blob: 68d478b82c7e4b1d693f10613cf3c1925626081d [file] [log] [blame]
/**CFile****************************************************************
FileName [giaStr.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [AIG structuring.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaStr.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "gia.h"
#include "misc/util/utilNam.h"
#include "misc/vec/vecWec.h"
#include "misc/tim/tim.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define STR_SUPER 100
#define MAX_TREE 10000
enum {
STR_NONE = 0,
STR_CONST0 = 1,
STR_PI = 2,
STR_AND = 3,
STR_XOR = 4,
STR_MUX = 5,
STR_BUF = 6,
STR_PO = 7,
STR_UNUSED = 8
};
typedef struct Str_Obj_t_ Str_Obj_t;
struct Str_Obj_t_
{
unsigned Type : 4; // object type
unsigned nFanins : 28; // fanin count
int iOffset; // place where fanins are stored
int iTop; // top level MUX
int iCopy; // copy of this node
};
typedef struct Str_Ntk_t_ Str_Ntk_t;
struct Str_Ntk_t_
{
int nObjs; // object count
int nObjsAlloc; // alloc objects
Str_Obj_t * pObjs; // objects
Vec_Int_t vFanins; // object fanins
int nObjCount[STR_UNUSED];
int nTrees;
int nGroups;
int DelayGain;
};
typedef struct Str_Man_t_ Str_Man_t;
struct Str_Man_t_
{
// user data
Gia_Man_t * pOld; // manager
int nLutSize; // LUT size
int fCutMin; // cut minimization
// internal data
Str_Ntk_t * pNtk; // balanced network
// AIG under construction
Gia_Man_t * pNew; // newly constructed
Vec_Int_t * vDelays; // delays of each object
};
static inline Str_Obj_t * Str_NtkObj( Str_Ntk_t * p, int i ) { assert( i < p->nObjs ); return p->pObjs + i; }
static inline int Str_ObjFaninId( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Abc_Lit2Var( Vec_IntEntry(&p->vFanins, pObj->iOffset + i) ); }
static inline Str_Obj_t * Str_ObjFanin( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Str_NtkObj( p, Str_ObjFaninId(p, pObj, i) ); }
static inline int Str_ObjFaninC( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Abc_LitIsCompl( Vec_IntEntry(&p->vFanins, pObj->iOffset + i) ); }
static inline int Str_ObjFaninCopy( Str_Ntk_t * p, Str_Obj_t * pObj, int i ) { return Abc_LitNotCond( Str_ObjFanin(p, pObj, i)->iCopy, Str_ObjFaninC(p, pObj, i) ); }
static inline int Str_ObjId( Str_Ntk_t * p, Str_Obj_t * pObj ) { return pObj - p->pObjs; }
#define Str_NtkManForEachObj( p, pObj ) \
for ( pObj = p->pObjs; Str_ObjId(p, pObj) < p->nObjs; pObj++ )
#define Str_NtkManForEachObjVec( vVec, p, pObj, i ) \
for ( i = 0; (i < Vec_IntSize(vVec)) && ((pObj) = Str_NtkObj(p, Vec_IntEntry(vVec,i))); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Logic network manipulation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_ObjCreate( Str_Ntk_t * p, int Type, int nFanins, int * pFanins )
{
Str_Obj_t * pObj = p->pObjs + p->nObjs; int i;
assert( p->nObjs < p->nObjsAlloc );
pObj->Type = Type;
pObj->nFanins = nFanins;
pObj->iOffset = Vec_IntSize(&p->vFanins);
pObj->iTop = pObj->iCopy = -1;
for ( i = 0; i < nFanins; i++ )
{
Vec_IntPush( &p->vFanins, pFanins[i] );
assert( pFanins[i] >= 0 );
}
p->nObjCount[Type]++;
return Abc_Var2Lit( p->nObjs++, 0 );
}
static inline Str_Ntk_t * Str_NtkCreate( int nObjsAlloc, int nFaninsAlloc )
{
Str_Ntk_t * p;
p = ABC_CALLOC( Str_Ntk_t, 1 );
p->pObjs = ABC_ALLOC( Str_Obj_t, nObjsAlloc );
p->nObjsAlloc = nObjsAlloc;
Str_ObjCreate( p, STR_CONST0, 0, NULL );
Vec_IntGrow( &p->vFanins, nFaninsAlloc );
return p;
}
static inline void Str_NtkDelete( Str_Ntk_t * p )
{
// printf( "Total delay gain = %d.\n", p->DelayGain );
ABC_FREE( p->vFanins.pArray );
ABC_FREE( p->pObjs );
ABC_FREE( p );
}
static inline void Str_NtkPs( Str_Ntk_t * p, abctime clk )
{
printf( "Network contains %d ands, %d xors, %d muxes (%d trees in %d groups). ",
p->nObjCount[STR_AND], p->nObjCount[STR_XOR], p->nObjCount[STR_MUX], p->nTrees, p->nGroups );
Abc_PrintTime( 1, "Time", clk );
}
static inline void Str_ObjReadGroup( Str_Ntk_t * p, Str_Obj_t * pObj, int * pnGroups, int * pnMuxes )
{
Str_Obj_t * pObj1, * pObj2;
*pnGroups = *pnMuxes = 0;
if ( pObj->iTop == 0 )
return;
pObj1 = Str_NtkObj( p, pObj->iTop );
pObj2 = Str_NtkObj( p, pObj1->iTop );
*pnMuxes = pObj1 - pObj + 1;
*pnGroups = (pObj2 - pObj + 1) / *pnMuxes;
}
static inline void Str_NtkPrintGroups( Str_Ntk_t * p )
{
Str_Obj_t * pObj;
int nGroups, nMuxes;
Str_NtkManForEachObj( p, pObj )
if ( pObj->Type == STR_MUX && pObj->iTop > 0 )
{
Str_ObjReadGroup( p, pObj, &nGroups, &nMuxes );
pObj += nGroups * nMuxes - 1;
printf( "%d x %d ", nGroups, nMuxes );
}
printf( "\n" );
}
Gia_Man_t * Str_NtkToGia( Gia_Man_t * pGia, Str_Ntk_t * p )
{
Gia_Man_t * pNew, * pTemp;
Str_Obj_t * pObj; int k;
assert( pGia->pMuxes == NULL );
pNew = Gia_ManStart( 3 * Gia_ManObjNum(pGia) / 2 );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
Gia_ManHashStart( pNew );
Str_NtkManForEachObj( p, pObj )
{
if ( pObj->Type == STR_PI )
pObj->iCopy = Gia_ManAppendCi( pNew );
else if ( pObj->Type == STR_AND )
{
pObj->iCopy = 1;
for ( k = 0; k < (int)pObj->nFanins; k++ )
pObj->iCopy = Gia_ManHashAnd( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
}
else if ( pObj->Type == STR_XOR )
{
pObj->iCopy = 0;
for ( k = 0; k < (int)pObj->nFanins; k++ )
pObj->iCopy = Gia_ManHashXor( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
}
else if ( pObj->Type == STR_MUX )
pObj->iCopy = Gia_ManHashMux( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
else if ( pObj->Type == STR_PO )
pObj->iCopy = Gia_ManAppendCo( pNew, Str_ObjFaninCopy(p, pObj, 0) );
else if ( pObj->Type == STR_CONST0 )
pObj->iCopy = 0;
else assert( 0 );
}
Gia_ManHashStop( pNew );
// assert( Gia_ManObjNum(pNew) <= Gia_ManObjNum(pGia) );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
pNew = Gia_ManCleanup( pTemp = pNew );
Gia_ManStop( pTemp );
return pNew;
}
/**Function*************************************************************
Synopsis [Constructs a normalized AIG without structural hashing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Gia_ManDupMuxesNoHash( Gia_Man_t * p )
{
Gia_Man_t * pNew;
Gia_Obj_t * pObj, * pFan0, * pFan1, * pFanC;
int i, iLit0, iLit1, fCompl;
assert( p->pMuxes == NULL );
ABC_FREE( p->pRefs );
Gia_ManCreateRefs( p );
// discount nodes with one fanout pointed to by MUX type
Gia_ManForEachAnd( p, pObj, i )
{
if ( !Gia_ObjIsMuxType(pObj) )
continue;
Gia_ObjRefDec(p, Gia_ObjFanin0(pObj));
Gia_ObjRefDec(p, Gia_ObjFanin1(pObj));
}
// start the new manager
pNew = Gia_ManStart( Gia_ManObjNum(p) );
pNew->pName = Abc_UtilStrsav( p->pName );
pNew->pSpec = Abc_UtilStrsav( p->pSpec );
pNew->pMuxes = ABC_CALLOC( unsigned, pNew->nObjsAlloc );
Gia_ManFillValue(p);
Gia_ManConst0(p)->Value = 0;
Gia_ManForEachCi( p, pObj, i )
pObj->Value = Gia_ManAppendCi( pNew );
Gia_ManForEachAnd( p, pObj, i )
{
if ( !Gia_ObjRefNumId(p, i) )
continue;
if ( !Gia_ObjIsMuxType(pObj) )
pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
else if ( Gia_ObjRecognizeExor(pObj, &pFan0, &pFan1) )
{
iLit0 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan0));
iLit1 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan1));
fCompl = Abc_LitIsCompl(iLit0) ^ Abc_LitIsCompl(iLit1);
pObj->Value = fCompl ^ Gia_ManAppendXorReal( pNew, Abc_LitRegular(iLit0), Abc_LitRegular(iLit1) );
}
else
{
pFanC = Gia_ObjRecognizeMux( pObj, &pFan1, &pFan0 );
iLit0 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan0));
iLit1 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan1));
if ( iLit0 == iLit1 )
pObj->Value = iLit0;
else if ( Abc_Lit2Var(iLit0) == Abc_Lit2Var(iLit1) )
{
iLit1 = Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFanC));
fCompl = Abc_LitIsCompl(iLit0) ^ Abc_LitIsCompl(iLit1);
pObj->Value = fCompl ^ Gia_ManAppendXorReal( pNew, Abc_LitRegular(iLit0), Abc_LitRegular(iLit1) );
}
else
pObj->Value = Gia_ManAppendMuxReal( pNew, Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFanC)), Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan1)), Gia_ObjLitCopy(p, Gia_ObjToLit(p, pFan0)) );
}
}
Gia_ManForEachCo( p, pObj, i )
pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p) );
assert( !Gia_ManHasDangling(pNew) );
return pNew;
}
/**Function*************************************************************
Synopsis [Constructs AIG ordered for balancing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Str_MuxInputsCollect_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
if ( !pObj->fMark0 )
{
Vec_IntPush( vNodes, Gia_ObjId(p, pObj) );
return;
}
Vec_IntPush( vNodes, Gia_ObjFaninId2p(p, pObj) );
Str_MuxInputsCollect_rec( p, Gia_ObjFanin0(pObj), vNodes );
Str_MuxInputsCollect_rec( p, Gia_ObjFanin1(pObj), vNodes );
}
void Str_MuxInputsCollect( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
assert( !pObj->fMark0 );
pObj->fMark0 = 1;
Vec_IntClear( vNodes );
Str_MuxInputsCollect_rec( p, pObj, vNodes );
pObj->fMark0 = 0;
}
void Str_MuxStructCollect_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
if ( !pObj->fMark0 )
return;
Str_MuxStructCollect_rec( p, Gia_ObjFanin0(pObj), vNodes );
Str_MuxStructCollect_rec( p, Gia_ObjFanin1(pObj), vNodes );
Vec_IntPush( vNodes, Gia_ObjId(p, pObj) );
}
void Str_MuxStructCollect( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vNodes )
{
assert( !pObj->fMark0 );
pObj->fMark0 = 1;
Vec_IntClear( vNodes );
Str_MuxStructCollect_rec( p, pObj, vNodes );
pObj->fMark0 = 0;
}
void Str_MuxStructDump_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Str_t * vStr )
{
if ( !pObj->fMark0 )
return;
Vec_StrPush( vStr, '[' );
Vec_StrPush( vStr, '(' );
Vec_StrPrintNum( vStr, Gia_ObjFaninId2p(p, pObj) );
Vec_StrPush( vStr, ')' );
Str_MuxStructDump_rec( p, Gia_ObjFaninC2(p, pObj) ? Gia_ObjFanin0(pObj) : Gia_ObjFanin1(pObj), vStr );
Vec_StrPush( vStr, '|' );
Str_MuxStructDump_rec( p, Gia_ObjFaninC2(p, pObj) ? Gia_ObjFanin1(pObj) : Gia_ObjFanin0(pObj), vStr );
Vec_StrPush( vStr, ']' );
}
void Str_MuxStructDump( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Str_t * vStr )
{
assert( !pObj->fMark0 );
pObj->fMark0 = 1;
Vec_StrClear( vStr );
Str_MuxStructDump_rec( p, pObj, vStr );
Vec_StrPush( vStr, '\0' );
pObj->fMark0 = 0;
}
int Str_ManMuxCountOne( char * p )
{
int Count = 0;
for ( ; *p; p++ )
Count += (*p == '[');
return Count;
}
Vec_Wec_t * Str_ManDeriveTrees( Gia_Man_t * p )
{
int fPrintStructs = 0;
Abc_Nam_t * pNames;
Vec_Wec_t * vGroups;
Vec_Str_t * vStr;
Gia_Obj_t * pObj, * pFanin;
int i, iStructId, fFound;
assert( p->pMuxes != NULL );
// mark MUXes whose only fanout is a MUX
ABC_FREE( p->pRefs );
Gia_ManCreateRefs( p );
Gia_ManForEachMuxId( p, i )
{
pObj = Gia_ManObj(p, i);
pFanin = Gia_ObjFanin0(pObj);
if ( Gia_ObjIsMux(p, pFanin) && Gia_ObjRefNum(p, pFanin) == 1 )
pFanin->fMark0 = 1;
pFanin = Gia_ObjFanin1(pObj);
if ( Gia_ObjIsMux(p, pFanin) && Gia_ObjRefNum(p, pFanin) == 1 )
pFanin->fMark0 = 1;
}
// traverse for top level MUXes
vStr = Vec_StrAlloc( 1000 );
pNames = Abc_NamStart( 10000, 50 );
vGroups = Vec_WecAlloc( 1000 );
Vec_WecPushLevel( vGroups );
Gia_ManForEachMuxId( p, i )
{
// skip internal
pObj = Gia_ManObj(p, i);
if ( pObj->fMark0 )
continue;
// skip trees of size one
if ( !Gia_ObjFanin0(pObj)->fMark0 && !Gia_ObjFanin1(pObj)->fMark0 )
continue;
// hash the tree
Str_MuxStructDump( p, pObj, vStr );
iStructId = Abc_NamStrFindOrAdd( pNames, Vec_StrArray(vStr), &fFound );
if ( !fFound ) Vec_WecPushLevel( vGroups );
assert( Abc_NamObjNumMax(pNames) == Vec_WecSize(vGroups) );
Vec_IntPush( Vec_WecEntry(vGroups, iStructId), i );
}
if ( fPrintStructs )
{
char * pTemp;
Abc_NamManForEachObj( pNames, pTemp, i )
{
printf( "%5d : ", i );
printf( "Occur = %4d ", Vec_IntSize(Vec_WecEntry(vGroups,i)) );
printf( "Size = %4d ", Str_ManMuxCountOne(pTemp) );
printf( "%s\n", pTemp );
}
}
Abc_NamStop( pNames );
Vec_StrFree( vStr );
return vGroups;
}
Vec_Int_t * Str_ManCreateRoots( Vec_Wec_t * vGroups, int nObjs )
{ // map tree MUXes into their classes
Vec_Int_t * vRoots;
Vec_Int_t * vGroup;
int i, k, Entry;
vRoots = Vec_IntStartFull( nObjs );
Vec_WecForEachLevel( vGroups, vGroup, i )
Vec_IntForEachEntry( vGroup, Entry, k )
Vec_IntWriteEntry( vRoots, Entry, i );
return vRoots;
}
void Str_MuxTraverse_rec( Gia_Man_t * p, int i )
{
Gia_Obj_t * pObj;
if ( Gia_ObjIsTravIdCurrentId(p, i) )
return;
Gia_ObjSetTravIdCurrentId(p, i);
pObj = Gia_ManObj(p, i);
if ( !Gia_ObjIsAnd(pObj) )
return;
Str_MuxTraverse_rec(p, Gia_ObjFaninId0(pObj, i) );
Str_MuxTraverse_rec(p, Gia_ObjFaninId1(pObj, i) );
if ( Gia_ObjIsMux(p, pObj) )
Str_MuxTraverse_rec(p, Gia_ObjFaninId2(p, i) );
}
void Str_ManCheckOverlap( Gia_Man_t * p, Vec_Wec_t * vGroups )
{ // check that members of each group are not in the TFI of each other
Vec_Int_t * vGroup, * vGroup2;
int i, k, n, iObj, iObj2;
// vGroup = Vec_WecEntry(vGroups, 7);
// Vec_IntForEachEntry( vGroup, iObj, n )
// Gia_ManPrintCone2( p, Gia_ManObj(p, iObj) ), printf( "\n" );
Vec_WecForEachLevel( vGroups, vGroup, i )
Vec_IntForEachEntry( vGroup, iObj, k )
{
if ( Vec_IntSize(vGroup) == 1 )
continue;
// high light the cone
Gia_ManIncrementTravId( p );
Str_MuxTraverse_rec( p, iObj );
// check that none of the others are highlighted
Vec_IntForEachEntry( vGroup, iObj2, n )
if ( iObj != iObj2 && Gia_ObjIsTravIdCurrentId(p, iObj2) )
break;
if ( n == Vec_IntSize(vGroup) )
continue;
// split the group into individual trees
Vec_IntForEachEntryStart( vGroup, iObj2, n, 1 )
{
vGroup2 = Vec_WecPushLevel( vGroups );
vGroup = Vec_WecEntry( vGroups, i );
Vec_IntPush( vGroup2, iObj2 );
}
Vec_IntShrink( vGroup, 1 );
/*
// this does not work because there can be a pair of independent trees
// with another tree squeezed in between them, so that there is a combo loop
// divide this group
nNew = 0;
vGroup2 = Vec_WecPushLevel( vGroups );
vGroup = Vec_WecEntry( vGroups, i );
Vec_IntForEachEntry( vGroup, iObj2, n )
{
if ( iObj != iObj2 && Gia_ObjIsTravIdCurrentId(p, iObj2) )
Vec_IntPush( vGroup2, iObj2 );
else
Vec_IntWriteEntry( vGroup, nNew++, iObj2 );
}
Vec_IntShrink( vGroup, nNew );
i--;
break;
*/
/*
// check that none of the others are highlighted
Vec_IntForEachEntry( vGroup, iObj, n )
if ( n != k && Gia_ObjIsTravIdCurrentId(p, iObj) )
{
printf( "Overlap of TFI cones of trees %d and %d in group %d of size %d!\n", k, n, i, Vec_IntSize(vGroup) );
Vec_IntShrink( vGroup, 1 );
break;
}
*/
}
}
/**Function*************************************************************
Synopsis [Simplify multi-input AND/XOR.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_ManSimplifyXor( Vec_Int_t * vSuper )
{
int i, k = 0, Prev = -1, This, fCompl = 0;
Vec_IntForEachEntry( vSuper, This, i )
{
if ( This == 0 )
continue;
if ( This == 1 )
fCompl ^= 1;
else if ( Prev != This )
Vec_IntWriteEntry( vSuper, k++, This ), Prev = This;
else
Prev = -1, k--;
}
Vec_IntShrink( vSuper, k );
if ( Vec_IntSize( vSuper ) == 0 )
Vec_IntPush( vSuper, fCompl );
else if ( fCompl )
Vec_IntWriteEntry( vSuper, 0, Abc_LitNot(Vec_IntEntry(vSuper, 0)) );
}
static inline void Gia_ManSimplifyAnd( Vec_Int_t * vSuper )
{
int i, k = 0, Prev = -1, This;
Vec_IntForEachEntry( vSuper, This, i )
{
if ( This == 0 )
{ Vec_IntFill(vSuper, 1, 0); return; }
if ( This == 1 )
continue;
if ( Prev == -1 || Abc_Lit2Var(Prev) != Abc_Lit2Var(This) )
Vec_IntWriteEntry( vSuper, k++, This ), Prev = This;
else if ( Prev != This )
{ Vec_IntFill(vSuper, 1, 0); return; }
}
Vec_IntShrink( vSuper, k );
if ( Vec_IntSize( vSuper ) == 0 )
Vec_IntPush( vSuper, 1 );
}
/**Function*************************************************************
Synopsis [Collect multi-input AND/XOR.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Gia_ManSuperCollectXor_rec( Gia_Man_t * p, Gia_Obj_t * pObj )
{
assert( !Gia_IsComplement(pObj) );
if ( !Gia_ObjIsXor(pObj) ||
Gia_ObjRefNum(p, pObj) > 1 ||
// Gia_ObjRefNum(p, pObj) > 3 ||
// (Gia_ObjRefNum(p, pObj) == 2 && (Gia_ObjRefNum(p, Gia_ObjFanin0(pObj)) == 1 || Gia_ObjRefNum(p, Gia_ObjFanin1(pObj)) == 1)) ||
Vec_IntSize(p->vSuper) > STR_SUPER )
{
Vec_IntPush( p->vSuper, Gia_ObjToLit(p, pObj) );
return;
}
assert( !Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin0(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin1(pObj) );
}
static inline void Gia_ManSuperCollectAnd_rec( Gia_Man_t * p, Gia_Obj_t * pObj )
{
if ( Gia_IsComplement(pObj) ||
!Gia_ObjIsAndReal(p, pObj) ||
Gia_ObjRefNum(p, pObj) > 1 ||
// Gia_ObjRefNum(p, pObj) > 3 ||
// (Gia_ObjRefNum(p, pObj) == 2 && (Gia_ObjRefNum(p, Gia_ObjFanin0(pObj)) == 1 || Gia_ObjRefNum(p, Gia_ObjFanin1(pObj)) == 1)) ||
Vec_IntSize(p->vSuper) > STR_SUPER )
{
Vec_IntPush( p->vSuper, Gia_ObjToLit(p, pObj) );
return;
}
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild0(pObj) );
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild1(pObj) );
}
static inline void Gia_ManSuperCollect( Gia_Man_t * p, Gia_Obj_t * pObj )
{
if ( p->vSuper == NULL )
p->vSuper = Vec_IntAlloc( STR_SUPER );
else
Vec_IntClear( p->vSuper );
if ( Gia_ObjIsXor(pObj) )
{
assert( !Gia_ObjFaninC0(pObj) && !Gia_ObjFaninC1(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin0(pObj) );
Gia_ManSuperCollectXor_rec( p, Gia_ObjFanin1(pObj) );
Vec_IntSort( p->vSuper, 0 );
Gia_ManSimplifyXor( p->vSuper );
}
else if ( Gia_ObjIsAndReal(p, pObj) )
{
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild0(pObj) );
Gia_ManSuperCollectAnd_rec( p, Gia_ObjChild1(pObj) );
Vec_IntSort( p->vSuper, 0 );
Gia_ManSimplifyAnd( p->vSuper );
}
else assert( 0 );
assert( Vec_IntSize(p->vSuper) > 0 );
}
/**Function*************************************************************
Synopsis [Constructs AIG ordered for balancing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Str_ManNormalize_rec( Str_Ntk_t * pNtk, Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Wec_t * vGroups, Vec_Int_t * vRoots )
{
int i, k, iVar, iLit, iBeg, iEnd;
if ( ~pObj->Value )
return;
pObj->Value = 0;
assert( Gia_ObjIsAnd(pObj) );
if ( Gia_ObjIsMux(p, pObj) )
{
Vec_Int_t * vGroup;
Gia_Obj_t * pRoot, * pMux;
int pFanins[3];
if ( Vec_IntEntry(vRoots, Gia_ObjId(p, pObj)) == -1 )
{
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin0(pObj), vGroups, vRoots );
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin1(pObj), vGroups, vRoots );
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin2(p, pObj), vGroups, vRoots );
pFanins[0] = Gia_ObjFanin0Copy(pObj);
pFanins[1] = Gia_ObjFanin1Copy(pObj);
pFanins[2] = Gia_ObjFanin2Copy(p, pObj);
if ( Abc_LitIsCompl(pFanins[2]) )
{
pFanins[2] = Abc_LitNot(pFanins[2]);
ABC_SWAP( int, pFanins[0], pFanins[1] );
}
pObj->Value = Str_ObjCreate( pNtk, STR_MUX, 3, pFanins );
return;
}
vGroup = Vec_WecEntry( vGroups, Vec_IntEntry(vRoots, Gia_ObjId(p, pObj)) );
// build data-inputs for each tree
Gia_ManForEachObjVec( vGroup, p, pRoot, i )
{
Str_MuxInputsCollect( p, pRoot, p->vSuper );
iBeg = Vec_IntSize( p->vStore );
Vec_IntAppend( p->vStore, p->vSuper );
iEnd = Vec_IntSize( p->vStore );
Vec_IntForEachEntryStartStop( p->vStore, iVar, k, iBeg, iEnd )
Str_ManNormalize_rec( pNtk, p, Gia_ManObj(p, iVar), vGroups, vRoots );
Vec_IntShrink( p->vStore, iBeg );
}
// build internal structures
Gia_ManForEachObjVec( vGroup, p, pRoot, i )
{
Str_MuxStructCollect( p, pRoot, p->vSuper );
Gia_ManForEachObjVec( p->vSuper, p, pMux, k )
{
pFanins[0] = Gia_ObjFanin0Copy(pMux);
pFanins[1] = Gia_ObjFanin1Copy(pMux);
pFanins[2] = Gia_ObjFanin2Copy(p, pMux);
if ( Abc_LitIsCompl(pFanins[2]) )
{
pFanins[2] = Abc_LitNot(pFanins[2]);
ABC_SWAP( int, pFanins[0], pFanins[1] );
}
pMux->Value = Str_ObjCreate( pNtk, STR_MUX, 3, pFanins );
}
assert( ~pRoot->Value );
// set mapping
Gia_ManForEachObjVec( p->vSuper, p, pMux, k )
Str_NtkObj(pNtk, Abc_Lit2Var(pMux->Value))->iTop = Abc_Lit2Var(pRoot->Value);
pNtk->nTrees++;
}
assert( ~pObj->Value );
// set mapping
pObj = Gia_ManObj( p, Vec_IntEntryLast(vGroup) );
Gia_ManForEachObjVec( vGroup, p, pRoot, i )
Str_NtkObj(pNtk, Abc_Lit2Var(pRoot->Value))->iTop = Abc_Lit2Var(pObj->Value);
pNtk->nGroups++;
//printf( "%d x %d ", Vec_IntSize(vGroup), Vec_IntSize(p->vSuper) );
return;
}
// find supergate
Gia_ManSuperCollect( p, pObj );
// save entries
iBeg = Vec_IntSize( p->vStore );
Vec_IntAppend( p->vStore, p->vSuper );
iEnd = Vec_IntSize( p->vStore );
// call recursively
Vec_IntForEachEntryStartStop( p->vStore, iLit, i, iBeg, iEnd )
{
Gia_Obj_t * pTemp = Gia_ManObj( p, Abc_Lit2Var(iLit) );
Str_ManNormalize_rec( pNtk, p, pTemp, vGroups, vRoots );
Vec_IntWriteEntry( p->vStore, i, Abc_LitNotCond(pTemp->Value, Abc_LitIsCompl(iLit)) );
}
assert( Vec_IntSize(p->vStore) == iEnd );
// consider general case
pObj->Value = Str_ObjCreate( pNtk, Gia_ObjIsXor(pObj) ? STR_XOR : STR_AND, iEnd-iBeg, Vec_IntEntryP(p->vStore, iBeg) );
Vec_IntShrink( p->vStore, iBeg );
}
Str_Ntk_t * Str_ManNormalizeInt( Gia_Man_t * p, Vec_Wec_t * vGroups, Vec_Int_t * vRoots )
{
Str_Ntk_t * pNtk;
Gia_Obj_t * pObj;
int i, iFanin;
assert( p->pMuxes != NULL );
if ( p->vSuper == NULL )
p->vSuper = Vec_IntAlloc( STR_SUPER );
if ( p->vStore == NULL )
p->vStore = Vec_IntAlloc( STR_SUPER );
Gia_ManFillValue( p );
pNtk = Str_NtkCreate( Gia_ManObjNum(p), 1 + Gia_ManCoNum(p) + 2 * Gia_ManAndNum(p) + Gia_ManMuxNum(p) );
Gia_ManConst0(p)->Value = 0;
Gia_ManForEachObj1( p, pObj, i )
{
if ( Gia_ObjIsCi(pObj) )
pObj->Value = Str_ObjCreate( pNtk, STR_PI, 0, NULL );
else if ( Gia_ObjIsCo(pObj) )
{
Str_ManNormalize_rec( pNtk, p, Gia_ObjFanin0(pObj), vGroups, vRoots );
iFanin = Gia_ObjFanin0Copy(pObj);
pObj->Value = Str_ObjCreate( pNtk, STR_PO, 1, &iFanin );
}
}
assert( pNtk->nObjs <= Gia_ManObjNum(p) );
return pNtk;
}
Str_Ntk_t * Str_ManNormalize( Gia_Man_t * p )
{
Str_Ntk_t * pNtk;
Gia_Man_t * pMuxes = Gia_ManDupMuxes( p, 5 );
Vec_Wec_t * vGroups = Str_ManDeriveTrees( pMuxes );
Vec_Int_t * vRoots;
Str_ManCheckOverlap( pMuxes, vGroups );
vRoots = Str_ManCreateRoots( vGroups, Gia_ManObjNum(pMuxes) );
pNtk = Str_ManNormalizeInt( pMuxes, vGroups, vRoots );
Gia_ManCleanMark0( pMuxes );
Gia_ManStop( pMuxes );
Vec_IntFree( vRoots );
Vec_WecFree( vGroups );
return pNtk;
}
/**Function*************************************************************
Synopsis [Delay computation]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_Delay2( int d0, int d1, int nLutSize )
{
int n, d = Abc_MaxInt( d0 >> 4, d1 >> 4 );
n = (d == (d0 >> 4)) ? (d0 & 15) : 1;
n += (d == (d1 >> 4)) ? (d1 & 15) : 1;
return (d << 4) + (n > nLutSize ? 18 : n);
}
static inline int Str_Delay3( int d0, int d1, int d2, int nLutSize )
{
int n, d = Abc_MaxInt( Abc_MaxInt(d0 >> 4, d1 >> 4), d2 >> 4 );
n = (d == (d0 >> 4)) ? (d0 & 15) : 1;
n += (d == (d1 >> 4)) ? (d1 & 15) : 1;
n += (d == (d2 >> 4)) ? (d2 & 15) : 1;
return (d << 4) + (n > nLutSize ? 19 : n);
}
static inline int Str_ObjDelay( Gia_Man_t * pNew, int iObj, int nLutSize, Vec_Int_t * vDelay )
{
int Delay = Vec_IntEntry( vDelay, iObj );
if ( Delay == 0 )
{
if ( Gia_ObjIsMuxId(pNew, iObj) )
{
int d0 = Vec_IntEntry( vDelay, Gia_ObjFaninId0(Gia_ManObj(pNew, iObj), iObj) );
int d1 = Vec_IntEntry( vDelay, Gia_ObjFaninId1(Gia_ManObj(pNew, iObj), iObj) );
int d2 = Vec_IntEntry( vDelay, Gia_ObjFaninId2(pNew, iObj) );
Delay = Str_Delay3( d0, d1, d2, nLutSize );
}
else
{
int d0 = Vec_IntEntry( vDelay, Gia_ObjFaninId0(Gia_ManObj(pNew, iObj), iObj) );
int d1 = Vec_IntEntry( vDelay, Gia_ObjFaninId1(Gia_ManObj(pNew, iObj), iObj) );
Delay = Str_Delay2( d0, d1, nLutSize );
}
Vec_IntWriteEntry( vDelay, iObj, Delay );
}
return Delay;
}
/**Function*************************************************************
Synopsis [Transposing 64-bit matrix.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void transpose64( word A[64] )
{
int j, k;
word t, m = 0x00000000FFFFFFFF;
for ( j = 32; j != 0; j = j >> 1, m = m ^ (m << j) )
{
for ( k = 0; k < 64; k = (k + j + 1) & ~j )
{
t = (A[k] ^ (A[k+j] >> j)) & m;
A[k] = A[k] ^ t;
A[k+j] = A[k+j] ^ (t << j);
}
}
}
/**Function*************************************************************
Synopsis [Perform affinity computation.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_ManNum( Gia_Man_t * p, int iObj ) { return Vec_IntEntry(&p->vCopies, iObj); }
static inline void Str_ManSetNum( Gia_Man_t * p, int iObj, int Num ) { Vec_IntWriteEntry(&p->vCopies, iObj, Num); }
int Str_ManVectorAffinity( Gia_Man_t * p, Vec_Int_t * vSuper, Vec_Int_t * vDelay, word Matrix[256], int nLimit )
{
int fVerbose = 0;
int Levels[256];
int nSize = Vec_IntSize(vSuper);
int Prev = nSize, nLevels = 1;
int i, k, iLit, iFanin, nSizeNew;
word Mask;
assert( nSize > 2 );
if ( nSize > 64 )
{
for ( i = 0; i < 64; i++ )
Matrix[i] = 0;
return 0;
}
// mark current nodes
Gia_ManIncrementTravId( p );
Vec_IntForEachEntry( vSuper, iLit, i )
{
Gia_ObjSetTravIdCurrentId( p, Abc_Lit2Var(iLit) );
Str_ManSetNum( p, Abc_Lit2Var(iLit), i );
Matrix[i] = ((word)1) << (63-i);
Levels[i] = 0;
}
// collect 64 nodes
Vec_IntForEachEntry( vSuper, iLit, i )
{
Gia_Obj_t * pObj = Gia_ManObj( p, Abc_Lit2Var(iLit) );
if ( Gia_ObjIsAnd(pObj) )
{
for ( k = 0; k < 2; k++ )
{
iFanin = k ? Gia_ObjFaninId1p(p, pObj) : Gia_ObjFaninId0p(p, pObj);
if ( !Gia_ObjIsTravIdCurrentId(p, iFanin) )
{
if ( Vec_IntSize(vSuper) == nLimit )
break;
Gia_ObjSetTravIdCurrentId( p, iFanin );
Matrix[Vec_IntSize(vSuper)] = 0;
Levels[Vec_IntSize(vSuper)] = nLevels;
Str_ManSetNum( p, iFanin, Vec_IntSize(vSuper) );
Vec_IntPush( vSuper, Abc_Var2Lit(iFanin, 0) );
}
Matrix[Str_ManNum(p, iFanin)] |= Matrix[i];
}
}
if ( Gia_ObjIsMux(p, pObj) )
{
iFanin = Gia_ObjFaninId2p(p, pObj);
if ( !Gia_ObjIsTravIdCurrentId(p, iFanin) )
{
if ( Vec_IntSize(vSuper) == nLimit )
break;
Gia_ObjSetTravIdCurrentId( p, iFanin );
Matrix[Vec_IntSize(vSuper)] = 0;
Levels[Vec_IntSize(vSuper)] = nLevels;
Str_ManSetNum( p, iFanin, Vec_IntSize(vSuper) );
Vec_IntPush( vSuper, Abc_Var2Lit(iFanin, 0) );
}
Matrix[Str_ManNum(p, iFanin)] |= Matrix[i];
}
if ( Prev == i )
Prev = Vec_IntSize(vSuper), nLevels++;
if ( nLevels == 8 )
break;
}
// remove those that have all 1s or only one 1
Mask = (~(word)0) << (64 - nSize);
for ( k = i = 0; i < Vec_IntSize(vSuper); i++ )
{
assert( Matrix[i] );
if ( (Matrix[i] & (Matrix[i] - 1)) == 0 )
continue;
if ( Matrix[i] == Mask )
continue;
Matrix[k] = Matrix[i];
Levels[k] = Levels[i];
k++;
if ( k == 64 )
break;
}
// clean the remaining ones
for ( i = k; i < 64; i++ )
Matrix[i] = 0;
nSizeNew = k;
if ( nSizeNew == 0 )
{
Vec_IntShrink( vSuper, nSize );
return 0;
}
/*
// report
if ( fVerbose && nSize > 20 )
{
for ( i = 0; i < nSizeNew; i++ )
Extra_PrintBinary( stdout, Matrix+i, 64 ), printf( "\n" );
printf( "\n" );
}
*/
transpose64( Matrix );
// report
if ( fVerbose && nSize > 10 )
{
printf( "Gate inputs = %d. Collected fanins = %d. All = %d. Good = %d. Levels = %d\n",
nSize, Vec_IntSize(vSuper) - nSize, Vec_IntSize(vSuper), nSizeNew, nLevels );
printf( " " );
for ( i = 0; i < nSizeNew; i++ )
printf( "%d", Levels[i] );
printf( "\n" );
for ( i = 0; i < nSize; i++ )
{
printf( "%6d : ", Abc_Lit2Var(Vec_IntEntry(vSuper, i)) );
printf( "%3d ", Vec_IntEntry(vDelay, i) >> 4 );
printf( "%3d ", Vec_IntEntry(vDelay, i) & 15 );
// Extra_PrintBinary( stdout, Matrix+i, 64 ), printf( "\n" );
}
i = 0;
}
Vec_IntShrink( vSuper, nSize );
return nSizeNew;
}
/**Function*************************************************************
Synopsis [Count 1s.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Str_CountBits( word i )
{
if ( i == 0 )
return 0;
i = (i & (i - 1));
if ( i == 0 )
return 1;
i = (i & (i - 1));
if ( i == 0 )
return 2;
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline void Str_PrintState( int * pCost, int * pSuper, word * pMatrix, int nSize )
{
int i;
for ( i = 0; i < nSize; i++ )
{
printf( "%6d : ", i );
printf( "%6d : ", Abc_Lit2Var(pSuper[i]) );
printf( "%3d ", pCost[i] >> 4 );
printf( "%3d ", pCost[i] & 15 );
// Extra_PrintBinary( stdout, pMatrix+i, 64 ), printf( "\n" );
}
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Perform balancing.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Str_NtkBalanceMulti2( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, Vec_Int_t * vDelay, int nLutSize )
{
int k;
pObj->iCopy = (pObj->Type == STR_AND);
for ( k = 0; k < (int)pObj->nFanins; k++ )
{
if ( pObj->Type == STR_AND )
pObj->iCopy = Gia_ManHashAnd( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
else
pObj->iCopy = Gia_ManHashXorReal( pNew, pObj->iCopy, Str_ObjFaninCopy(p, pObj, k) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
}
int Str_NtkBalanceTwo( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, int i, int j, Vec_Int_t * vDelay, int * pCost, int * pSuper, word * pMatrix, int nSize, int nLutSize, int CostBest )
{
int k, iLitRes, Delay;
assert( i < j );
// printf( "Merging node %d and %d\n", i, j );
if ( pObj->Type == STR_AND )
iLitRes = Gia_ManHashAnd( pNew, pSuper[i], pSuper[j] );
else
iLitRes = Gia_ManHashXorReal( pNew, pSuper[i], pSuper[j] );
Delay = Str_ObjDelay( pNew, Abc_Lit2Var(iLitRes), nLutSize, vDelay );
// update
pCost[i] = Delay;
pSuper[i] = iLitRes;
pMatrix[i] |= pMatrix[j];
// assert( (pCost[i] & 15) == CostBest || CostBest == -1 );
// remove entry j
nSize--;
for ( k = j; k < nSize; k++ )
{
pCost[k] = pCost[k+1];
pSuper[k] = pSuper[k+1];
pMatrix[k] = pMatrix[k+1];
}
// move up the first one
nSize--;
for ( k = 0; k < nSize; k++ )
{
if ( pCost[k] <= pCost[k+1] )
break;
ABC_SWAP( int, pCost[k], pCost[k+1] );
ABC_SWAP( int, pSuper[k], pSuper[k+1] );
ABC_SWAP( word, pMatrix[k], pMatrix[k+1] );
}
return iLitRes;
}
void Str_NtkBalanceMulti( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, Vec_Int_t * vDelay, int nLutSize )
{
word pMatrix[256];
int Limit = 256;
Vec_Int_t * vSuper = pNew->vSuper;
Vec_Int_t * vCosts = pNew->vStore;
int * pSuper = Vec_IntArray(vSuper);
int * pCost = Vec_IntArray(vCosts);
int k, iLit, MatrixSize = 0;
assert( Limit <= Vec_IntCap(vSuper) );
assert( Limit <= Vec_IntCap(vCosts) );
// collect nodes
Vec_IntClear( vSuper );
for ( k = 0; k < (int)pObj->nFanins; k++ )
Vec_IntPush( vSuper, Str_ObjFaninCopy(p, pObj, k) );
Vec_IntSort( vSuper, 0 );
if ( pObj->Type == STR_AND )
Gia_ManSimplifyAnd( vSuper );
else
Gia_ManSimplifyXor( vSuper );
assert( Vec_IntSize(vSuper) > 0 );
if ( Vec_IntSize(vSuper) == 1 )
{
pObj->iCopy = Vec_IntEntry(vSuper, 0);
return;
}
if ( Vec_IntSize(vSuper) == 2 )
{
pObj->iCopy = Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, 2, nLutSize, -1 );
return;
}
// sort by cost
Vec_IntClear( vCosts );
Vec_IntForEachEntry( vSuper, iLit, k )
Vec_IntPush( vCosts, Vec_IntEntry(vDelay, Abc_Lit2Var(iLit)) );
Vec_IntSelectSortCost2( pSuper, Vec_IntSize(vSuper), pCost );
// compute affinity
if ( Vec_IntSize(vSuper) < 64 )
MatrixSize = Str_ManVectorAffinity( pNew, vSuper, vCosts, pMatrix, Limit );
// start the new product
while ( Vec_IntSize(vSuper) > 2 )
{
// pair the first entry with another one on the same level
int i, iStop, iBest,iBest2;
int CostNew, CostBest, CostBest2;
int OccurNew, OccurBest, OccurBest2;
if ( Vec_IntSize(vSuper) > 64 )
{
Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, -1 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// compute affinity
if ( Vec_IntSize(vSuper) == 64 )
MatrixSize = Str_ManVectorAffinity( pNew, vSuper, vCosts, pMatrix, Limit );
assert( Vec_IntSize(vSuper) <= 64 );
// Str_PrintState( pCost, pSuper, pMatrix, Vec_IntSize(vSuper) );
// if the first two are PIs group them
if ( pCost[0] == 17 && pCost[1] == 17 )
{
Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, 2 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// find the end of the level
for ( iStop = 0; iStop < Vec_IntSize(vSuper); iStop++ )
if ( (pCost[iStop] >> 4) != (pCost[0] >> 4) )
break;
// if there is only one this level, pair it with the best match in the next level
if ( iStop == 1 )
{
iBest = iStop, OccurBest = Str_CountBits(pMatrix[0] & pMatrix[iStop]);
for ( i = iStop + 1; i < Vec_IntSize(vSuper); i++ )
{
if ( (pCost[i] >> 4) != (pCost[iStop] >> 4) )
break;
OccurNew = Str_CountBits(pMatrix[0] & pMatrix[i]);
if ( OccurBest < OccurNew )
iBest = i, OccurBest = OccurNew;
}
assert( iBest > 0 && iBest < Vec_IntSize(vSuper) );
Str_NtkBalanceTwo( pNew, p, pObj, 0, iBest, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, -1 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// pair the first entry with another one on the same level
iBest = -1; CostBest = -1; OccurBest2 = -1; OccurBest = -1;
for ( i = 1; i < iStop; i++ )
{
CostNew = (pCost[0] & 15) + (pCost[i] & 15);
if ( CostNew > nLutSize )
continue;
OccurNew = Str_CountBits(pMatrix[0] & pMatrix[i]);
if ( CostBest < CostNew || (CostBest == CostNew && OccurBest < OccurNew) )
CostBest = CostNew, iBest = i, OccurBest = OccurNew;
}
// if the best found is perfect, take it
if ( CostBest == nLutSize )
{
assert( iBest > 0 && iBest < Vec_IntSize(vSuper) );
Str_NtkBalanceTwo( pNew, p, pObj, 0, iBest, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, CostBest );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// find the best pair on this level
iBest = iBest2 = -1; CostBest = CostBest2 = -1, OccurBest = OccurBest2 = -1;
for ( i = 0; i < iStop; i++ )
for ( k = i+1; k < iStop; k++ )
{
CostNew = (pCost[i] & 15) + (pCost[k] & 15);
OccurNew = Str_CountBits(pMatrix[i] & pMatrix[k]);
if ( CostNew <= nLutSize ) // the same level
{
if ( OccurBest < OccurNew || (OccurBest == OccurNew && CostBest < CostNew ))
CostBest = CostNew, iBest = (i << 16) | k, OccurBest = OccurNew;
}
else // overflow to the next level
{
if ( OccurBest2 < OccurNew || (OccurBest2 == OccurNew && CostBest2 < CostNew) )
CostBest2 = CostNew, iBest2 = (i << 16) | k, OccurBest2 = OccurNew;
}
}
if ( iBest >= 0 )
{
assert( iBest > 0 );
Str_NtkBalanceTwo( pNew, p, pObj, iBest>>16, iBest&0xFFFF, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, CostBest );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
// take any remaining pair
assert( iBest2 > 0 );
Str_NtkBalanceTwo( pNew, p, pObj, iBest2>>16, iBest2&0xFFFF, vDelay, pCost, pSuper, pMatrix, Vec_IntSize(vSuper), nLutSize, -1 );
vSuper->nSize--;
vCosts->nSize--;
continue;
}
pObj->iCopy = Str_NtkBalanceTwo( pNew, p, pObj, 0, 1, vDelay, pCost, pSuper, pMatrix, 2, nLutSize, -1 );
/*
// simple
pObj->iCopy = (pObj->Type == STR_AND);
for ( k = 0; k < Vec_IntSize(vSuper); k++ )
{
if ( pObj->Type == STR_AND )
pObj->iCopy = Gia_ManHashAnd( pNew, pObj->iCopy, Vec_IntEntry(vSuper, k) );
else
pObj->iCopy = Gia_ManHashXorReal( pNew, pObj->iCopy, Vec_IntEntry(vSuper, k) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
*/
}
void Str_NtkBalanceMux( Gia_Man_t * pNew, Str_Ntk_t * p, Str_Obj_t * pObj, Vec_Int_t * vDelay, int nLutSize, int nGroups, int nMuxes, int fRecursive, int fOptArea, int fVerbose )
{
extern int Str_MuxRestructure( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fRecursive, int fOptArea, int fVerbose );
int n, m, iRes, fUseRestruct = 1;
if ( fUseRestruct )
{
for ( n = 0; n < nGroups; n++ )
{
iRes = Str_MuxRestructure( pNew, p, Str_ObjId(p, pObj), nMuxes, vDelay, nLutSize, fRecursive, fOptArea, fVerbose );
if ( iRes == -1 )
{
for ( m = 0; m < nMuxes; m++, pObj++ )
{
pObj->iCopy = Gia_ManHashMuxReal( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
}
else
{
pObj += nMuxes - 1;
pObj->iCopy = iRes;
pObj++;
}
}
}
else
{
for ( n = 0; n < nGroups * nMuxes; n++, pObj++ )
{
pObj->iCopy = Gia_ManHashMuxReal( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
}
}
Gia_Man_t * Str_NtkBalance( Gia_Man_t * pGia, Str_Ntk_t * p, int nLutSize, int fUseMuxes, int fRecursive, int fOptArea, int fVerbose )
{
Gia_Man_t * pNew, * pTemp;
Vec_Int_t * vDelay;
Str_Obj_t * pObj;
int nGroups, nMuxes, CioId;
int arrTime, Delay = 0;
assert( nLutSize < 16 );
assert( pGia->pMuxes == NULL );
pNew = Gia_ManStart( Gia_ManObjNum(pGia) );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
pNew->pMuxes = ABC_CALLOC( unsigned, pNew->nObjsAlloc );
Vec_IntFill( &pNew->vCopies, pNew->nObjsAlloc, -1 );
if ( pNew->vSuper == NULL )
pNew->vSuper = Vec_IntAlloc( 1000 );
if ( pNew->vStore == NULL )
pNew->vStore = Vec_IntAlloc( 1000 );
vDelay = Vec_IntStart( 2*pNew->nObjsAlloc );
Gia_ManHashStart( pNew );
if ( pGia->pManTime != NULL ) // Tim_Man with unit delay 16
{
Tim_ManInitPiArrivalAll( (Tim_Man_t *)pGia->pManTime, 17 );
Tim_ManIncrementTravId( (Tim_Man_t *)pGia->pManTime );
}
Str_NtkManForEachObj( p, pObj )
{
if ( pObj->Type == STR_PI )
{
pObj->iCopy = Gia_ManAppendCi( pNew );
arrTime = 17;
if ( pGia->pManTime != NULL )
{
CioId = Gia_ObjCioId( Gia_ManObj(pNew, Abc_Lit2Var(pObj->iCopy)) );
arrTime = (int)Tim_ManGetCiArrival( (Tim_Man_t *)pGia->pManTime, CioId );
}
Vec_IntWriteEntry( vDelay, Abc_Lit2Var(pObj->iCopy), arrTime );
}
else if ( pObj->Type == STR_AND || pObj->Type == STR_XOR )
Str_NtkBalanceMulti( pNew, p, pObj, vDelay, nLutSize );
else if ( pObj->Type == STR_MUX && pObj->iTop >= 0 && fUseMuxes )
{
Str_ObjReadGroup( p, pObj, &nGroups, &nMuxes );
assert( nGroups * nMuxes >= 2 );
Str_NtkBalanceMux( pNew, p, pObj, vDelay, nLutSize, nGroups, nMuxes, fRecursive, fOptArea, fVerbose );
pObj += nGroups * nMuxes - 1;
}
else if ( pObj->Type == STR_MUX )
{
pObj->iCopy = Gia_ManHashMuxReal( pNew, Str_ObjFaninCopy(p, pObj, 2), Str_ObjFaninCopy(p, pObj, 1), Str_ObjFaninCopy(p, pObj, 0) );
Str_ObjDelay( pNew, Abc_Lit2Var(pObj->iCopy), nLutSize, vDelay );
}
else if ( pObj->Type == STR_PO )
{
pObj->iCopy = Gia_ManAppendCo( pNew, Str_ObjFaninCopy(p, pObj, 0) );
arrTime = Vec_IntEntry(vDelay, Abc_Lit2Var(Str_ObjFaninCopy(p, pObj, 0)) );
Delay = Abc_MaxInt( Delay, arrTime );
if ( pGia->pManTime != NULL )
{
CioId = Gia_ObjCioId( Gia_ManObj(pNew, Abc_Lit2Var(pObj->iCopy)) );
Tim_ManSetCoArrival( (Tim_Man_t *)pGia->pManTime, CioId, (float)arrTime );
}
}
else if ( pObj->Type == STR_CONST0 )
pObj->iCopy = 0, Vec_IntWriteEntry(vDelay, 0, 17);
else assert( 0 );
}
if ( fVerbose )
printf( "Max delay = %d. Old objs = %d. New objs = %d.\n", Delay >> 4, Gia_ManObjNum(pGia), Gia_ManObjNum(pNew) );
Vec_IntFree( vDelay );
ABC_FREE( pNew->vCopies.pArray );
Gia_ManHashStop( pNew );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
pNew = Gia_ManDupNoMuxes( pTemp = pNew );
Gia_ManStop( pTemp );
// if ( pGia->pManTime != NULL )
// pNew->pManTime = Tim_ManDup( (Tim_Man_t *)pGia->pManTime, 0 );
return pNew;
}
/**Function*************************************************************
Synopsis [Test normalization procedure.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Gia_ManLutBalance( Gia_Man_t * p, int nLutSize, int fUseMuxes, int fRecursive, int fOptArea, int fVerbose )
{
Str_Ntk_t * pNtk;
Gia_Man_t * pNew;
abctime clk = Abc_Clock();
if ( p->pManTime && Tim_ManBoxNum((Tim_Man_t*)p->pManTime) && Gia_ManIsNormalized(p) )
{
Tim_Man_t * pTimOld = (Tim_Man_t *)p->pManTime;
p->pManTime = Tim_ManDup( pTimOld, 16 );
pNew = Gia_ManDupUnnormalize( p );
if ( pNew == NULL )
return NULL;
Gia_ManTransferTiming( pNew, p );
p = pNew;
// optimize
pNtk = Str_ManNormalize( p );
pNew = Str_NtkBalance( p, pNtk, nLutSize, fUseMuxes, fRecursive, fOptArea, fVerbose );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
// normalize
pNew = Gia_ManDupNormalize( p = pNew, 0 );
Gia_ManTransferTiming( pNew, p );
Gia_ManStop( p );
// cleanup
Tim_ManStop( (Tim_Man_t *)pNew->pManTime );
pNew->pManTime = pTimOld;
assert( Gia_ManIsNormalized(pNew) );
}
else
{
pNtk = Str_ManNormalize( p );
// Str_NtkPrintGroups( pNtk );
pNew = Str_NtkBalance( p, pNtk, nLutSize, fUseMuxes, fRecursive, fOptArea, fVerbose );
Gia_ManTransferTiming( pNew, p );
}
if ( fVerbose )
Str_NtkPs( pNtk, Abc_Clock() - clk );
Str_NtkDelete( pNtk );
return pNew;
}
/**Function*************************************************************
Synopsis [Perform MUX restructuring.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
typedef struct Str_Edg_t_ Str_Edg_t;
struct Str_Edg_t_
{
int Fan; // fanin ID
int fCompl; // fanin complement
int FanDel; // fanin delay
int Copy; // fanin copy
};
typedef struct Str_Mux_t_ Str_Mux_t; // 64 bytes
struct Str_Mux_t_
{
int Id; // node ID
int Delay; // node delay
int Copy; // node copy
int nLutSize; // LUT size
Str_Edg_t Edge[3]; // fanins
};
static inline Str_Mux_t * Str_MuxFanin( Str_Mux_t * pMux, int i ) { return pMux - pMux->Id + pMux->Edge[i].Fan; }
static inline int Str_MuxHasFanin( Str_Mux_t * pMux, int i ) { return pMux->Edge[i].Fan > 0 && Str_MuxFanin(pMux, i)->Copy != -2; }
void Str_MuxDelayPrint_rec( Str_Mux_t * pMux, int i )
{
int fShowDelay = 1;
Str_Mux_t * pFanin;
if ( pMux->Edge[i].Fan <= 0 )
{
printf( "%d", -pMux->Edge[i].Fan );
if ( fShowDelay )
printf( "{%d}", pMux->Edge[i].FanDel );
return;
}
pFanin = Str_MuxFanin( pMux, i );
printf( "[ " );
if ( pFanin->Edge[0].fCompl )
printf( "!" );
Str_MuxDelayPrint_rec( pFanin, 0 );
printf( "|" );
if ( pFanin->Edge[1].fCompl )
printf( "!" );
Str_MuxDelayPrint_rec( pFanin, 1 );
printf( "(" );
if ( pFanin->Edge[2].fCompl )
printf( "!" );
Str_MuxDelayPrint_rec( pFanin, 2 );
printf( ")" );
printf( " ]" );
}
int Str_MuxDelayEdge_rec( Str_Mux_t * pMux, int i )
{
if ( pMux->Edge[i].Fan > 0 )
{
Str_Mux_t * pFanin = Str_MuxFanin( pMux, i );
Str_MuxDelayEdge_rec( pFanin, 0 );
Str_MuxDelayEdge_rec( pFanin, 1 );
pMux->Edge[i].FanDel = Str_Delay3( pFanin->Edge[0].FanDel, pFanin->Edge[1].FanDel, pFanin->Edge[2].FanDel, pFanin->nLutSize );
}
return pMux->Edge[i].FanDel;
}
void Str_MuxCreate( Str_Mux_t * pTree, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize )
{
Str_Obj_t * pObj;
Str_Mux_t * pMux;
int i, k, nPis = 0;
assert( nMuxes >= 2 );
memset( pTree, 0, sizeof(Str_Mux_t) * (nMuxes + 1) );
pTree->nLutSize = nLutSize;
pTree->Edge[0].Fan = 1;
for ( i = 1; i <= nMuxes; i++ )
{
pMux = pTree + i;
pMux->Id = i;
pMux->nLutSize = nLutSize;
pMux->Delay = pMux->Copy = -1;
// assign fanins
pObj = Str_NtkObj( pNtk, iMux + nMuxes - i );
assert( pObj->Type == STR_MUX );
for ( k = 0; k < 3; k++ )
{
pMux->Edge[k].fCompl = Str_ObjFaninC(pNtk, pObj, k);
if ( Str_ObjFaninId(pNtk, pObj, k) >= iMux )
pMux->Edge[k].Fan = iMux + nMuxes - Str_ObjFaninId(pNtk, pObj, k);
else
{
pMux->Edge[k].Fan = -nPis++; // count external inputs, including controls
pMux->Edge[k].Copy = Str_ObjFanin(pNtk, pObj, k)->iCopy;
pMux->Edge[k].FanDel = Vec_IntEntry( vDelay, Abc_Lit2Var(pMux->Edge[k].Copy) );
}
}
}
}
int Str_MuxToGia_rec( Gia_Man_t * pNew, Str_Mux_t * pMux, int i, Vec_Int_t * vDelay )
{
if ( pMux->Edge[i].Fan > 0 )
{
Str_Mux_t * pFanin = Str_MuxFanin( pMux, i );
int iLit0 = Str_MuxToGia_rec( pNew, pFanin, 0, vDelay );
int iLit1 = Str_MuxToGia_rec( pNew, pFanin, 1, vDelay );
assert( pFanin->Edge[2].Fan <= 0 );
assert( pFanin->Edge[2].fCompl == 0 );
pMux->Edge[i].Copy = Gia_ManHashMuxReal( pNew, pFanin->Edge[2].Copy, iLit1, iLit0 );
Str_ObjDelay( pNew, Abc_Lit2Var(pMux->Edge[i].Copy), pFanin->nLutSize, vDelay );
}
return Abc_LitNotCond( pMux->Edge[i].Copy, pMux->Edge[i].fCompl );
}
void Str_MuxChangeOnce( Str_Mux_t * pTree, int * pPath, int i, int k, Str_Mux_t * pBackup, Gia_Man_t * pNew, Vec_Int_t * vDelay )
{
Str_Mux_t * pSpots[3];
int pInds[3], MidFan, MidCom, MidDel, MidCop, c;
int iRes, iCond, fCompl;
// save backup
assert( i + 1 < k );
if ( pBackup )
{
pBackup[0] = pTree[ Abc_Lit2Var(pPath[k]) ];
pBackup[1] = pTree[ Abc_Lit2Var(pPath[i+1])];
pBackup[2] = pTree[ Abc_Lit2Var(pPath[i]) ];
}
// perform changes
pSpots[0] = pTree + Abc_Lit2Var(pPath[k]);
pSpots[1] = pTree + Abc_Lit2Var(pPath[i+1]);
pSpots[2] = pTree + Abc_Lit2Var(pPath[i]);
pInds[0] = Abc_LitIsCompl(pPath[k]);
pInds[1] = Abc_LitIsCompl(pPath[i+1]);
pInds[2] = Abc_LitIsCompl(pPath[i]);
// check
assert( pSpots[0]->Edge[pInds[0]].Fan > 0 );
assert( pSpots[1]->Edge[pInds[1]].Fan > 0 );
// collect complement
fCompl = 0;
for ( c = i+1; c < k; c++ )
fCompl ^= pTree[Abc_Lit2Var(pPath[c])].Edge[Abc_LitIsCompl(pPath[c])].fCompl;
// remember bottom side
MidFan = pSpots[2]->Edge[!pInds[2]].Fan;
MidCom = pSpots[2]->Edge[!pInds[2]].fCompl;
MidDel = pSpots[2]->Edge[!pInds[2]].FanDel;
MidCop = pSpots[2]->Edge[!pInds[2]].Copy;
// update bottom
pSpots[2]->Edge[!pInds[2]].Fan = pSpots[0]->Edge[pInds[0]].Fan;
pSpots[2]->Edge[!pInds[2]].fCompl = 0;
// update top
pSpots[0]->Edge[pInds[0]].Fan = pSpots[2]->Id;
// update middle
pSpots[1]->Edge[pInds[1]].Fan = MidFan;
pSpots[1]->Edge[pInds[1]].fCompl ^= MidCom;
pSpots[1]->Edge[pInds[1]].FanDel = MidDel;
pSpots[1]->Edge[pInds[1]].Copy = MidCop;
// update delay of the control
for ( c = i + 1; c < k; c++ )
pSpots[2]->Edge[2].FanDel = Str_Delay2( pSpots[2]->Edge[2].FanDel, pTree[Abc_Lit2Var(pPath[c])].Edge[2].FanDel, pTree->nLutSize );
if ( pNew == NULL )
return;
// create AND gates
iRes = 1;
for ( c = i; c < k; c++ )
{
assert( pTree[Abc_Lit2Var(pPath[c])].Edge[2].fCompl == 0 );
iCond = pTree[Abc_Lit2Var(pPath[c])].Edge[2].Copy;
iCond = Abc_LitNotCond( iCond, !Abc_LitIsCompl(pPath[c]) );
iRes = Gia_ManHashAnd( pNew, iRes, iCond );
Str_ObjDelay( pNew, Abc_Lit2Var(iRes), pTree->nLutSize, vDelay );
}
// complement the condition
pSpots[2]->Edge[2].Copy = Abc_LitNotCond( iRes, !Abc_LitIsCompl(pPath[i]) );
// complement the path
pSpots[2]->Edge[pInds[2]].fCompl ^= fCompl;
}
void Str_MuxChangeUndo( Str_Mux_t * pTree, int * pPath, int i, int k, Str_Mux_t * pBackup )
{
pTree[ Abc_Lit2Var(pPath[k]) ] = pBackup[0];
pTree[ Abc_Lit2Var(pPath[i+1])] = pBackup[1];
pTree[ Abc_Lit2Var(pPath[i]) ] = pBackup[2];
}
int Str_MuxFindPathEdge_rec( Str_Mux_t * pMux, int i, int * pPath, int * pnLength )
{
extern int Str_MuxFindPath_rec( Str_Mux_t * pMux, int * pPath, int * pnLength );
if ( pMux->Edge[i].Fan > 0 && !Str_MuxFindPath_rec(Str_MuxFanin(pMux, i), pPath, pnLength) )
return 0;
pPath[ (*pnLength)++ ] = Abc_Var2Lit(pMux->Id, i);
return 1;
}
int Str_MuxFindPath_rec( Str_Mux_t * pMux, int * pPath, int * pnLength )
{
int i, DelayMax = Abc_MaxInt( pMux->Edge[0].FanDel, Abc_MaxInt(pMux->Edge[1].FanDel, pMux->Edge[2].FanDel) );
for ( i = 0; i < 2; i++ )
if ( pMux->Edge[i].FanDel == DelayMax )
return Str_MuxFindPathEdge_rec( pMux, i, pPath, pnLength );
if ( pMux->Edge[2].FanDel == DelayMax )
return 0;
assert( 0 );
return -1;
}
// return node whose both branches are non-trivial
Str_Mux_t * Str_MuxFindBranching( Str_Mux_t * pRoot, int i )
{
Str_Mux_t * pMux;
if ( pRoot->Edge[i].Fan <= 0 )
return NULL;
pMux = Str_MuxFanin( pRoot, i );
while ( 1 )
{
if ( pMux->Edge[0].Fan <= 0 && pMux->Edge[1].Fan <= 0 )
return NULL;
if ( pMux->Edge[0].Fan > 0 && pMux->Edge[1].Fan > 0 )
return pMux;
if ( pMux->Edge[0].Fan > 0 )
pMux = Str_MuxFanin( pMux, 0 );
if ( pMux->Edge[1].Fan > 0 )
pMux = Str_MuxFanin( pMux, 1 );
}
assert( 0 );
return NULL;
}
int Str_MuxTryOnce( Gia_Man_t * pNew, Str_Ntk_t * pNtk, Str_Mux_t * pTree, Str_Mux_t * pRoot, int Edge, Vec_Int_t * vDelay, int fVerbose )
{
int pPath[MAX_TREE];
Str_Mux_t pBackup[3];
int Delay, DelayBest = Str_MuxDelayEdge_rec( pRoot, Edge ), DelayInit = DelayBest;
int i, k, nLength = 0, ForkBest = -1, nChecks = 0;
int RetValue = Str_MuxFindPathEdge_rec( pRoot, Edge, pPath, &nLength );
if ( RetValue == 0 )
return 0;
if ( fVerbose )
printf( "Trying node %d with path of length %d.\n", pRoot->Id, nLength );
for ( i = 0; i < nLength; i++ )
for ( k = i+2; k < nLength; k++ )
{
Str_MuxChangeOnce( pTree, pPath, i, k, pBackup, NULL, NULL );
Delay = Str_MuxDelayEdge_rec( pRoot, Edge );
Str_MuxChangeUndo( pTree, pPath, i, k, pBackup );
if ( DelayBest > Delay || (ForkBest > 0 && DelayBest == Delay) )
DelayBest = Delay, ForkBest = (i << 16) | k;
if ( fVerbose )
printf( "%2d %2d -> %3d (%3d)\n", i, k, Delay, DelayBest );
nChecks++;
}
if ( ForkBest == -1 )
{
if ( fVerbose )
printf( "Did not find!\n" );
return 0;
}
// Str_MuxDelayPrint_rec( pRoot, Edge ); printf( "\n" );
Str_MuxChangeOnce( pTree, pPath, ForkBest >> 16, ForkBest & 0xFFFF, NULL, pNew, vDelay );
// Str_MuxDelayPrint_rec( pRoot, Edge ); printf( "\n" );
if ( fVerbose )
printf( "Node %6d (%3d %3d) : Checks = %d. Delay: %d -> %d.\n",
pRoot->Id, ForkBest >> 16, ForkBest & 0xFFFF, nChecks, DelayInit, DelayBest );
if ( fVerbose )
printf( "\n" );
return 1;
}
int Str_MuxRestruct_rec( Gia_Man_t * pNew, Str_Ntk_t * pNtk, Str_Mux_t * pTree, Str_Mux_t * pRoot, int Edge, Vec_Int_t * vDelay, int fVerbose )
{
int fChanges = 0;
Str_Mux_t * pMux = Str_MuxFindBranching( pRoot, Edge );
if ( pMux != NULL )
fChanges |= Str_MuxRestruct_rec( pNew, pNtk, pTree, pMux, 0, vDelay, fVerbose );
if ( pMux != NULL )
fChanges |= Str_MuxRestruct_rec( pNew, pNtk, pTree, pMux, 1, vDelay, fVerbose );
fChanges |= Str_MuxTryOnce( pNew, pNtk, pTree, pRoot, Edge, vDelay, fVerbose );
return fChanges;
}
int Str_MuxRestructure2( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose )
{
int Limit = MAX_TREE;
Str_Mux_t pTree[MAX_TREE];
int Delay, Delay2, fChanges = 0;
if ( nMuxes >= Limit )
return -1;
assert( nMuxes < Limit );
Str_MuxCreate( pTree, pNtk, iMux, nMuxes, vDelay, nLutSize );
Delay = Str_MuxDelayEdge_rec( pTree, 0 );
while ( 1 )
{
if ( !Str_MuxRestruct_rec(pNew, pNtk, pTree, pTree, 0, vDelay, fVerbose) )
break;
fChanges = 1;
}
if ( !fChanges )
return -1;
Delay2 = Str_MuxDelayEdge_rec( pTree, 0 );
// printf( "Improved delay for tree %d with %d MUXes (%d -> %d).\n", iMux, nMuxes, Delay, Delay2 );
pNtk->DelayGain += Delay - Delay2;
return Str_MuxToGia_rec( pNew, pTree, 0, vDelay );
}
int Str_MuxRestructure1( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose )
{
int Limit = MAX_TREE;
Str_Mux_t pTree[MAX_TREE];
int Delay, Delay2, fChanges = 0;
if ( nMuxes >= Limit )
return -1;
assert( nMuxes < Limit );
Str_MuxCreate( pTree, pNtk, iMux, nMuxes, vDelay, nLutSize );
Delay = Str_MuxDelayEdge_rec( pTree, 0 );
while ( 1 )
{
if ( !Str_MuxTryOnce(pNew, pNtk, pTree, pTree, 0, vDelay, fVerbose) )
break;
fChanges = 1;
}
if ( !fChanges )
return -1;
Delay2 = Str_MuxDelayEdge_rec( pTree, 0 );
// printf( "Improved delay for tree %d with %d MUXes (%d -> %d).\n", iMux, nMuxes, Delay, Delay2 );
pNtk->DelayGain += Delay - Delay2;
return Str_MuxToGia_rec( pNew, pTree, 0, vDelay );
}
int Str_MuxRestructure( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fRecursive, int fOptArea, int fVerbose )
{
extern int Str_MuxRestructureArea( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose );
if ( fOptArea )
{
if ( nMuxes < 2 )
return Str_MuxRestructure1( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
return Str_MuxRestructureArea( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
}
if ( fRecursive )
return Str_MuxRestructure2( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
return Str_MuxRestructure1( pNew, pNtk, iMux, nMuxes, vDelay, nLutSize, fVerbose );
}
/**Function*************************************************************
Synopsis [Perform MUX restructuring for area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Str_MuxRestructAreaThree( Gia_Man_t * pNew, Str_Mux_t * pMux, Vec_Int_t * vDelay, int fVerbose )
{
int iRes;
Str_Mux_t * pFanin0 = Str_MuxFanin( pMux, 0 );
Str_Mux_t * pFanin1 = Str_MuxFanin( pMux, 1 );
assert( pMux->Copy == -1 );
pMux->Copy = -2;
if ( pFanin0->Edge[2].Copy == pFanin1->Edge[2].Copy )
return 0;
iRes = Gia_ManHashMuxReal( pNew, pMux->Edge[2].Copy, pFanin1->Edge[2].Copy, pFanin0->Edge[2].Copy );
Str_ObjDelay( pNew, Abc_Lit2Var(iRes), pMux->nLutSize, vDelay );
pFanin0->Edge[2].Copy = pFanin1->Edge[2].Copy = iRes;
// printf( "Created triple\n" );
return 0;
}
int Str_MuxRestructArea_rec( Gia_Man_t * pNew, Str_Mux_t * pTree, Str_Mux_t * pRoot, int i, Vec_Int_t * vDelay, int fVerbose )
{
int Path[4];
int fSkipMoving = 1;
Str_Mux_t * pMux, * pFanin0, * pFanin1;
int nMuxes0, nMuxes1;
if ( pRoot->Edge[i].Fan <= 0 )
return 0;
pMux = Str_MuxFanin( pRoot, i );
nMuxes0 = Str_MuxRestructArea_rec( pNew, pTree, pMux, 0, vDelay, fVerbose );
nMuxes1 = Str_MuxRestructArea_rec( pNew, pTree, pMux, 1, vDelay, fVerbose );
if ( nMuxes0 + nMuxes1 < 2 )
return 1 + nMuxes0 + nMuxes1;
if ( nMuxes0 + nMuxes1 == 2 )
{
if ( nMuxes0 == 2 || nMuxes1 == 2 )
{
pFanin0 = Str_MuxFanin( pMux, (int)(nMuxes1 == 2) );
assert( Str_MuxHasFanin(pFanin0, 0) != Str_MuxHasFanin(pFanin0, 1) );
Path[2] = Abc_Var2Lit(pRoot->Id, i);
Path[1] = Abc_Var2Lit(pMux->Id, (int)(nMuxes1 == 2) );
Path[0] = Abc_Var2Lit(pFanin0->Id, Str_MuxHasFanin(pFanin0, 1));
Str_MuxChangeOnce( pTree, Path, 0, 2, NULL, pNew, vDelay );
}
Str_MuxRestructAreaThree( pNew, Str_MuxFanin(pRoot, i), vDelay, fVerbose );
return 0;
}
assert( nMuxes0 + nMuxes1 == 3 || nMuxes0 + nMuxes1 == 4 );
assert( nMuxes0 == 2 || nMuxes1 == 2 );
if ( fSkipMoving )
{
Str_MuxRestructAreaThree( pNew, pMux, vDelay, fVerbose );
return 0;
}
if ( nMuxes0 == 2 )
{
pFanin0 = Str_MuxFanin( pMux, 0 );
assert( Str_MuxHasFanin(pFanin0, 0) != Str_MuxHasFanin(pFanin0, 1) );
Path[3] = Abc_Var2Lit(pRoot->Id, i);
Path[2] = Abc_Var2Lit(pMux->Id, 0 );
Path[1] = Abc_Var2Lit(pFanin0->Id, Str_MuxHasFanin(pFanin0, 1));
pFanin1 = Str_MuxFanin( pFanin0, Str_MuxHasFanin(pFanin0, 1) );
assert( !Str_MuxHasFanin(pFanin1, 0) && !Str_MuxHasFanin(pFanin1, 1) );
Path[0] = Abc_Var2Lit(pFanin1->Id, 0);
Str_MuxChangeOnce( pTree, Path, 0, 3, NULL, pNew, vDelay );
}
if ( nMuxes1 == 2 )
{
pFanin0 = Str_MuxFanin( pMux, 1 );
assert( Str_MuxHasFanin(pFanin0, 0) != Str_MuxHasFanin(pFanin0, 1) );
Path[3] = Abc_Var2Lit(pRoot->Id, i);
Path[2] = Abc_Var2Lit(pMux->Id, 1 );
Path[1] = Abc_Var2Lit(pFanin0->Id, Str_MuxHasFanin(pFanin0, 1));
pFanin1 = Str_MuxFanin( pFanin0, Str_MuxHasFanin(pFanin0, 1) );
assert( !Str_MuxHasFanin(pFanin1, 0) && !Str_MuxHasFanin(pFanin1, 1) );
Path[0] = Abc_Var2Lit(pFanin1->Id, 0);
Str_MuxChangeOnce( pTree, Path, 0, 3, NULL, pNew, vDelay );
}
Str_MuxRestructAreaThree( pNew, pMux, vDelay, fVerbose );
return nMuxes0 + nMuxes1 - 2;
}
int Str_MuxRestructureArea( Gia_Man_t * pNew, Str_Ntk_t * pNtk, int iMux, int nMuxes, Vec_Int_t * vDelay, int nLutSize, int fVerbose )
{
int Limit = MAX_TREE;
Str_Mux_t pTree[MAX_TREE];
int Result;
if ( nMuxes >= Limit )
return -1;
assert( nMuxes < Limit );
Str_MuxCreate( pTree, pNtk, iMux, nMuxes, vDelay, nLutSize );
Result = Str_MuxRestructArea_rec( pNew, pTree, pTree, 0, vDelay, fVerbose );
assert( Result >= 0 && Result <= 2 );
return Str_MuxToGia_rec( pNew, pTree, 0, vDelay );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END