blob: 3d62b322dac820de9c6e34406705c8dbcda13822 [file] [log] [blame]
/**CFile****************************************************************
FileName [llb2Core.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [BDD based reachability.]
Synopsis [Core procedure.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: llb2Core.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "llbInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Llb_Img_t_ Llb_Img_t;
struct Llb_Img_t_
{
Aig_Man_t * pInit; // AIG manager
Aig_Man_t * pAig; // AIG manager
Gia_ParLlb_t * pPars; // parameters
DdManager * dd; // BDD manager
DdManager * ddG; // BDD manager
DdManager * ddR; // BDD manager
Vec_Ptr_t * vDdMans; // BDD managers for each partition
Vec_Ptr_t * vRings; // onion rings in ddR
Vec_Int_t * vDriRefs; // driver references
Vec_Int_t * vVarsCs; // cur state variables
Vec_Int_t * vVarsNs; // next state variables
Vec_Int_t * vCs2Glo; // cur state variables into global variables
Vec_Int_t * vNs2Glo; // next state variables into global variables
Vec_Int_t * vGlo2Cs; // global variables into cur state variables
Vec_Int_t * vGlo2Ns; // global variables into next state variables
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes cube composed of given variables with given values.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_CoreComputeCube( DdManager * dd, Vec_Int_t * vVars, int fUseVarIndex, char * pValues )
{
DdNode * bRes, * bVar, * bTemp;
int i, iVar, Index;
abctime TimeStop;
TimeStop = dd->TimeStop; dd->TimeStop = 0;
bRes = Cudd_ReadOne( dd ); Cudd_Ref( bRes );
Vec_IntForEachEntry( vVars, Index, i )
{
iVar = fUseVarIndex ? Index : i;
bVar = Cudd_NotCond( Cudd_bddIthVar(dd, iVar), (int)(pValues == NULL || pValues[i] != 1) );
bRes = Cudd_bddAnd( dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( dd, bTemp );
}
Cudd_Deref( bRes );
dd->TimeStop = TimeStop;
return bRes;
}
/**Function*************************************************************
Synopsis [Derives counter-example by backward reachability.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Cex_t * Llb_CoreDeriveCex( Llb_Img_t * p )
{
Abc_Cex_t * pCex;
Aig_Obj_t * pObj;
Vec_Ptr_t * vSupps, * vQuant0, * vQuant1;
DdNode * bState = NULL, * bImage, * bOneCube, * bTemp, * bRing;
int i, v, RetValue, nPiOffset;
char * pValues = ABC_ALLOC( char, Cudd_ReadSize(p->ddR) );
assert( Vec_PtrSize(p->vRings) > 0 );
p->dd->TimeStop = 0;
p->ddR->TimeStop = 0;
// get supports and quantified variables
Vec_PtrReverseOrder( p->vDdMans );
vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 1, 0 );
Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, 0 );
Vec_VecFree( (Vec_Vec_t *)vSupps );
Llb_ImgQuantifyReset( p->vDdMans );
// Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0 );
// allocate room for the counter-example
pCex = Abc_CexAlloc( Saig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), Vec_PtrSize(p->vRings) );
pCex->iFrame = Vec_PtrSize(p->vRings) - 1;
pCex->iPo = -1;
// get the last cube
bOneCube = Cudd_bddIntersect( p->ddR, (DdNode *)Vec_PtrEntryLast(p->vRings), p->ddR->bFunc ); Cudd_Ref( bOneCube );
RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
Cudd_RecursiveDeref( p->ddR, bOneCube );
assert( RetValue );
// write PIs of counter-example
nPiOffset = Saig_ManRegNum(p->pAig) + Saig_ManPiNum(p->pAig) * (Vec_PtrSize(p->vRings) - 1);
Saig_ManForEachPi( p->pAig, pObj, i )
if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
Abc_InfoSetBit( pCex->pData, nPiOffset + i );
// write state in terms of NS variables
if ( Vec_PtrSize(p->vRings) > 1 )
{
bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues ); Cudd_Ref( bState );
}
// perform backward analysis
Vec_PtrForEachEntryReverse( DdNode *, p->vRings, bRing, v )
{
if ( v == Vec_PtrSize(p->vRings) - 1 )
continue;
// compute the next states
bImage = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bState,
vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget, 1, 0, 0 );
assert( bImage != NULL );
Cudd_Ref( bImage );
Cudd_RecursiveDeref( p->dd, bState );
//Extra_bddPrintSupport( p->dd, bImage ); printf( "\n" );
// move reached states into ring manager
bImage = Extra_TransferPermute( p->dd, p->ddR, bTemp = bImage, Vec_IntArray(p->vCs2Glo) ); Cudd_Ref( bImage );
Cudd_RecursiveDeref( p->dd, bTemp );
// intersect with the previous set
bOneCube = Cudd_bddIntersect( p->ddR, bImage, bRing ); Cudd_Ref( bOneCube );
Cudd_RecursiveDeref( p->ddR, bImage );
// find any assignment of the BDD
RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
Cudd_RecursiveDeref( p->ddR, bOneCube );
assert( RetValue );
// write PIs of counter-example
nPiOffset -= Saig_ManPiNum(p->pAig);
Saig_ManForEachPi( p->pAig, pObj, i )
if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
Abc_InfoSetBit( pCex->pData, nPiOffset + i );
// check that we get the init state
if ( v == 0 )
{
Saig_ManForEachLo( p->pAig, pObj, i )
assert( pValues[i] == 0 );
break;
}
// write state in terms of NS variables
bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues ); Cudd_Ref( bState );
}
assert( nPiOffset == Saig_ManRegNum(p->pAig) );
// update the output number
RetValue = Saig_ManFindFailedPoCex( p->pInit, pCex );
assert( RetValue >= 0 && RetValue < Saig_ManPoNum(p->pInit) ); // invalid CEX!!!
pCex->iPo = RetValue;
// cleanup
ABC_FREE( pValues );
Vec_VecFree( (Vec_Vec_t *)vQuant0 );
Vec_VecFree( (Vec_Vec_t *)vQuant1 );
return pCex;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Llb_CoreReachability_int( Llb_Img_t * p, Vec_Ptr_t * vQuant0, Vec_Ptr_t * vQuant1 )
{
int * pLoc2Glo = p->pPars->fBackward? Vec_IntArray( p->vCs2Glo ) : Vec_IntArray( p->vNs2Glo );
int * pLoc2GloR = p->pPars->fBackward? Vec_IntArray( p->vNs2Glo ) : Vec_IntArray( p->vCs2Glo );
int * pGlo2Loc = p->pPars->fBackward? Vec_IntArray( p->vGlo2Ns ) : Vec_IntArray( p->vGlo2Cs );
DdNode * bCurrent, * bReached, * bNext, * bTemp;
abctime clk2, clk = Abc_Clock();
int nIters, nBddSize;//, iOutFail = -1;
/*
// compute time to stop
if ( p->pPars->TimeLimit )
p->pPars->TimeTarget = Abc_Clock() + p->pPars->TimeLimit * CLOCKS_PER_SEC;
else
p->pPars->TimeTarget = 0;
*/
if ( Abc_Clock() > p->pPars->TimeTarget )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) before image computation.\n", p->pPars->TimeLimit );
p->pPars->iFrame = -1;
return -1;
}
// set the stop time parameter
p->dd->TimeStop = p->pPars->TimeTarget;
p->ddG->TimeStop = p->pPars->TimeTarget;
p->ddR->TimeStop = p->pPars->TimeTarget;
// compute initial states
if ( p->pPars->fBackward )
{
// create init state in the global manager
bTemp = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget );
if ( bTemp == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit );
p->pPars->iFrame = -1;
return -1;
}
Cudd_Ref( bTemp );
// create bad state in the ring manager
p->ddR->bFunc = Llb_CoreComputeCube( p->ddR, p->vVarsCs, 0, NULL ); Cudd_Ref( p->ddR->bFunc );
bCurrent = Llb_BddQuantifyPis( p->pInit, p->ddR, bTemp ); Cudd_Ref( bCurrent );
Cudd_RecursiveDeref( p->ddR, bTemp );
bReached = Cudd_bddTransfer( p->ddR, p->ddG, bCurrent ); Cudd_Ref( bReached );
Cudd_RecursiveDeref( p->ddR, bCurrent );
// move init state to the working manager
bCurrent = Extra_TransferPermute( p->ddG, p->dd, bReached, pGlo2Loc );
if ( bCurrent == NULL )
{
Cudd_RecursiveDeref( p->ddG, bReached );
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during transfer 0.\n", p->pPars->TimeLimit );
p->pPars->iFrame = -1;
return -1;
}
Cudd_Ref( bCurrent );
}
else
{
// create bad state in the ring manager
p->ddR->bFunc = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget );
if ( p->ddR->bFunc == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit );
p->pPars->iFrame = -1;
return -1;
}
Cudd_Ref( p->ddR->bFunc );
// create init state in the working and global manager
bCurrent = Llb_CoreComputeCube( p->dd, p->vVarsCs, 1, NULL ); Cudd_Ref( bCurrent );
bReached = Llb_CoreComputeCube( p->ddG, p->vVarsCs, 0, NULL ); Cudd_Ref( bReached );
//Extra_bddPrint( p->dd, bCurrent ); printf( "\n" );
//Extra_bddPrint( p->ddG, bReached ); printf( "\n" );
}
// compute onion rings
for ( nIters = 0; nIters < p->pPars->nIterMax; nIters++ )
{
clk2 = Abc_Clock();
// check the runtime limit
if ( p->pPars->TimeLimit && Abc_Clock() > p->pPars->TimeTarget )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
// save the onion ring
bTemp = Extra_TransferPermute( p->dd, p->ddR, bCurrent, pLoc2GloR );
if ( bTemp == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bTemp );
Vec_PtrPush( p->vRings, bTemp );
// check it for bad states
if ( !p->pPars->fSkipOutCheck && !Cudd_bddLeq( p->ddR, bTemp, Cudd_Not(p->ddR->bFunc) ) )
{
assert( p->pInit->pSeqModel == NULL );
if ( !p->pPars->fBackward )
p->pInit->pSeqModel = Llb_CoreDeriveCex( p );
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
if ( !p->pPars->fSilent )
{
if ( !p->pPars->fBackward )
Abc_Print( 1, "Output %d of miter \"%s\" was asserted in frame %d. ", p->pInit->pSeqModel->iPo, p->pInit->pName, nIters );
else
Abc_Print( 1, "Output ??? was asserted in frame %d (counter-example is not produced). ", nIters );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
p->pPars->iFrame = nIters - 1;
return 0;
}
// compute the next states
bNext = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bCurrent,
vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget,
p->pPars->fBackward, p->pPars->fReorder, p->pPars->fVeryVerbose );
if ( bNext == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bNext );
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
//Extra_bddPrintSupport( p->dd, bNext ); printf( "\n" );
// remap these states into the global manager
// bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo ); Cudd_Ref( bNext );
// Cudd_RecursiveDeref( p->dd, bTemp );
// bNext = Extra_TransferPermuteTime( p->dd, p->ddG, bTemp = bNext, pLoc2Glo, p->pPars->TimeTarget );
bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo );
if ( bNext == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bNext );
Cudd_RecursiveDeref( p->dd, bTemp );
nBddSize = Cudd_DagSize(bNext);
// check if there are any new states
if ( Cudd_bddLeq( p->ddG, bNext, bReached ) ) // implication = no new states
{
Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL;
break;
}
// get the new states
bCurrent = Cudd_bddAnd( p->ddG, bNext, Cudd_Not(bReached) );
if ( bCurrent == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->ddG, bNext );
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bCurrent );
// remap these states into the current state vars
// bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc ); Cudd_Ref( bCurrent );
// Cudd_RecursiveDeref( p->ddG, bTemp );
// bCurrent = Extra_TransferPermuteTime( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc, p->pPars->TimeTarget );
bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc );
if ( bCurrent == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->ddG, bTemp );
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bCurrent );
Cudd_RecursiveDeref( p->ddG, bTemp );
// add to the reached states
bReached = Cudd_bddOr( p->ddG, bTemp = bReached, bNext ); Cudd_Ref( bReached );
Cudd_RecursiveDeref( p->ddG, bTemp );
Cudd_RecursiveDeref( p->ddG, bNext );
bNext = NULL;
if ( p->pPars->fVeryVerbose )
{
double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
// Extra_bddPrint( p->ddG, bReached );printf( "\n" );
fprintf( stdout, " Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
fflush( stdout );
}
if ( p->pPars->fVerbose )
{
fprintf( stdout, "F =%3d : ", nIters );
fprintf( stdout, "Image =%6d ", nBddSize );
fprintf( stdout, "(%4d%4d) ",
Cudd_ReadReorderings(p->dd), Cudd_ReadGarbageCollections(p->dd) );
fprintf( stdout, "Reach =%6d ", Cudd_DagSize(bReached) );
fprintf( stdout, "(%4d%4d) ",
Cudd_ReadReorderings(p->ddG), Cudd_ReadGarbageCollections(p->ddG) );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk2 );
}
// check timeframe limit
if ( nIters == p->pPars->nIterMax - 1 )
{
if ( !p->pPars->fSilent )
printf( "Reached limit on the number of timeframes (%d).\n", p->pPars->nIterMax );
p->pPars->iFrame = nIters;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
}
if ( bReached == NULL )
{
p->pPars->iFrame = nIters - 1;
return 0; // reachable
}
if ( bCurrent )
Cudd_RecursiveDeref( p->dd, bCurrent );
// report the stats
if ( p->pPars->fVerbose )
{
double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
if ( nIters >= p->pPars->nIterMax )
fprintf( stdout, "Reachability analysis is stopped after %d frames.\n", nIters );
else
fprintf( stdout, "Reachability analysis completed after %d frames.\n", nIters );
fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
fflush( stdout );
}
if ( p->pPars->fDumpReached )
{
Llb_ManDumpReached( p->ddG, bReached, p->pAig->pName, "reached.blif" );
printf( "Reached states with %d BDD nodes are dumpted into file \"reached.blif\".\n", Cudd_DagSize(bReached) );
}
Cudd_RecursiveDeref( p->ddG, bReached );
if ( nIters >= p->pPars->nIterMax )
{
if ( !p->pPars->fSilent )
{
printf( "Verified only for states reachable in %d frames. ", nIters );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
p->pPars->iFrame = p->pPars->nIterMax;
return -1; // undecided
}
if ( !p->pPars->fSilent )
{
printf( "The miter is proved unreachable after %d iterations. ", nIters );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
p->pPars->iFrame = nIters - 1;
return 1; // unreachable
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Llb_CoreReachability( Llb_Img_t * p )
{
Vec_Ptr_t * vSupps, * vQuant0, * vQuant1;
int RetValue;
// get supports and quantified variables
if ( p->pPars->fBackward )
{
Vec_PtrReverseOrder( p->vDdMans );
vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 0, p->pPars->fVeryVerbose );
}
else
vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsCs, p->vVarsNs, 0, p->pPars->fVeryVerbose );
Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, p->pPars->fVeryVerbose );
Vec_VecFree( (Vec_Vec_t *)vSupps );
// remove variables
Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0, p->pPars->fVeryVerbose );
// perform reachability
RetValue = Llb_CoreReachability_int( p, vQuant0, vQuant1 );
Vec_VecFree( (Vec_Vec_t *)vQuant0 );
Vec_VecFree( (Vec_Vec_t *)vQuant1 );
return RetValue;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Llb_CoreConstructAll( Aig_Man_t * p, Vec_Ptr_t * vResult, Vec_Int_t * vVarsNs, abctime TimeTarget )
{
DdManager * dd;
Vec_Ptr_t * vDdMans;
Vec_Ptr_t * vLower, * vUpper = NULL;
int i;
vDdMans = Vec_PtrStart( Vec_PtrSize(vResult) );
Vec_PtrForEachEntryReverse( Vec_Ptr_t *, vResult, vLower, i )
{
if ( i < Vec_PtrSize(vResult) - 1 )
dd = Llb_ImgPartition( p, vLower, vUpper, TimeTarget );
else
dd = Llb_DriverLastPartition( p, vVarsNs, TimeTarget );
if ( dd == NULL )
{
Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i )
{
if ( dd == NULL )
continue;
if ( dd->bFunc )
Cudd_RecursiveDeref( dd, dd->bFunc );
Extra_StopManager( dd );
}
Vec_PtrFree( vDdMans );
return NULL;
}
Vec_PtrWriteEntry( vDdMans, i, dd );
vUpper = vLower;
}
return vDdMans;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Llb_CoreSetVarMaps( Llb_Img_t * p )
{
Aig_Obj_t * pObj;
int i, iVarCs, iVarNs;
assert( p->vVarsCs != NULL );
assert( p->vVarsNs != NULL );
assert( p->vCs2Glo == NULL );
assert( p->vNs2Glo == NULL );
assert( p->vGlo2Cs == NULL );
assert( p->vGlo2Ns == NULL );
p->vCs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) );
p->vNs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) );
p->vGlo2Cs = Vec_IntStartFull( Aig_ManRegNum(p->pAig) );
p->vGlo2Ns = Vec_IntStartFull( Aig_ManRegNum(p->pAig) );
for ( i = 0; i < Aig_ManRegNum(p->pAig); i++ )
{
iVarCs = Vec_IntEntry( p->vVarsCs, i );
iVarNs = Vec_IntEntry( p->vVarsNs, i );
assert( iVarCs >= 0 && iVarCs < Aig_ManObjNumMax(p->pAig) );
assert( iVarNs >= 0 && iVarNs < Aig_ManObjNumMax(p->pAig) );
Vec_IntWriteEntry( p->vCs2Glo, iVarCs, i );
Vec_IntWriteEntry( p->vNs2Glo, iVarNs, i );
Vec_IntWriteEntry( p->vGlo2Cs, i, iVarCs );
Vec_IntWriteEntry( p->vGlo2Ns, i, iVarNs );
}
// add mapping of the PIs
Saig_ManForEachPi( p->pAig, pObj, i )
Vec_IntWriteEntry( p->vCs2Glo, Aig_ObjId(pObj), Aig_ManRegNum(p->pAig)+i );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Llb_Img_t * Llb_CoreStart( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars )
{
Llb_Img_t * p;
p = ABC_CALLOC( Llb_Img_t, 1 );
p->pInit = pInit;
p->pAig = pAig;
p->pPars = pPars;
p->dd = Cudd_Init( Aig_ManObjNumMax(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
p->ddG = Cudd_Init( Aig_ManRegNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
p->ddR = Cudd_Init( Aig_ManCiNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
Cudd_AutodynEnable( p->dd, CUDD_REORDER_SYMM_SIFT );
Cudd_AutodynEnable( p->ddG, CUDD_REORDER_SYMM_SIFT );
Cudd_AutodynEnable( p->ddR, CUDD_REORDER_SYMM_SIFT );
p->vRings = Vec_PtrAlloc( 100 );
p->vDriRefs = Llb_DriverCountRefs( pAig );
p->vVarsCs = Llb_DriverCollectCs( pAig );
p->vVarsNs = Llb_DriverCollectNs( pAig, p->vDriRefs );
Llb_CoreSetVarMaps( p );
return p;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Llb_CoreStop( Llb_Img_t * p )
{
DdManager * dd;
DdNode * bTemp;
int i;
if ( p->vDdMans )
Vec_PtrForEachEntry( DdManager *, p->vDdMans, dd, i )
{
if ( dd->bFunc )
Cudd_RecursiveDeref( dd, dd->bFunc );
if ( dd->bFunc2 )
Cudd_RecursiveDeref( dd, dd->bFunc2 );
Extra_StopManager( dd );
}
Vec_PtrFreeP( &p->vDdMans );
if ( p->ddR->bFunc )
Cudd_RecursiveDeref( p->ddR, p->ddR->bFunc );
Vec_PtrForEachEntry( DdNode *, p->vRings, bTemp, i )
Cudd_RecursiveDeref( p->ddR, bTemp );
Vec_PtrFree( p->vRings );
Extra_StopManager( p->dd );
Extra_StopManager( p->ddG );
Extra_StopManager( p->ddR );
Vec_IntFreeP( &p->vDriRefs );
Vec_IntFreeP( &p->vVarsCs );
Vec_IntFreeP( &p->vVarsNs );
Vec_IntFreeP( &p->vCs2Glo );
Vec_IntFreeP( &p->vNs2Glo );
Vec_IntFreeP( &p->vGlo2Cs );
Vec_IntFreeP( &p->vGlo2Ns );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Llb_CoreExperiment( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars, Vec_Ptr_t * vResult, abctime TimeTarget )
{
int RetValue;
Llb_Img_t * p;
// printf( "\n" );
// pPars->fVerbose = 1;
p = Llb_CoreStart( pInit, pAig, pPars );
p->vDdMans = Llb_CoreConstructAll( pAig, vResult, p->vVarsNs, TimeTarget );
if ( p->vDdMans == NULL )
{
if ( !pPars->fSilent )
printf( "Reached timeout (%d seconds) while deriving the partitions.\n", pPars->TimeLimit );
Llb_CoreStop( p );
return -1;
}
RetValue = Llb_CoreReachability( p );
Llb_CoreStop( p );
return RetValue;
}
/**Function*************************************************************
Synopsis [Finds balanced cut.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Llb_ManReachMinCut( Aig_Man_t * pAig, Gia_ParLlb_t * pPars )
{
extern Vec_Ptr_t * Llb_ManComputeCuts( Aig_Man_t * p, int Num, int fVerbose, int fVeryVerbose );
Vec_Ptr_t * vResult;
Aig_Man_t * p;
int RetValue = -1;
abctime clk = Abc_Clock();
// compute time to stop
pPars->TimeTarget = pPars->TimeLimit ? pPars->TimeLimit * CLOCKS_PER_SEC + Abc_Clock(): 0;
p = Aig_ManDupFlopsOnly( pAig );
//Aig_ManShow( p, 0, NULL );
if ( pPars->fVerbose )
Aig_ManPrintStats( pAig );
if ( pPars->fVerbose )
Aig_ManPrintStats( p );
Aig_ManFanoutStart( p );
vResult = Llb_ManComputeCuts( p, pPars->nPartValue, pPars->fVerbose, pPars->fVeryVerbose );
if ( pPars->TimeLimit && Abc_Clock() > pPars->TimeTarget )
{
if ( !pPars->fSilent )
printf( "Reached timeout (%d seconds) after partitioning.\n", pPars->TimeLimit );
Vec_VecFree( (Vec_Vec_t *)vResult );
Aig_ManFanoutStop( p );
Aig_ManCleanMarkAB( p );
Aig_ManStop( p );
return RetValue;
}
if ( !pPars->fSkipReach )
RetValue = Llb_CoreExperiment( pAig, p, pPars, vResult, pPars->TimeTarget );
Vec_VecFree( (Vec_Vec_t *)vResult );
Aig_ManFanoutStop( p );
Aig_ManCleanMarkAB( p );
Aig_ManStop( p );
if ( RetValue == -1 )
Abc_PrintTime( 1, "Total runtime of the min-cut-based reachability engine", Abc_Clock() - clk );
return RetValue;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END