blob: fae7bee21741f74070e7211f586cda2af82a32c1 [file] [log] [blame]
/**CFile****************************************************************
FileName [llb1Reach.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [BDD based reachability.]
Synopsis [Reachability analysis.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: llb1Reach.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "llbInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Derives global BDD for the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManConstructOutBdd( Aig_Man_t * pAig, Aig_Obj_t * pNode, DdManager * dd )
{
DdNode * bBdd0, * bBdd1, * bFunc;
Vec_Ptr_t * vNodes;
Aig_Obj_t * pObj = NULL;
int i;
abctime TimeStop;
if ( Aig_ObjFanin0(pNode) == Aig_ManConst1(pAig) )
return Cudd_NotCond( Cudd_ReadOne(dd), Aig_ObjFaninC0(pNode) );
TimeStop = dd->TimeStop; dd->TimeStop = 0;
vNodes = Aig_ManDfsNodes( pAig, &pNode, 1 );
assert( Vec_PtrSize(vNodes) > 0 );
Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
{
if ( !Aig_ObjIsNode(pObj) )
continue;
bBdd0 = Cudd_NotCond( Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
bBdd1 = Cudd_NotCond( Aig_ObjFanin1(pObj)->pData, Aig_ObjFaninC1(pObj) );
pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 ); Cudd_Ref( (DdNode *)pObj->pData );
}
bFunc = (DdNode *)pObj->pData; Cudd_Ref( bFunc );
Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
{
if ( !Aig_ObjIsNode(pObj) )
continue;
Cudd_RecursiveDeref( dd, (DdNode *)pObj->pData );
}
Vec_PtrFree( vNodes );
if ( Aig_ObjIsCo(pNode) )
bFunc = Cudd_NotCond( bFunc, Aig_ObjFaninC0(pNode) );
Cudd_Deref( bFunc );
dd->TimeStop = TimeStop;
return bFunc;
}
/**Function*************************************************************
Synopsis [Derives BDD for the group.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManConstructGroupBdd( Llb_Man_t * p, Llb_Grp_t * pGroup )
{
Aig_Obj_t * pObj;
DdNode * bBdd0, * bBdd1, * bRes, * bXor, * bTemp;
int i, k;
Aig_ManConst1(p->pAig)->pData = Cudd_ReadOne( p->dd );
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vIns, pObj, i )
pObj->pData = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vNodes, pObj, i )
{
bBdd0 = Cudd_NotCond( Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
bBdd1 = Cudd_NotCond( Aig_ObjFanin1(pObj)->pData, Aig_ObjFaninC1(pObj) );
// pObj->pData = Extra_bddAndTime( p->dd, bBdd0, bBdd1, p->pPars->TimeTarget );
pObj->pData = Cudd_bddAnd( p->dd, bBdd0, bBdd1 );
if ( pObj->pData == NULL )
{
Vec_PtrForEachEntryStop( Aig_Obj_t *, pGroup->vNodes, pObj, k, i )
if ( pObj->pData )
Cudd_RecursiveDeref( p->dd, (DdNode *)pObj->pData );
return NULL;
}
Cudd_Ref( (DdNode *)pObj->pData );
}
bRes = Cudd_ReadOne( p->dd ); Cudd_Ref( bRes );
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vOuts, pObj, i )
{
if ( Aig_ObjIsCo(pObj) )
bBdd0 = Cudd_NotCond( Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
else
bBdd0 = (DdNode *)pObj->pData;
bBdd1 = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bXor = Cudd_bddXor( p->dd, bBdd0, bBdd1 ); Cudd_Ref( bXor );
// bRes = Extra_bddAndTime( p->dd, bTemp = bRes, Cudd_Not(bXor), p->pPars->TimeTarget );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, Cudd_Not(bXor) );
if ( bRes == NULL )
{
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bXor );
Vec_PtrForEachEntryStop( Aig_Obj_t *, pGroup->vNodes, pObj, k, i )
if ( pObj->pData )
Cudd_RecursiveDeref( p->dd, (DdNode *)pObj->pData );
return NULL;
}
Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bXor );
}
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vNodes, pObj, i )
Cudd_RecursiveDeref( p->dd, (DdNode *)pObj->pData );
Cudd_Deref( bRes );
return bRes;
}
/**Function*************************************************************
Synopsis [Derives quantification cube.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManConstructQuantCubeIntern( Llb_Man_t * p, Llb_Grp_t * pGroup, int iGrpPlace, int fBackward )
{
Aig_Obj_t * pObj;
DdNode * bRes, * bTemp, * bVar;
int i, iGroupFirst, iGroupLast;
abctime TimeStop;
TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0;
bRes = Cudd_ReadOne( p->dd ); Cudd_Ref( bRes );
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vIns, pObj, i )
{
if ( fBackward && Saig_ObjIsPi(p->pAig, pObj) )
continue;
iGroupFirst = Vec_IntEntry(p->vVarBegs, Aig_ObjId(pObj));
iGroupLast = Vec_IntEntry(p->vVarEnds, Aig_ObjId(pObj));
assert( iGroupFirst <= iGroupLast );
if ( iGroupFirst < iGroupLast )
continue;
bVar = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
}
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vOuts, pObj, i )
{
if ( fBackward && Saig_ObjIsPi(p->pAig, pObj) )
continue;
iGroupFirst = Vec_IntEntry(p->vVarBegs, Aig_ObjId(pObj));
iGroupLast = Vec_IntEntry(p->vVarEnds, Aig_ObjId(pObj));
assert( iGroupFirst <= iGroupLast );
if ( iGroupFirst < iGroupLast )
continue;
bVar = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
}
Cudd_Deref( bRes );
p->dd->TimeStop = TimeStop;
return bRes;
}
/**Function*************************************************************
Synopsis [Derives quantification cube.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManConstructQuantCubeFwd( Llb_Man_t * p, Llb_Grp_t * pGroup, int iGrpPlace )
{
Aig_Obj_t * pObj;
DdNode * bRes, * bTemp, * bVar;
int i, iGroupLast;
abctime TimeStop;
TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0;
bRes = Cudd_ReadOne( p->dd ); Cudd_Ref( bRes );
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vIns, pObj, i )
{
iGroupLast = Vec_IntEntry(p->vVarEnds, Aig_ObjId(pObj));
assert( iGroupLast >= iGrpPlace );
if ( iGroupLast > iGrpPlace )
continue;
bVar = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
}
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vOuts, pObj, i )
{
iGroupLast = Vec_IntEntry(p->vVarEnds, Aig_ObjId(pObj));
assert( iGroupLast >= iGrpPlace );
if ( iGroupLast > iGrpPlace )
continue;
bVar = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
}
Cudd_Deref( bRes );
p->dd->TimeStop = TimeStop;
return bRes;
}
/**Function*************************************************************
Synopsis [Derives quantification cube.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManConstructQuantCubeBwd( Llb_Man_t * p, Llb_Grp_t * pGroup, int iGrpPlace )
{
Aig_Obj_t * pObj;
DdNode * bRes, * bTemp, * bVar;
int i, iGroupFirst;
abctime TimeStop;
TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0;
bRes = Cudd_ReadOne( p->dd ); Cudd_Ref( bRes );
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vIns, pObj, i )
{
if ( Saig_ObjIsPi(p->pAig, pObj) )
continue;
iGroupFirst = Vec_IntEntry(p->vVarBegs, Aig_ObjId(pObj));
assert( iGroupFirst <= iGrpPlace );
if ( iGroupFirst < iGrpPlace )
continue;
bVar = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
}
Vec_PtrForEachEntry( Aig_Obj_t *, pGroup->vOuts, pObj, i )
{
if ( Saig_ObjIsPi(p->pAig, pObj) )
continue;
iGroupFirst = Vec_IntEntry(p->vVarBegs, Aig_ObjId(pObj));
assert( iGroupFirst <= iGrpPlace );
if ( iGroupFirst < iGrpPlace )
continue;
bVar = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj)) );
bRes = Cudd_bddAnd( p->dd, bTemp = bRes, bVar ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( p->dd, bTemp );
}
Cudd_Deref( bRes );
p->dd->TimeStop = TimeStop;
return bRes;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManComputeInitState( Llb_Man_t * p, DdManager * dd )
{
Aig_Obj_t * pObj;
DdNode * bRes, * bVar, * bTemp;
int i, iVar;
abctime TimeStop;
TimeStop = dd->TimeStop; dd->TimeStop = 0;
bRes = Cudd_ReadOne( dd ); Cudd_Ref( bRes );
Saig_ManForEachLo( p->pAig, pObj, i )
{
iVar = (dd == p->ddG) ? i : Vec_IntEntry(p->vObj2Var, Aig_ObjId(pObj));
bVar = Cudd_bddIthVar( dd, iVar );
bRes = Cudd_bddAnd( dd, bTemp = bRes, Cudd_Not(bVar) ); Cudd_Ref( bRes );
Cudd_RecursiveDeref( dd, bTemp );
}
Cudd_Deref( bRes );
dd->TimeStop = TimeStop;
return bRes;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManComputeImage( Llb_Man_t * p, DdNode * bInit, int fBackward )
{
int fCheckSupport = 0;
Llb_Grp_t * pGroup;
DdNode * bImage, * bGroup, * bCube, * bTemp;
int k, Index;
bImage = bInit; Cudd_Ref( bImage );
for ( k = 1; k < p->pMatrix->nCols-1; k++ )
{
if ( fBackward )
Index = p->pMatrix->nCols - 1 - k;
else
Index = k;
// compute group BDD
pGroup = p->pMatrix->pColGrps[Index];
bGroup = Llb_ManConstructGroupBdd( p, pGroup );
if ( bGroup == NULL )
{
Cudd_RecursiveDeref( p->dd, bImage );
return NULL;
}
Cudd_Ref( bGroup );
// quantify variables appearing only in this group
bCube = Llb_ManConstructQuantCubeIntern( p, pGroup, Index, fBackward ); Cudd_Ref( bCube );
bGroup = Cudd_bddExistAbstract( p->dd, bTemp = bGroup, bCube );
if ( bGroup == NULL )
{
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bCube );
return NULL;
}
Cudd_Ref( bGroup );
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bCube );
// perform partial product
if ( fBackward )
bCube = Llb_ManConstructQuantCubeBwd( p, pGroup, Index );
else
bCube = Llb_ManConstructQuantCubeFwd( p, pGroup, Index );
Cudd_Ref( bCube );
// bImage = Extra_bddAndAbstractTime( p->dd, bTemp = bImage, bGroup, bCube, p->pPars->TimeTarget );
bImage = Cudd_bddAndAbstract( p->dd, bTemp = bImage, bGroup, bCube );
if ( bImage == NULL )
{
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bGroup );
Cudd_RecursiveDeref( p->dd, bCube );
return NULL;
}
Cudd_Ref( bImage );
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bGroup );
Cudd_RecursiveDeref( p->dd, bCube );
}
// make sure image depends on next state vars
if ( fCheckSupport )
{
bCube = Cudd_Support( p->dd, bImage ); Cudd_Ref( bCube );
for ( bTemp = bCube; bTemp != p->dd->one; bTemp = cuddT(bTemp) )
{
int ObjId = Vec_IntEntry( p->vVar2Obj, bTemp->index );
Aig_Obj_t * pObj = Aig_ManObj( p->pAig, ObjId );
if ( !Saig_ObjIsLi(p->pAig, pObj) )
printf( "Var %d assigned to obj %d that is not LI\n", bTemp->index, ObjId );
}
Cudd_RecursiveDeref( p->dd, bCube );
}
Cudd_Deref( bImage );
return bImage;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Llb_ManCreateConstraints( Llb_Man_t * p, Vec_Int_t * vHints, int fUseNsVars )
{
DdNode * bConstr, * bFunc, * bTemp;
Aig_Obj_t * pObj;
int i, Entry;
abctime TimeStop;
if ( vHints == NULL )
return Cudd_ReadOne( p->dd );
TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0;
assert( Aig_ManCiNum(p->pAig) == Aig_ManCiNum(p->pAigGlo) );
// assign const and PI nodes to the original AIG
Aig_ManCleanData( p->pAig );
Aig_ManConst1( p->pAig )->pData = Cudd_ReadOne( p->dd );
Saig_ManForEachPi( p->pAig, pObj, i )
pObj->pData = Cudd_bddIthVar( p->dd, Vec_IntEntry(p->vObj2Var,Aig_ObjId(pObj)) );
Saig_ManForEachLo( p->pAig, pObj, i )
{
if ( fUseNsVars )
Entry = Vec_IntEntry( p->vObj2Var, Aig_ObjId(Saig_ObjLoToLi(p->pAig, pObj)) );
else
Entry = Vec_IntEntry( p->vObj2Var, Aig_ObjId(pObj) );
pObj->pData = Cudd_bddIthVar( p->dd, Entry );
}
// transfer them to the global AIG
Aig_ManCleanData( p->pAigGlo );
Aig_ManConst1( p->pAigGlo )->pData = Cudd_ReadOne( p->dd );
Aig_ManForEachCi( p->pAigGlo, pObj, i )
pObj->pData = Aig_ManCi(p->pAig, i)->pData;
// derive consraints
bConstr = Cudd_ReadOne( p->dd ); Cudd_Ref( bConstr );
Vec_IntForEachEntry( vHints, Entry, i )
{
if ( Entry != 0 && Entry != 1 )
continue;
bFunc = Llb_ManConstructOutBdd( p->pAigGlo, Aig_ManObj(p->pAigGlo, i), p->dd ); Cudd_Ref( bFunc );
bFunc = Cudd_NotCond( bFunc, Entry ); // restrict to not constraint
// make the product
bConstr = Cudd_bddAnd( p->dd, bTemp = bConstr, bFunc ); Cudd_Ref( bConstr );
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bFunc );
}
Cudd_Deref( bConstr );
p->dd->TimeStop = TimeStop;
return bConstr;
}
/**Function*************************************************************
Synopsis [Perform reachability with hints and returns reached states in ppGlo.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Cex_t * Llb_ManReachDeriveCex( Llb_Man_t * p )
{
Abc_Cex_t * pCex;
Aig_Obj_t * pObj;
DdNode * bState = NULL, * bImage, * bOneCube, * bTemp, * bRing;
int i, v, RetValue, nPiOffset;
char * pValues = ABC_ALLOC( char, Cudd_ReadSize(p->ddR) );
assert( Vec_PtrSize(p->vRings) > 0 );
p->dd->TimeStop = 0;
p->ddR->TimeStop = 0;
/*
Saig_ManForEachLo( p->pAig, pObj, i )
printf( "%d ", pObj->Id );
printf( "\n" );
Saig_ManForEachLi( p->pAig, pObj, i )
printf( "%d(%d) ", pObj->Id, Aig_ObjFaninId0(pObj) );
printf( "\n" );
*/
// allocate room for the counter-example
pCex = Abc_CexAlloc( Saig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), Vec_PtrSize(p->vRings) );
pCex->iFrame = Vec_PtrSize(p->vRings) - 1;
pCex->iPo = -1;
// get the last cube
bOneCube = Cudd_bddIntersect( p->ddR, (DdNode *)Vec_PtrEntryLast(p->vRings), p->ddR->bFunc ); Cudd_Ref( bOneCube );
RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
Cudd_RecursiveDeref( p->ddR, bOneCube );
assert( RetValue );
// write PIs of counter-example
nPiOffset = Saig_ManRegNum(p->pAig) + Saig_ManPiNum(p->pAig) * (Vec_PtrSize(p->vRings) - 1);
Saig_ManForEachPi( p->pAig, pObj, i )
if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
Abc_InfoSetBit( pCex->pData, nPiOffset + i );
// write state in terms of NS variables
if ( Vec_PtrSize(p->vRings) > 1 )
{
bState = Llb_CoreComputeCube( p->dd, p->vGlo2Ns, 1, pValues ); Cudd_Ref( bState );
}
// perform backward analysis
Vec_PtrForEachEntryReverse( DdNode *, p->vRings, bRing, v )
{
if ( v == Vec_PtrSize(p->vRings) - 1 )
continue;
//Extra_bddPrintSupport( p->dd, bState ); printf( "\n" );
//Extra_bddPrintSupport( p->dd, bRing ); printf( "\n" );
// compute the next states
bImage = Llb_ManComputeImage( p, bState, 1 );
assert( bImage != NULL );
Cudd_Ref( bImage );
Cudd_RecursiveDeref( p->dd, bState );
//Extra_bddPrintSupport( p->dd, bImage ); printf( "\n" );
// move reached states into ring manager
bImage = Extra_TransferPermute( p->dd, p->ddR, bTemp = bImage, Vec_IntArray(p->vCs2Glo) ); Cudd_Ref( bImage );
Cudd_RecursiveDeref( p->dd, bTemp );
//Extra_bddPrintSupport( p->ddR, bImage ); printf( "\n" );
// intersect with the previous set
bOneCube = Cudd_bddIntersect( p->ddR, bImage, bRing ); Cudd_Ref( bOneCube );
Cudd_RecursiveDeref( p->ddR, bImage );
// find any assignment of the BDD
RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
Cudd_RecursiveDeref( p->ddR, bOneCube );
assert( RetValue );
/*
for ( i = 0; i < p->ddR->size; i++ )
printf( "%d ", pValues[i] );
printf( "\n" );
*/
// write PIs of counter-example
nPiOffset -= Saig_ManPiNum(p->pAig);
Saig_ManForEachPi( p->pAig, pObj, i )
if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
Abc_InfoSetBit( pCex->pData, nPiOffset + i );
// check that we get the init state
if ( v == 0 )
{
Saig_ManForEachLo( p->pAig, pObj, i )
assert( pValues[i] == 0 );
break;
}
// write state in terms of NS variables
bState = Llb_CoreComputeCube( p->dd, p->vGlo2Ns, 1, pValues ); Cudd_Ref( bState );
}
assert( nPiOffset == Saig_ManRegNum(p->pAig) );
// update the output number
//Abc_CexPrint( pCex );
RetValue = Saig_ManFindFailedPoCex( p->pAigGlo, pCex );
assert( RetValue >= 0 && RetValue < Saig_ManPoNum(p->pAigGlo) ); // invalid CEX!!!
pCex->iPo = RetValue;
// cleanup
ABC_FREE( pValues );
return pCex;
}
/**Function*************************************************************
Synopsis [Perform reachability with hints and returns reached states in ppGlo.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Llb_ManReachability( Llb_Man_t * p, Vec_Int_t * vHints, DdManager ** pddGlo )
{
int * pNs2Glo = Vec_IntArray( p->vNs2Glo );
int * pCs2Glo = Vec_IntArray( p->vCs2Glo );
int * pGlo2Cs = Vec_IntArray( p->vGlo2Cs );
DdNode * bCurrent, * bReached, * bNext, * bTemp, * bCube;
DdNode * bConstrCs, * bConstrNs;
abctime clk2, clk = Abc_Clock();
int nIters, nBddSize = 0;
// int nThreshold = 10000;
// compute time to stop
p->pPars->TimeTarget = p->pPars->TimeLimit ? p->pPars->TimeLimit * CLOCKS_PER_SEC + Abc_Clock(): 0;
// define variable limits
Llb_ManPrepareVarLimits( p );
// start the managers
assert( p->dd == NULL );
assert( p->ddG == NULL );
assert( p->ddR == NULL );
p->dd = Cudd_Init( Vec_IntSize(p->vVar2Obj), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
p->ddR = Cudd_Init( Aig_ManCiNum(p->pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
if ( pddGlo && *pddGlo )
p->ddG = *pddGlo, *pddGlo = NULL;
else
p->ddG = Cudd_Init( Aig_ManRegNum(p->pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
if ( p->pPars->fReorder )
{
Cudd_AutodynEnable( p->dd, CUDD_REORDER_SYMM_SIFT );
Cudd_AutodynEnable( p->ddG, CUDD_REORDER_SYMM_SIFT );
Cudd_AutodynEnable( p->ddR, CUDD_REORDER_SYMM_SIFT );
}
else
{
Cudd_AutodynDisable( p->dd );
Cudd_AutodynDisable( p->ddG );
Cudd_AutodynDisable( p->ddR );
}
// set the stop time parameter
p->dd->TimeStop = p->pPars->TimeTarget;
p->ddG->TimeStop = p->pPars->TimeTarget;
p->ddR->TimeStop = p->pPars->TimeTarget;
// create bad state in the ring manager
p->ddR->bFunc = Llb_BddComputeBad( p->pAigGlo, p->ddR, p->pPars->TimeTarget );
if ( p->ddR->bFunc == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during constructing the bad states.\n", p->pPars->TimeLimit );
p->pPars->iFrame = -1;
return -1;
}
Cudd_Ref( p->ddR->bFunc );
// derive constraints
bConstrCs = Llb_ManCreateConstraints( p, vHints, 0 ); Cudd_Ref( bConstrCs );
bConstrNs = Llb_ManCreateConstraints( p, vHints, 1 ); Cudd_Ref( bConstrNs );
//Extra_bddPrint( p->dd, bConstrCs ); printf( "\n" );
//Extra_bddPrint( p->dd, bConstrNs ); printf( "\n" );
// perform reachability analysis
// compute the starting set of states
if ( p->ddG->bFunc )
{
bReached = p->ddG->bFunc; p->ddG->bFunc = NULL;
bCurrent = Extra_TransferPermute( p->ddG, p->dd, bReached, pGlo2Cs ); Cudd_Ref( bCurrent );
}
else
{
bReached = Llb_ManComputeInitState( p, p->ddG ); Cudd_Ref( bReached );
bCurrent = Llb_ManComputeInitState( p, p->dd ); Cudd_Ref( bCurrent );
}
//Extra_bddPrintSupport( p->ddG, bReached ); printf( "\n" );
//Extra_bddPrintSupport( p->dd, bCurrent ); printf( "\n" );
//Extra_bddPrintSupport( p->dd, bCurrent ); printf( "\n" );
for ( nIters = 0; nIters < p->pPars->nIterMax; nIters++ )
{
clk2 = Abc_Clock();
// check the runtime limit
if ( p->pPars->TimeLimit && Abc_Clock() > p->pPars->TimeTarget )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout during image computation (%d seconds).\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
// save the onion ring
bTemp = Extra_TransferPermute( p->dd, p->ddR, bCurrent, pCs2Glo );
if ( bTemp == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during ring transfer.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bTemp );
Vec_PtrPush( p->vRings, bTemp );
// check it for bad states
if ( !p->pPars->fSkipOutCheck && !Cudd_bddLeq( p->ddR, bTemp, Cudd_Not(p->ddR->bFunc) ) )
{
assert( p->pAigGlo->pSeqModel == NULL );
if ( !p->pPars->fBackward )
p->pAigGlo->pSeqModel = Llb_ManReachDeriveCex( p );
if ( !p->pPars->fSilent )
{
if ( !p->pPars->fBackward )
Abc_Print( 1, "Output %d of miter \"%s\" was asserted in frame %d. ", p->pAigGlo->pSeqModel->iPo, p->pAigGlo->pName, p->pAigGlo->pName, nIters );
else
Abc_Print( 1, "Output ??? of miter \"%s\" was asserted in frame %d (counter-example is not produced). ", p->pAigGlo->pName, nIters );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return 0;
}
// restrict reachable states using constraints
if ( vHints )
{
bCurrent = Cudd_bddAnd( p->dd, bTemp = bCurrent, bConstrCs ); Cudd_Ref( bCurrent );
Cudd_RecursiveDeref( p->dd, bTemp );
}
// quantify variables appearing only in the init state
bCube = Llb_ManConstructQuantCubeIntern( p, (Llb_Grp_t *)Vec_PtrEntry(p->vGroups,0), 0, 0 ); Cudd_Ref( bCube );
bCurrent = Cudd_bddExistAbstract( p->dd, bTemp = bCurrent, bCube ); Cudd_Ref( bCurrent );
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bCube );
// compute the next states
bNext = Llb_ManComputeImage( p, bCurrent, 0 );
if ( bNext == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bNext );
Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL;
// restrict reachable states using constraints
if ( vHints )
{
bNext = Cudd_bddAnd( p->dd, bTemp = bNext, bConstrNs ); Cudd_Ref( bNext );
Cudd_RecursiveDeref( p->dd, bTemp );
}
//Extra_bddPrintSupport( p->dd, bNext ); printf( "\n" );
// remap these states into the current state vars
// bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pNs2Glo ); Cudd_Ref( bNext );
// Cudd_RecursiveDeref( p->dd, bTemp );
// bNext = Extra_TransferPermuteTime( p->dd, p->ddG, bTemp = bNext, pNs2Glo, p->pPars->TimeTarget );
bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pNs2Glo );
if ( bNext == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->dd, bTemp );
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bNext );
Cudd_RecursiveDeref( p->dd, bTemp );
// check if there are any new states
if ( Cudd_bddLeq( p->ddG, bNext, bReached ) ) // implication = no new states
{
Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL;
break;
}
// check the BDD size
nBddSize = Cudd_DagSize(bNext);
if ( nBddSize > p->pPars->nBddMax )
{
Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL;
break;
}
// get the new states
bCurrent = Cudd_bddAnd( p->ddG, bNext, Cudd_Not(bReached) );
if ( bCurrent == NULL )
{
Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
break;
}
Cudd_Ref( bCurrent );
// minimize the new states with the reached states
// bCurrent = Cudd_bddConstrain( p->ddG, bTemp = bCurrent, Cudd_Not(bReached) ); Cudd_Ref( bCurrent );
// bCurrent = Cudd_bddRestrict( p->ddG, bTemp = bCurrent, Cudd_Not(bReached) ); Cudd_Ref( bCurrent );
// Cudd_RecursiveDeref( p->ddG, bTemp );
//printf( "Initial BDD =%7d. Constrained BDD =%7d.\n", Cudd_DagSize(bTemp), Cudd_DagSize(bCurrent) );
// remap these states into the current state vars
// bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Cs ); Cudd_Ref( bCurrent );
// Cudd_RecursiveDeref( p->ddG, bTemp );
// bCurrent = Extra_TransferPermuteTime( p->ddG, p->dd, bTemp = bCurrent, pGlo2Cs, p->pPars->TimeTarget );
bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Cs );
if ( bCurrent == NULL )
{
if ( !p->pPars->fSilent )
printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit );
p->pPars->iFrame = nIters - 1;
Cudd_RecursiveDeref( p->ddG, bTemp );
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL;
return -1;
}
Cudd_Ref( bCurrent );
Cudd_RecursiveDeref( p->ddG, bTemp );
// add to the reached states
bReached = Cudd_bddOr( p->ddG, bTemp = bReached, bNext );
if ( bReached == NULL )
{
Cudd_RecursiveDeref( p->ddG, bTemp ); bTemp = NULL;
Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL;
break;
}
Cudd_Ref( bReached );
Cudd_RecursiveDeref( p->ddG, bTemp );
Cudd_RecursiveDeref( p->ddG, bNext );
bNext = NULL;
if ( p->pPars->fVerbose )
{
fprintf( stdout, "F =%5d : ", nIters );
fprintf( stdout, "Im =%6d ", nBddSize );
fprintf( stdout, "(%4d %3d) ", Cudd_ReadReorderings(p->dd), Cudd_ReadGarbageCollections(p->dd) );
fprintf( stdout, "Rea =%6d ", Cudd_DagSize(bReached) );
fprintf( stdout, "(%4d%4d) ", Cudd_ReadReorderings(p->ddG), Cudd_ReadGarbageCollections(p->ddG) );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk2 );
}
/*
if ( p->pPars->fVerbose )
{
double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
// Extra_bddPrint( p->ddG, bReached );printf( "\n" );
fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
fflush( stdout );
}
*/
}
Cudd_RecursiveDeref( p->dd, bConstrCs ); bConstrCs = NULL;
Cudd_RecursiveDeref( p->dd, bConstrNs ); bConstrNs = NULL;
if ( bReached == NULL )
{
p->pPars->iFrame = nIters - 1;
return 0; // reachable
}
// assert( bCurrent == NULL );
if ( bCurrent )
Cudd_RecursiveDeref( p->dd, bCurrent );
// report the stats
if ( p->pPars->fVerbose )
{
double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
if ( nIters >= p->pPars->nIterMax || nBddSize > p->pPars->nBddMax )
fprintf( stdout, "Reachability analysis is stopped after %d frames.\n", nIters );
else
fprintf( stdout, "Reachability analysis completed after %d frames.\n", nIters );
fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
fflush( stdout );
}
if ( nIters >= p->pPars->nIterMax || nBddSize > p->pPars->nBddMax )
{
if ( !p->pPars->fSilent )
printf( "Verified only for states reachable in %d frames. ", nIters );
p->pPars->iFrame = p->pPars->nIterMax;
Cudd_RecursiveDeref( p->ddG, bReached );
return -1; // undecided
}
if ( pddGlo )
{
assert( p->ddG->bFunc == NULL );
p->ddG->bFunc = bReached; bReached = NULL;
assert( *pddGlo == NULL );
*pddGlo = p->ddG; p->ddG = NULL;
}
else
Cudd_RecursiveDeref( p->ddG, bReached );
if ( !p->pPars->fSilent )
printf( "The miter is proved unreachable after %d iterations. ", nIters );
p->pPars->iFrame = nIters - 1;
return 1; // unreachable
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END