Gate)->pName );
printf( "Dn = %8s ", Nf_ManCell(p, pDn->Gate)->pName );
printf( "Ap = %8s ", Nf_ManCell(p, pAp->Gate)->pName );
printf( "An = %8s ", Nf_ManCell(p, pAn->Gate)->pName );
printf( "\n" );
}
}
int Nf_ManSetMapRefs( Nf_Man_t * p )
{
float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
float * pFlowRefs = Vec_FltArray( &p->vFlowRefs );
int * pMapRefs = Vec_IntArray( &p->vMapRefs );
int nLits = 2*Gia_ManObjNum(p->pGia);
int i, c, Id, nRefs[2];
Gia_Obj_t * pObj;
Nf_Mat_t * pD, * pA, * pM;
Nf_Mat_t * pDs[2], * pAs[2], * pMs[2];
int Required = 0, Requireds[2];
assert( !p->fUseEla );
// if ( p->Iter == 0 )
// Nf_ManPrintMatches( p );
Nf_ManSetOutputRequireds( p, 0 );
// set output references
memset( pMapRefs, 0, sizeof(int) * nLits );
Gia_ManForEachCo( p->pGia, pObj, i )
Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj));
// compute area and edges
p->nInvs = 0;
p->pPars->MapAreaF = 0;
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
if ( Nf_ObjMapRefNum(p, i, 1) )
{
Nf_ObjMapRefInc( p, i, 0 );
Nf_ObjUpdateRequired( p, i, 0, Nf_ObjRequired(p, i, 1) - p->InvDelayI );
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
Nf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Nf_ObjRequired(p, i, 0) );
Nf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj));
continue;
}
// skip if this node is not used
for ( c = 0; c < 2; c++ )
nRefs[c] = Nf_ObjMapRefNum(p, i, c);
if ( !nRefs[0] && !nRefs[1] )
continue;
// consider two cases
if ( nRefs[0] && nRefs[1] )
{
// find best matches for both phases
for ( c = 0; c < 2; c++ )
{
Requireds[c] = Nf_ObjRequired( p, i, c );
//assert( Requireds[c] < SCL_INFINITY );
pDs[c] = Nf_ObjMatchD( p, i, c );
pAs[c] = Nf_ObjMatchA( p, i, c );
pMs[c] = (pAs[c]->D <= Requireds[c]) ? pAs[c] : pDs[c];
}
// swap complemented matches
if ( pMs[0]->fCompl && pMs[1]->fCompl )
{
// pMs[0]->fCompl = pMs[1]->fCompl = 0;
// ABC_SWAP( Nf_Mat_t *, pMs[0], pMs[1] );
// find best matches for both phases
pMs[0] = Nf_ObjMatchD( p, i, 0 );
pMs[1] = Nf_ObjMatchD( p, i, 1 );
assert( !pMs[0]->fCompl || !pMs[1]->fCompl );
}
// check if intervers are involved
if ( !pMs[0]->fCompl && !pMs[1]->fCompl ) // no inverters
{
for ( c = 0; c < 2; c++ )
Nf_ManSetMapRefsGate( p, i, Requireds[c], pMs[c] );
}
else
{
// one interver
assert( !pMs[0]->fCompl || !pMs[1]->fCompl );
c = pMs[1]->fCompl;
assert( pMs[c]->fCompl && !pMs[!c]->fCompl );
//printf( "Using inverter at node %d in phase %d\n", i, c );
// update this phase
pM = pMs[c];
pM->fBest = 1;
Required = Requireds[c];
// update opposite phase
Nf_ObjMapRefInc( p, i, !c );
Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelayI );
// select opposite phase
Required = Nf_ObjRequired( p, i, !c );
//assert( Required < SCL_INFINITY );
pD = Nf_ObjMatchD( p, i, !c );
pA = Nf_ObjMatchA( p, i, !c );
pM = (pA->D <= Required) ? pA : pD;
assert( !pM->fCompl );
// create gate
Nf_ManSetMapRefsGate( p, i, Required, pM );
// account for the inverter
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
}
else
{
c = (int)(nRefs[1] > 0);
assert( nRefs[c] && !nRefs[!c] );
// consider this phase
Required = Nf_ObjRequired( p, i, c );
//assert( Required < SCL_INFINITY );
pD = Nf_ObjMatchD( p, i, c );
pA = Nf_ObjMatchA( p, i, c );
pM = (pA->D <= Required) ? pA : pD;
if ( pM->fCompl ) // use inverter
{
p->nInvs++;
//printf( "Using inverter at node %d in phase %d\n", i, c );
pM->fBest = 1;
// update opposite phase
Nf_ObjMapRefInc( p, i, !c );
Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelayI );
// select opposite phase
Required = Nf_ObjRequired( p, i, !c );
//assert( Required < SCL_INFINITY );
pD = Nf_ObjMatchD( p, i, !c );
pA = Nf_ObjMatchA( p, i, !c );
pM = (pA->D <= Required) ? pA : pD;
assert( !pM->fCompl );
// account for the inverter
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
}
// create gate
Nf_ManSetMapRefsGate( p, i, Required, pM );
}
// the result of this:
// - only one phase can be implemented as inverter of the other phase
// - required times are propagated correctly
// - references are set correctly
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
{
Nf_ObjMapRefInc( p, Id, 0 );
Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelayI );
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
// blend references
for ( i = 0; i < nLits; i++ )
pFlowRefs[i] = Abc_MaxFloat(1.0, Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i]));
// pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]);
return p->pPars->Area;
}
/**Function*************************************************************
Synopsis [Area recovery.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
word Nf_MatchDeref_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM )
{
word Area = 0;
int k, iVar, fCompl, * pCut;
assert( pM->fBest );
if ( pM->fCompl )
{
assert( Nf_ObjMapRefNum(p, i, !c) > 0 );
if ( !Nf_ObjMapRefDec(p, i, !c) )
Area += Nf_MatchDeref_rec( p, i, !c, Nf_ObjMatchD(p, i, !c) );
return Area + p->InvAreaW;
}
if ( Nf_ObjCutSetId(p, i) == 0 )
return 0;
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k )
{
assert( Nf_ObjMapRefNum(p, iVar, fCompl) > 0 );
if ( !Nf_ObjMapRefDec(p, iVar, fCompl) )
Area += Nf_MatchDeref_rec( p, iVar, fCompl, Nf_ObjMatchD(p, iVar, fCompl) );
}
return Area + Nf_ManCell(p, pM->Gate)->AreaW;
}
word Nf_MatchRef_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, int Required, Vec_Int_t * vBackup )
{
word Area = 0;
int ReqFanin;
int k, iVar, fCompl, * pCut;
assert( pM->fBest );
assert( pM->D <= Required );
if ( pM->fCompl )
{
ReqFanin = Required - p->InvDelayI;
if ( vBackup )
Vec_IntPush( vBackup, Abc_Var2Lit(i, !c) );
assert( Nf_ObjMapRefNum(p, i, !c) >= 0 );
if ( !Nf_ObjMapRefInc(p, i, !c) )
Area += Nf_MatchRef_rec( p, i, !c, Nf_ObjMatchD(p, i, !c), ReqFanin, vBackup );
return Area + p->InvAreaW;
}
if ( Nf_ObjCutSetId(p, i) == 0 )
return 0;
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k )
{
ReqFanin = Required - Nf_ManCell(p, pM->Gate)->iDelays[k];
if ( vBackup )
Vec_IntPush( vBackup, Abc_Var2Lit(iVar, fCompl) );
assert( Nf_ObjMapRefNum(p, iVar, fCompl) >= 0 );
if ( !Nf_ObjMapRefInc(p, iVar, fCompl) )
Area += Nf_MatchRef_rec( p, iVar, fCompl, Nf_ObjMatchD(p, iVar, fCompl), ReqFanin, vBackup );
}
return Area + Nf_ManCell(p, pM->Gate)->AreaW;
}
word Nf_MatchRefArea( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, int Required )
{
word Area; int iLit, k;
Vec_IntClear( &p->vBackup );
Area = Nf_MatchRef_rec( p, i, c, pM, Required, &p->vBackup );
Vec_IntForEachEntry( &p->vBackup, iLit, k )
{
assert( Nf_ObjMapRefNum(p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit)) > 0 );
Nf_ObjMapRefDec( p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit) );
}
return Area;
}
void Nf_ManElaBestMatchOne( Nf_Man_t * p, int iObj, int c, int * pCut, int * pCutSet, Nf_Mat_t * pRes, int Required )
{
Nf_Mat_t Mb,*pMb = &Mb, * pMd;
int * pFans = Nf_CutLeaves(pCut);
int nFans = Nf_CutSize(pCut);
int iFuncLit = Nf_CutFunc(pCut);
int fComplExt = Abc_LitIsCompl(iFuncLit);
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
int i, k, Info, Offset, iFanin, fComplF;
// assign fanins matches
Nf_Obj_t * pBestF[NF_LEAF_MAX];
for ( i = 0; i < nFans; i++ )
pBestF[i] = Nf_ManObj( p, pFans[i] );
// consider matches of this function
memset( pMb, 0, sizeof(Nf_Mat_t) );
pMb->D = SCL_INFINITY; pMb->F = FLT_MAX;
// special cases
if ( nFans == 0 )
{
int Const = (iFuncLit == 1);
//printf( "Node %d(%d) is const\n", iObj, c );
assert( iFuncLit == 0 || iFuncLit == 1 );
pMb->D = 0;
pMb->F = p->pCells[c ^ Const].AreaF;
pMb->CutH = Nf_CutHandle(pCutSet, pCut);
pMb->Gate = c ^ Const;
// pMb->Conf = 0;
pMb->Cfg = Nf_Int2Cfg(0);
pMb->fBest = 1;
// compare
if ( pRes->F > pMb->F + NF_EPSILON || (pRes->F > pMb->F - NF_EPSILON && pRes->D > pMb->D) )
*pRes = *pMb;
return;
}
// consider matches of this function
Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
{
Nf_Cfg_t Cfg = Nf_Int2Cfg(Offset);
Mio_Cell2_t*pC = Nf_ManCell( p, Info );
int fCompl = Cfg.fCompl ^ fComplExt;
int Delay = 0;
assert( nFans == (int)pC->nFanins );
if ( fCompl != c )
continue;
Nf_CfgForEachVarCompl( Cfg, nFans, iFanin, fComplF, k )
{
pMd = &pBestF[iFanin]->M[fComplF][0];
assert( pMd->fBest );
Delay = Abc_MaxInt( Delay, pMd->D + pC->iDelays[k] );
if ( Delay > Required )
break;
}
if ( k < nFans )
continue;
// create match
pMb->D = Delay;
pMb->F = FLT_MAX;
pMb->fBest = 1;
pMb->fCompl = 0;
pMb->CutH = Nf_CutHandle(pCutSet, pCut);
pMb->Gate = pC->Id;
pMb->Cfg = Cfg;
pMb->Cfg.fCompl = 0;
// compute area
pMb->F = Scl_Int2Flt((int)Nf_MatchRefArea(p, iObj, c, pMb, Required));
// compare
if ( pRes->F > pMb->F + NF_EPSILON || (pRes->F > pMb->F - NF_EPSILON && pRes->D > pMb->D) )
*pRes = *pMb;
}
}
void Nf_ManElaBestMatch( Nf_Man_t * p, int iObj, int c, Nf_Mat_t * pRes, int Required )
{
int k, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj );
memset( pRes, 0, sizeof(Nf_Mat_t) );
pRes->D = SCL_INFINITY; pRes->F = FLT_MAX;
Nf_SetForEachCut( pCutSet, pCut, k )
{
if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) )
continue;
Nf_ManElaBestMatchOne( p, iObj, c, pCut, pCutSet, pRes, Required );
}
}
int Nf_ManComputeArrival( Nf_Man_t * p, Nf_Mat_t * pM, int * pCutSet )
{
int Delay = 0;
Nf_Mat_t * pMfan;
int iVar, fCompl, k;
Mio_Cell2_t * pCell = Nf_ManCell( p, pM->Gate );
int * pCut = Nf_CutFromHandle( pCutSet, pM->CutH );
assert( !pM->fCompl );
Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k )
{
pMfan = Nf_ObjMatchBest( p, iVar, fCompl );
Delay = Abc_MaxInt( Delay, pMfan->D + pCell->iDelays[k] );
}
//if ( pM->fCompl ) Delay += p->InvDelayI;
return Delay;
}
void Nf_ManResetMatches( Nf_Man_t * p, int Round )
{
Gia_Obj_t * pObj;
Nf_Mat_t * pDc, * pAc, * pMfan, * pM[2];
int i, c, Arrival;
// go through matches in the topo order
Gia_ManForEachAnd( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
pMfan = Nf_ObjMatchBest( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj) );
for ( c = 0; c < 2; c++ )
{
pDc = Nf_ObjMatchD( p, i, c );
pAc = Nf_ObjMatchA( p, i, c );
pDc->F = pAc->F = 0;
pDc->D = pMfan->D + (c ? p->InvDelayI : 0);
assert( pDc->fBest );
assert( !pAc->fBest );
assert( c==0 || pDc->fCompl );
}
continue;
}
// select the best match for each phase
for ( c = 0; c < 2; c++ )
{
pDc = Nf_ObjMatchD( p, i, c );
pAc = Nf_ObjMatchA( p, i, c );
pDc->F = pAc->F = 0;
if ( Nf_ObjMapRefNum(p, i, c) )
{
assert( pDc->fBest != pAc->fBest );
if ( pAc->fBest )
ABC_SWAP( Nf_Mat_t, *pDc, *pAc );
assert( pDc->fBest );
assert( !pAc->fBest );
}
else
{
assert( Round > 0 || (!pDc->fBest && !pAc->fBest) );
// if ( (p->pPars->fAreaOnly || (Round & 1)) && !pAc->fCompl )
if ( (Round & 1) && !pAc->fCompl )
ABC_SWAP( Nf_Mat_t, *pDc, *pAc );
pDc->fBest = 1;
pAc->fBest = 0;
}
}
// consider best matches of both phases
pM[0] = Nf_ObjMatchD( p, i, 0 );
pM[1] = Nf_ObjMatchD( p, i, 1 );
assert( pM[0]->fBest && pM[1]->fBest );
// swap complemented matches
if ( pM[0]->fCompl && pM[1]->fCompl )
{
// pM[0]->fCompl = pM[1]->fCompl = 0;
// ABC_SWAP( Nf_Mat_t *, pM[0], pM[1] );
assert( 0 );
}
if ( !pM[0]->fCompl && !pM[1]->fCompl )
{
for ( c = 0; c < 2; c++ )
{
Arrival = Nf_ManComputeArrival( p, pM[c], Nf_ObjCutSet(p, i) );
//if ( Nf_ObjMapRefNum(p, i, c) )
// assert( Round || Arrival <= pM[c]->D );
pM[c]->D = Arrival;
}
}
else
{
// consider non-complemented match
c = !pM[1]->fCompl;
assert( !pM[c]->fCompl );
assert( pM[!c]->fCompl );
Arrival = Nf_ManComputeArrival( p, pM[c], Nf_ObjCutSet(p, i) );
//if ( Nf_ObjMapRefNum(p, i, c) )
// assert( Round || Arrival <= pM[c]->D );
pM[c]->D = Arrival;
// consider complemented match
Arrival = pM[!c]->D;
*pM[!c] = *pM[c];
pM[!c]->D += p->InvDelayI;
pM[!c]->fCompl = 1;
//if ( Nf_ObjMapRefNum(p, i, !c) )
// assert( Round || pM[!c]->D <= Arrival );
}
}
}
void Nf_ManComputeMappingEla( Nf_Man_t * p )
{
int fVerbose = 0;
Gia_Obj_t * pObj;
Mio_Cell2_t * pCell;
Nf_Mat_t Mb, * pMb = &Mb, * pM;
word AreaBef, AreaAft, Gain = 0;
int i, c, iVar, Id, fCompl, k, * pCut;
int Required;
Nf_ManSetOutputRequireds( p, 1 );
Nf_ManResetMatches( p, p->Iter - p->pPars->nRounds );
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
if ( Nf_ObjMapRefNum(p, i, 1) )
Nf_ObjUpdateRequired( p, i, 0, Nf_ObjRequired(p, i, 1) - p->InvDelayI );
Nf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Nf_ObjRequired(p, i, 0) );
continue;
}
for ( c = 0; c < 2; c++ )
if ( Nf_ObjMapRefNum(p, i, c) )
{
pM = Nf_ObjMatchBest( p, i, c );
Required = Nf_ObjRequired( p, i, c );
assert( pM->D <= Required );
if ( pM->fCompl )
continue;
// search for a better match
assert( !pM->fCompl );
AreaBef = Nf_MatchDeref_rec( p, i, c, pM );
assert( pM->fBest );
Nf_ManElaBestMatch( p, i, c, pMb, Required );
AreaAft = Nf_MatchRef_rec( p, i, c, pMb, Required, NULL );
Gain += AreaBef - AreaAft;
// print area recover progress
if ( fVerbose && Nf_ManCell(p, pM->Gate)->pName != Nf_ManCell(p, pMb->Gate)->pName )
{
printf( "%4d (%d) ", i, c );
printf( "%8s ->%8s ", Nf_ManCell(p, pM->Gate)->pName, Nf_ManCell(p, pMb->Gate)->pName );
printf( "%d -> %d ", Nf_ManCell(p, pM->Gate)->nFanins, Nf_ManCell(p, pMb->Gate)->nFanins );
printf( "D: %7.2f -> %7.2f ", Scl_Int2Flt(pM->D), Scl_Int2Flt(pMb->D) );
printf( "R: %7.2f ", Required == SCL_INFINITY ? 9999.99 : Scl_Int2Flt(Required) );
printf( "A: %7.2f -> %7.2f ", Scl_Int2Flt((int)AreaBef), Scl_Int2Flt((int)AreaAft) );
printf( "G: %7.2f (%7.2f) ", Scl_Int2Flt((int)AreaBef - (int)AreaAft), Scl_Int2Flt((int)Gain) );
printf( "\n" );
}
// set best match
assert( pMb->fBest );
assert( pMb->D <= Required );
//assert( Scl_Flt2Int(pMb->F) == (int)AreaAft );
//assert( AreaBef >= AreaAft );
*pM = *pMb;
// update timing
pCell = Nf_ManCell( p, pMb->Gate );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pMb->CutH );
Nf_CutForEachVarCompl( pCut, pMb->Cfg, iVar, fCompl, k )
{
pM = Nf_ObjMatchBest( p, iVar, fCompl );
assert( pM->D <= Required - pCell->iDelays[k] );
Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->iDelays[k] );
if ( pM->fCompl )
{
pM = Nf_ObjMatchBest( p, iVar, !fCompl );
assert( pM->D <= Required - pCell->iDelays[k] - p->InvDelayI );
Nf_ObjUpdateRequired( p, iVar, !fCompl, Required - pCell->iDelays[k] - p->InvDelayI );
}
}
}
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
{
Required = Nf_ObjRequired( p, i, 1 );
Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelayI );
}
}
void Nf_ManFixPoDrivers( Nf_Man_t * p )
{
Gia_Obj_t * pObj;
Nf_Mat_t * pM, * pMc;
int i, iDriver, Count = 0;
Gia_ManForEachCo( p->pGia, pObj, i )
{
iDriver = Gia_ObjFaninId0p(p->pGia, pObj);
if ( !Gia_ObjIsAnd(Gia_ManObj(p->pGia, iDriver)) )
continue;
// skip unless both are used
if ( !Nf_ObjMapRefNum(p, iDriver, 0) || !Nf_ObjMapRefNum(p, iDriver, 1) )
continue;
pM = Nf_ObjMatchD( p, iDriver, Gia_ObjFaninC0(pObj) );
pMc = Nf_ObjMatchD( p, iDriver, !Gia_ObjFaninC0(pObj) );
// skip unless both are non-complemented
if ( pM->fCompl || pMc->fCompl )
continue;
// skip if arrival time exceeds the required time
if ( pMc->D + p->InvDelayI > p->pPars->MapDelay )
continue;
// update references
Nf_MatchDeref_rec( p, iDriver, Gia_ObjFaninC0(pObj), pM );
Nf_ObjMapRefInc( p, iDriver, !Gia_ObjFaninC0(pObj) );
// add inverter
*pM = *pMc;
pM->D += p->InvDelayI;
pM->fCompl = 1;
pM->fBest = 1;
pMc->fBest = 1;
Count++;
}
//printf( "Fixed %d PO drivers.\n", Count );
}
/**Function*************************************************************
Synopsis [Deriving mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Nf_ManDeriveMapping( Nf_Man_t * p )
{
Vec_Int_t * vMapping;
Nf_Mat_t * pM;
int i, k, c, Id, iVar, fCompl, * pCut;
assert( p->pGia->vCellMapping == NULL );
vMapping = Vec_IntAlloc( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, 2*Gia_ManObjNum(p->pGia), 0 );
// create CI inverters
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(Id, 1), -1 );
// create internal nodes
Gia_ManForEachAndId( p->pGia, i )
{
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, i);
if ( Gia_ObjIsBuf(pObj) )
{
if ( Nf_ObjMapRefNum(p, i, 1) )
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 1), -1 );
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 0), -2 );
continue;
}
for ( c = 0; c < 2; c++ )
if ( Nf_ObjMapRefNum(p, i, c) )
{
pM = Nf_ObjMatchBest( p, i, c );
// remember inverter
if ( pM->fCompl )
{
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), -1 );
continue;
}
// Nf_ManCutMatchPrint( p, i, c, pM );
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, Nf_CutSize(pCut) );
Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k )
Vec_IntPush( vMapping, Abc_Var2Lit(iVar, fCompl) );
Vec_IntPush( vMapping, pM->Gate );
}
}
// assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vCellMapping = vMapping;
return p->pGia;
}
void Nf_ManUpdateStats( Nf_Man_t * p )
{
Nf_Mat_t * pM;
Gia_Obj_t * pObj;
Mio_Cell2_t * pCell;
int i, c, Id, * pCut;
p->pPars->MapAreaF = 0; p->nInvs = 0;
p->pPars->Area = p->pPars->Edge = 0;
Gia_ManForEachAndReverse( p->pGia, pObj, i )
{
if ( Gia_ObjIsBuf(pObj) )
{
if ( Nf_ObjMapRefNum(p, i, 1) )
{
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
continue;
}
for ( c = 0; c < 2; c++ )
if ( Nf_ObjMapRefNum(p, i, c) )
{
pM = Nf_ObjMatchBest( p, i, c );
if ( pM->fCompl )
{
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
continue;
}
pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH );
pCell = Nf_ManCell( p, pM->Gate );
assert( Nf_CutSize(pCut) == (int)pCell->nFanins );
p->pPars->MapAreaF += pCell->AreaF;
p->pPars->Edge += Nf_CutSize(pCut);
p->pPars->Area++;
//printf( "%5d (%d) : Gate = %7s \n", i, c, pCell->pName );
}
}
Gia_ManForEachCiId( p->pGia, Id, i )
if ( Nf_ObjMapRefNum(p, Id, 1) )
{
p->pPars->MapAreaF += p->InvAreaF;
p->pPars->Edge++;
p->pPars->Area++;
p->nInvs++;
}
}
/**Function*************************************************************
Synopsis [Extract window.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
/*
int nInputs; // the number of inputs
int nObjs; // number of all objects
Vec_Int_t * vRoots; // output drivers to be mapped (root -> obj lit)
Vec_Wec_t * vCuts; // cuts (cut -> obj lit + fanin lits)
Vec_Wec_t * vObjCuts; // cuts (obj lit -> obj lit + cut lits)
Vec_Int_t * vSolCuts; // current solution (index -> cut)
Vec_Int_t * vCutGates; // gates (cut -> gate)
*/
int Nf_ManExtractWindow( void * pMan, Vec_Int_t * vRoots, Vec_Wec_t * vCuts, Vec_Wec_t * vObjCuts, Vec_Int_t * vSolCuts, Vec_Int_t * vCutGates, Vec_Wrd_t * vCutAreas, word * pInvArea, int StartVar, int nVars )
{
Nf_Man_t * p = (Nf_Man_t *)pMan;
int nInputs = Gia_ManCiNum(p->pGia);
int LitShift = 2*nInputs+2;
Gia_Obj_t * pObj;
int c, iObj;
if ( 2*Gia_ManAndNum(p->pGia) + Gia_ManCiNum(p->pGia) > nVars )
{
printf( "The number of variables is too large: 2*%d + %d = %d > %d.\n", Gia_ManAndNum(p->pGia), Gia_ManCiNum(p->pGia), 2*Gia_ManAndNum(p->pGia) + Gia_ManCiNum(p->pGia), nVars );
return 0;
}
*pInvArea = p->InvAreaW;
// save roots
Vec_IntClear( vRoots );
Gia_ManForEachCo( p->pGia, pObj, c )
{
assert( !Gia_ObjIsCi(Gia_ObjFanin0(pObj)) );
Vec_IntPush( vRoots, Gia_ObjFaninLit0p(p->pGia, pObj)-LitShift );
}
// prepare
Vec_WecClear( vCuts );
Vec_WecClear( vObjCuts );
Vec_IntClear( vSolCuts );
Vec_IntClear( vCutGates );
Vec_WrdClear( vCutAreas );
// collect cuts for each node
Gia_ManForEachAndId( p->pGia, iObj )
{
Vec_Int_t * vObj[2], * vCutOne;
int iCut, * pCut, * pCutSet;
int iCutInv[2] = {-1, -1};
// get matches
Nf_Mat_t * pM[2] = {NULL, NULL};
for ( c = 0; c < 2; c++ )
{
if ( Nf_ObjMapRefNum(p, iObj, c) == 0 )
continue;
if ( Nf_ObjMatchBest(p, iObj, c)->fCompl )
{
assert( iCutInv[c] == -1 );
iCutInv[c] = Vec_IntSize(vSolCuts);
Vec_IntPush( vSolCuts, -1 );
continue;
}
pM[c] = Nf_ObjMatchBest(p, iObj, c);
}
// start collecting cuts of pos-obj and neg-obj
assert( Vec_WecSize(vObjCuts) == 2*iObj-LitShift );
for ( c = 0; c < 2; c++ )
{
vObj[c] = Vec_WecPushLevel( vObjCuts );
Vec_IntPush( vObj[c], Abc_Var2Lit(Abc_Var2Lit(iObj, c)-LitShift, 1) );
}
// enumerate cuts
pCutSet = Nf_ObjCutSet( p, iObj );
Nf_SetForEachCut( pCutSet, pCut, iCut )
{
assert( !Nf_CutIsTriv(pCut, iObj) );
assert( Nf_CutSize(pCut) <= p->pPars->nLutSize );
if ( Abc_Lit2Var(Nf_CutFunc(pCut)) < Vec_WecSize(p->vTt2Match) )
{
int * pFans = Nf_CutLeaves(pCut);
int nFans = Nf_CutSize(pCut);
int iFuncLit = Nf_CutFunc(pCut);
int fComplExt = Abc_LitIsCompl(iFuncLit);
Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) );
int i, k, c, Info, Offset, iFanin, fComplF, iCutLit;
Vec_IntForEachEntryDouble( vArr, Info, Offset, i )
{
Nf_Cfg_t Cfg = Nf_Int2Cfg(Offset);
int fCompl = Cfg.fCompl ^ fComplExt;
Mio_Cell2_t*pC = Nf_ManCell( p, Info );
assert( nFans == (int)pC->nFanins );
Vec_IntPush( vCutGates, Info );
Vec_WrdPush( vCutAreas, pC->AreaW );
// to make comparison possible
Cfg.fCompl = 0;
// add solution cut
for ( c = 0; c < 2; c++ )
{
if ( pM[c] == NULL )
continue;
if ( (int)pM[c]->CutH == Nf_CutHandle(pCutSet, pCut) && (int)pM[c]->Gate == Info && Nf_Cfg2Int(pM[c]->Cfg) == Nf_Cfg2Int(Cfg) )
{
Vec_IntPush( vSolCuts, Vec_WecSize(vCuts) );
//printf( "adding solution for %d\n", Abc_Var2Lit(iObj, c)-LitShift );
}
}
// add new cut
iCutLit = Abc_Var2Lit( StartVar + Vec_WecSize(vCuts), 0 );
vCutOne = Vec_WecPushLevel( vCuts );
// add literals
Vec_IntPush( vCutOne, Abc_Var2Lit(iObj, fCompl) );
Vec_IntPush( vObj[fCompl], iCutLit );
Nf_CfgForEachVarCompl( Cfg, nFans, iFanin, fComplF, k )
if ( pFans[iFanin] >= nInputs + 1 ) // internal node
{
Vec_IntPush( vCutOne, Abc_Var2Lit(pFans[iFanin], fComplF) );
//Vec_IntPush( Vec_WecEntry(vObjCuts, Abc_Var2Lit(pFans[iFanin], fComplF)-LitShift), iCutLit );
}
else if ( fComplF ) // complemented primary input
Vec_IntPush( vCutOne, Abc_Var2Lit(pFans[iFanin], 1) );
}
}
}
assert( iCutInv[0] == -1 || iCutInv[1] == -1 );
// add inverter cut
for ( c = 0; c < 2; c++ )
{
if ( iCutInv[c] != -1 )
Vec_IntWriteEntry( vSolCuts, iCutInv[c], Vec_WecSize(vCuts) );
// the obj-lit implies its cut
Vec_IntPush( Vec_WecEntry(vObjCuts, Abc_Var2Lit(iObj, c)-LitShift), Abc_Var2Lit(StartVar + Vec_WecSize(vCuts), 0) );
// the cut includes both literals
vCutOne = Vec_WecPushLevel( vCuts );
Vec_IntPush( vCutOne, Abc_Var2Lit(iObj, c) );
Vec_IntPush( vCutOne, Abc_Var2Lit(iObj, !c) );
Vec_IntPush( vCutGates, 3 );
Vec_WrdPush( vCutAreas, p->InvAreaW );
}
}
// for ( c = 0; c < p->nCells; c++ )
// printf( "%d=%s ", c, p->pCells[c].pName );
// printf( "\n" );
// add complemented inputs
Gia_ManForEachCiId( p->pGia, iObj, c )
if ( Nf_ObjMapRefNum(p, iObj, 1) )
Vec_IntPush( vSolCuts, -(2*Gia_ManAndNum(p->pGia)+c) );
assert( Vec_WecSize(vCuts) == Vec_IntSize(vCutGates) );
assert( Vec_WecSize(vCuts) == Vec_WrdSize(vCutAreas) );
assert( Vec_WecSize(vObjCuts) == 2*Gia_ManAndNum(p->pGia) );
return nInputs;
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nf_ManSetDefaultPars( Jf_Par_t * pPars )
{
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 16;
pPars->nProcNum = 0;
pPars->nRounds = 4;
pPars->nRoundsEla = 2;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 0;
pPars->nReqTimeFlex = 0;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fPinPerm = 0;
pPars->fPinQuick = 0;
pPars->fPinFilter = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 0;
pPars->fCutMin = 1;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = NF_LEAF_MAX;
pPars->nCutNumMax = NF_CUT_MAX;
pPars->MapDelayTarget = 0;
}
Gia_Man_t * Nf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Gia_Man_t * pNew = NULL, * pCls;
Nf_Man_t * p; int i, Id;
if ( Gia_ManHasChoices(pGia) )
pPars->fCoarsen = 0;
pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia;
p = Nf_StoCreate( pCls, pPars );
if ( p == NULL )
return NULL;
// if ( pPars->fVeryVerbose )
// Nf_StoPrint( p, pPars->fVeryVerbose );
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Nf_ManPrintInit( p );
Nf_ManComputeCuts( p );
Nf_ManPrintQuit( p );
if ( Scl_ConIsRunning() )
{
Gia_ManForEachCiId( p->pGia, Id, i )
Nf_ObjPrepareCi( p, Id, Scl_ConGetInArr(i) );
}
else
{
Gia_ManForEachCiId( p->pGia, Id, i )
// Nf_ObjPrepareCi( p, Id, Scl_Flt2Int(p->pGia->vInArrs ? Abc_MaxFloat(0.0, Vec_FltEntry(p->pGia->vInArrs, i)) : 0.0) );
Nf_ObjPrepareCi( p, Id, Scl_Flt2Int(p->pGia->vInArrs ? Vec_FltEntry(p->pGia->vInArrs, i) : 0.0) );
}
for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ )
{
Nf_ManComputeMapping( p );
Nf_ManSetMapRefs( p );
Nf_ManPrintStats( p, (char *)(p->Iter ? "Area " : "Delay") );
}
p->fUseEla = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
{
Nf_ManComputeMappingEla( p );
Nf_ManUpdateStats( p );
Nf_ManPrintStats( p, "Ela " );
}
Nf_ManFixPoDrivers( p );
pNew = Nf_ManDeriveMapping( p );
if ( pPars->fAreaOnly )
{
int Sbm_ManTestSat( void * pMan );
Sbm_ManTestSat( p );
}
Nf_StoDelete( p );
return pNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END