blob: 07c16f12af4c2accb0239ac6546d501f21519277 [file] [log] [blame]
/**CFile****************************************************************
FileName [kitDsd.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Computation kit.]
Synopsis [Performs disjoint-support decomposition based on truth tables.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - Dec 6, 2006.]
Revision [$Id: kitDsd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]
***********************************************************************/
#include "kit.h"
#include "misc/extra/extra.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocates the DSD manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes )
{
Kit_DsdMan_t * p;
p = ABC_ALLOC( Kit_DsdMan_t, 1 );
memset( p, 0, sizeof(Kit_DsdMan_t) );
p->nVars = nVars;
p->nWords = Kit_TruthWordNum( p->nVars );
p->vTtElems = Vec_PtrAllocTruthTables( p->nVars );
p->vTtNodes = Vec_PtrAllocSimInfo( nNodes, p->nWords );
p->dd = Cloud_Init( 16, 14 );
p->vTtBdds = Vec_PtrAllocSimInfo( (1<<12), p->nWords );
p->vNodes = Vec_IntAlloc( 512 );
return p;
}
/**Function*************************************************************
Synopsis [Deallocates the DSD manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdManFree( Kit_DsdMan_t * p )
{
Cloud_Quit( p->dd );
Vec_IntFree( p->vNodes );
Vec_PtrFree( p->vTtBdds );
Vec_PtrFree( p->vTtElems );
Vec_PtrFree( p->vTtNodes );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Allocates the DSD node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdObj_t * Kit_DsdObjAlloc( Kit_DsdNtk_t * pNtk, Kit_Dsd_t Type, int nFans )
{
Kit_DsdObj_t * pObj;
int nSize = sizeof(Kit_DsdObj_t) + sizeof(unsigned) * (Kit_DsdObjOffset(nFans) + (Type == KIT_DSD_PRIME) * Kit_TruthWordNum(nFans));
pObj = (Kit_DsdObj_t *)ABC_ALLOC( char, nSize );
memset( pObj, 0, nSize );
pObj->Id = pNtk->nVars + pNtk->nNodes;
pObj->Type = Type;
pObj->nFans = nFans;
pObj->Offset = Kit_DsdObjOffset( nFans );
// add the object
if ( pNtk->nNodes == pNtk->nNodesAlloc )
{
pNtk->nNodesAlloc *= 2;
pNtk->pNodes = ABC_REALLOC( Kit_DsdObj_t *, pNtk->pNodes, pNtk->nNodesAlloc );
}
assert( pNtk->nNodes < pNtk->nNodesAlloc );
pNtk->pNodes[pNtk->nNodes++] = pObj;
return pObj;
}
/**Function*************************************************************
Synopsis [Deallocates the DSD node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdObjFree( Kit_DsdNtk_t * p, Kit_DsdObj_t * pObj )
{
ABC_FREE( pObj );
}
/**Function*************************************************************
Synopsis [Allocates the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdNtkAlloc( int nVars )
{
Kit_DsdNtk_t * pNtk;
pNtk = ABC_ALLOC( Kit_DsdNtk_t, 1 );
memset( pNtk, 0, sizeof(Kit_DsdNtk_t) );
pNtk->pNodes = ABC_ALLOC( Kit_DsdObj_t *, nVars+1 );
pNtk->nVars = nVars;
pNtk->nNodesAlloc = nVars+1;
pNtk->pMem = ABC_ALLOC( unsigned, 6 * Kit_TruthWordNum(nVars) );
return pNtk;
}
/**Function*************************************************************
Synopsis [Deallocate the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk )
{
Kit_DsdObj_t * pObj;
unsigned i;
Kit_DsdNtkForEachObj( pNtk, pObj, i )
ABC_FREE( pObj );
ABC_FREE( pNtk->pSupps );
ABC_FREE( pNtk->pNodes );
ABC_FREE( pNtk->pMem );
ABC_FREE( pNtk );
}
/**Function*************************************************************
Synopsis [Prints the hex unsigned into a file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrintHex( FILE * pFile, unsigned * pTruth, int nFans )
{
int nDigits, Digit, k;
nDigits = (1 << nFans) / 4;
for ( k = nDigits - 1; k >= 0; k-- )
{
Digit = ((pTruth[k/8] >> ((k%8) * 4)) & 15);
if ( Digit < 10 )
fprintf( pFile, "%d", Digit );
else
fprintf( pFile, "%c", 'A' + Digit-10 );
}
}
/**Function*************************************************************
Synopsis [Prints the hex unsigned into a file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char * Kit_DsdWriteHex( char * pBuff, unsigned * pTruth, int nFans )
{
int nDigits, Digit, k;
nDigits = (1 << nFans) / 4;
for ( k = nDigits - 1; k >= 0; k-- )
{
Digit = ((pTruth[k/8] >> ((k%8) * 4)) & 15);
if ( Digit < 10 )
*pBuff++ = '0' + Digit;
else
*pBuff++ = 'A' + Digit-10;
}
return pBuff;
}
/**Function*************************************************************
Synopsis [Recursively print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrint2_rec( FILE * pFile, Kit_DsdNtk_t * pNtk, int Id )
{
Kit_DsdObj_t * pObj;
unsigned iLit, i;
char Symbol;
pObj = Kit_DsdNtkObj( pNtk, Id );
if ( pObj == NULL )
{
assert( Id < pNtk->nVars );
fprintf( pFile, "%c", 'a' + Id );
return;
}
if ( pObj->Type == KIT_DSD_CONST1 )
{
assert( pObj->nFans == 0 );
fprintf( pFile, "Const1" );
return;
}
if ( pObj->Type == KIT_DSD_VAR )
assert( pObj->nFans == 1 );
if ( pObj->Type == KIT_DSD_AND )
Symbol = '*';
else if ( pObj->Type == KIT_DSD_XOR )
Symbol = '+';
else
Symbol = ',';
if ( pObj->Type == KIT_DSD_PRIME )
fprintf( pFile, "[" );
else
fprintf( pFile, "(" );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
if ( Abc_LitIsCompl(iLit) )
fprintf( pFile, "!" );
Kit_DsdPrint2_rec( pFile, pNtk, Abc_Lit2Var(iLit) );
if ( i < pObj->nFans - 1 )
fprintf( pFile, "%c", Symbol );
}
if ( pObj->Type == KIT_DSD_PRIME )
fprintf( pFile, "]" );
else
fprintf( pFile, ")" );
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrint2( FILE * pFile, Kit_DsdNtk_t * pNtk )
{
// fprintf( pFile, "F = " );
if ( Abc_LitIsCompl(pNtk->Root) )
fprintf( pFile, "!" );
Kit_DsdPrint2_rec( pFile, pNtk, Abc_Lit2Var(pNtk->Root) );
// fprintf( pFile, "\n" );
}
/**Function*************************************************************
Synopsis [Recursively print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrint_rec( FILE * pFile, Kit_DsdNtk_t * pNtk, int Id )
{
Kit_DsdObj_t * pObj;
unsigned iLit, i;
char Symbol;
pObj = Kit_DsdNtkObj( pNtk, Id );
if ( pObj == NULL )
{
assert( Id < pNtk->nVars );
fprintf( pFile, "%c", 'a' + Id );
return;
}
if ( pObj->Type == KIT_DSD_CONST1 )
{
assert( pObj->nFans == 0 );
fprintf( pFile, "Const1" );
return;
}
if ( pObj->Type == KIT_DSD_VAR )
assert( pObj->nFans == 1 );
if ( pObj->Type == KIT_DSD_AND )
Symbol = '*';
else if ( pObj->Type == KIT_DSD_XOR )
Symbol = '+';
else
Symbol = ',';
if ( pObj->Type == KIT_DSD_PRIME )
Kit_DsdPrintHex( pFile, Kit_DsdObjTruth(pObj), pObj->nFans );
fprintf( pFile, "(" );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
if ( Abc_LitIsCompl(iLit) )
fprintf( pFile, "!" );
Kit_DsdPrint_rec( pFile, pNtk, Abc_Lit2Var(iLit) );
if ( i < pObj->nFans - 1 )
fprintf( pFile, "%c", Symbol );
}
fprintf( pFile, ")" );
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk )
{
fprintf( pFile, "F = " );
if ( Abc_LitIsCompl(pNtk->Root) )
fprintf( pFile, "!" );
Kit_DsdPrint_rec( pFile, pNtk, Abc_Lit2Var(pNtk->Root) );
// fprintf( pFile, "\n" );
}
/**Function*************************************************************
Synopsis [Recursively print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char * Kit_DsdWrite_rec( char * pBuff, Kit_DsdNtk_t * pNtk, int Id )
{
Kit_DsdObj_t * pObj;
unsigned iLit, i;
char Symbol;
pObj = Kit_DsdNtkObj( pNtk, Id );
if ( pObj == NULL )
{
assert( Id < pNtk->nVars );
*pBuff++ = 'a' + Id;
return pBuff;
}
if ( pObj->Type == KIT_DSD_CONST1 )
{
assert( pObj->nFans == 0 );
sprintf( pBuff, "%s", "Const1" );
return pBuff + strlen("Const1");
}
if ( pObj->Type == KIT_DSD_VAR )
assert( pObj->nFans == 1 );
if ( pObj->Type == KIT_DSD_AND )
Symbol = '*';
else if ( pObj->Type == KIT_DSD_XOR )
Symbol = '+';
else
Symbol = ',';
if ( pObj->Type == KIT_DSD_PRIME )
pBuff = Kit_DsdWriteHex( pBuff, Kit_DsdObjTruth(pObj), pObj->nFans );
*pBuff++ = '(';
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
if ( Abc_LitIsCompl(iLit) )
*pBuff++ = '!';
pBuff = Kit_DsdWrite_rec( pBuff, pNtk, Abc_Lit2Var(iLit) );
if ( i < pObj->nFans - 1 )
*pBuff++ = Symbol;
}
*pBuff++ = ')';
return pBuff;
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdWrite( char * pBuff, Kit_DsdNtk_t * pNtk )
{
if ( Abc_LitIsCompl(pNtk->Root) )
*pBuff++ = '!';
pBuff = Kit_DsdWrite_rec( pBuff, pNtk, Abc_Lit2Var(pNtk->Root) );
*pBuff = 0;
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk )
{
Kit_DsdNtk_t * pTemp;
pTemp = Kit_DsdExpand( pNtk );
Kit_DsdPrint( stdout, pTemp );
Kit_DsdNtkFree( pTemp );
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars )
{
Kit_DsdNtk_t * pTemp, * pTemp2;
// pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 5 );
pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 8 );
// Kit_DsdPrintExpanded( pTemp );
pTemp2 = Kit_DsdExpand( pTemp );
Kit_DsdPrint( stdout, pTemp2 );
Kit_DsdVerify( pTemp2, pTruth, nVars );
Kit_DsdNtkFree( pTemp2 );
Kit_DsdNtkFree( pTemp );
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrintFromTruth2( FILE * pFile, unsigned * pTruth, int nVars )
{
Kit_DsdNtk_t * pTemp, * pTemp2;
pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 0 );
pTemp2 = Kit_DsdExpand( pTemp );
Kit_DsdPrint2( pFile, pTemp2 );
Kit_DsdVerify( pTemp2, pTruth, nVars );
Kit_DsdNtkFree( pTemp2 );
Kit_DsdNtkFree( pTemp );
}
/**Function*************************************************************
Synopsis [Print the DSD formula.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdWriteFromTruth( char * pBuffer, unsigned * pTruth, int nVars )
{
Kit_DsdNtk_t * pTemp, * pTemp2;
// pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 5 );
pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 8 );
// Kit_DsdPrintExpanded( pTemp );
pTemp2 = Kit_DsdExpand( pTemp );
Kit_DsdWrite( pBuffer, pTemp2 );
Kit_DsdVerify( pTemp2, pTruth, nVars );
Kit_DsdNtkFree( pTemp2 );
Kit_DsdNtkFree( pTemp );
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Kit_DsdTruthComputeNode_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id )
{
Kit_DsdObj_t * pObj;
unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp;
unsigned i, iLit, fCompl;
// unsigned m, nMints, * pTruthPrime, * pTruthMint;
// get the node with this ID
pObj = Kit_DsdNtkObj( pNtk, Id );
pTruthRes = (unsigned *)Vec_PtrEntry( p->vTtNodes, Id );
// special case: literal of an internal node
if ( pObj == NULL )
{
assert( Id < pNtk->nVars );
return pTruthRes;
}
// constant node
if ( pObj->Type == KIT_DSD_CONST1 )
{
assert( pObj->nFans == 0 );
Kit_TruthFill( pTruthRes, pNtk->nVars );
return pTruthRes;
}
// elementary variable node
if ( pObj->Type == KIT_DSD_VAR )
{
assert( pObj->nFans == 1 );
iLit = pObj->pFans[0];
pTruthFans[0] = Kit_DsdTruthComputeNode_rec( p, pNtk, Abc_Lit2Var(iLit) );
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars );
else
Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars );
return pTruthRes;
}
// collect the truth tables of the fanins
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
pTruthFans[i] = Kit_DsdTruthComputeNode_rec( p, pNtk, Abc_Lit2Var(iLit) );
// create the truth table
// simple gates
if ( pObj->Type == KIT_DSD_AND )
{
Kit_TruthFill( pTruthRes, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
return pTruthRes;
}
if ( pObj->Type == KIT_DSD_XOR )
{
Kit_TruthClear( pTruthRes, pNtk->nVars );
fCompl = 0;
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
fCompl ^= Abc_LitIsCompl(iLit);
}
if ( fCompl )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
assert( pObj->Type == KIT_DSD_PRIME );
/*
// get the truth table of the prime node
pTruthPrime = Kit_DsdObjTruth( pObj );
// get storage for the temporary minterm
pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes);
// go through the minterms
nMints = (1 << pObj->nFans);
Kit_TruthClear( pTruthRes, pNtk->nVars );
for ( m = 0; m < nMints; m++ )
{
if ( !Kit_TruthHasBit(pTruthPrime, m) )
continue;
Kit_TruthFill( pTruthMint, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Abc_LitIsCompl(iLit) );
Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars );
}
*/
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthFans[i], pTruthFans[i], pNtk->nVars );
pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes );
Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars );
return pTruthRes;
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk )
{
unsigned * pTruthRes;
int i;
// assign elementary truth ables
assert( pNtk->nVars <= p->nVars );
for ( i = 0; i < (int)pNtk->nVars; i++ )
Kit_TruthCopy( (unsigned *)Vec_PtrEntry(p->vTtNodes, i), (unsigned *)Vec_PtrEntry(p->vTtElems, i), p->nVars );
// compute truth table for each node
pTruthRes = Kit_DsdTruthComputeNode_rec( p, pNtk, Abc_Lit2Var(pNtk->Root) );
// complement the truth table if needed
if ( Abc_LitIsCompl(pNtk->Root) )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Kit_DsdTruthComputeNodeOne_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp )
{
Kit_DsdObj_t * pObj;
unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp;
unsigned i, iLit, fCompl, nPartial = 0;
// unsigned m, nMints, * pTruthPrime, * pTruthMint;
// get the node with this ID
pObj = Kit_DsdNtkObj( pNtk, Id );
pTruthRes = (unsigned *)Vec_PtrEntry( p->vTtNodes, Id );
// special case: literal of an internal node
if ( pObj == NULL )
{
assert( Id < pNtk->nVars );
assert( !uSupp || uSupp != (uSupp & ~(1<<Id)) );
return pTruthRes;
}
// constant node
if ( pObj->Type == KIT_DSD_CONST1 )
{
assert( pObj->nFans == 0 );
Kit_TruthFill( pTruthRes, pNtk->nVars );
return pTruthRes;
}
// elementary variable node
if ( pObj->Type == KIT_DSD_VAR )
{
assert( pObj->nFans == 1 );
iLit = pObj->pFans[0];
assert( Kit_DsdLitIsLeaf( pNtk, iLit ) );
pTruthFans[0] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp );
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars );
else
Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars );
return pTruthRes;
}
// collect the truth tables of the fanins
if ( uSupp )
{
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( uSupp != (uSupp & ~Kit_DsdLitSupport(pNtk, iLit)) )
pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp );
else
{
pTruthFans[i] = NULL;
nPartial = 1;
}
}
else
{
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp );
}
// create the truth table
// simple gates
if ( pObj->Type == KIT_DSD_AND )
{
Kit_TruthFill( pTruthRes, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( pTruthFans[i] )
Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
return pTruthRes;
}
if ( pObj->Type == KIT_DSD_XOR )
{
Kit_TruthClear( pTruthRes, pNtk->nVars );
fCompl = 0;
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
if ( pTruthFans[i] )
{
Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
fCompl ^= Abc_LitIsCompl(iLit);
}
}
if ( fCompl )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
assert( pObj->Type == KIT_DSD_PRIME );
if ( uSupp && nPartial )
{
// find the only non-empty component
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( pTruthFans[i] )
break;
assert( i < pObj->nFans );
return pTruthFans[i];
}
/*
// get the truth table of the prime node
pTruthPrime = Kit_DsdObjTruth( pObj );
// get storage for the temporary minterm
pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes);
// go through the minterms
nMints = (1 << pObj->nFans);
Kit_TruthClear( pTruthRes, pNtk->nVars );
for ( m = 0; m < nMints; m++ )
{
if ( !Kit_TruthHasBit(pTruthPrime, m) )
continue;
Kit_TruthFill( pTruthMint, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Abc_LitIsCompl(iLit) );
Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars );
}
*/
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthFans[i], pTruthFans[i], pNtk->nVars );
pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes );
Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars );
return pTruthRes;
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Kit_DsdTruthComputeOne( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp )
{
unsigned * pTruthRes;
int i;
// if support is specified, request that supports are available
if ( uSupp )
Kit_DsdGetSupports( pNtk );
// assign elementary truth tables
assert( pNtk->nVars <= p->nVars );
for ( i = 0; i < (int)pNtk->nVars; i++ )
Kit_TruthCopy( (unsigned *)Vec_PtrEntry(p->vTtNodes, i), (unsigned *)Vec_PtrEntry(p->vTtElems, i), p->nVars );
// compute truth table for each node
pTruthRes = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(pNtk->Root), uSupp );
// complement the truth table if needed
if ( Abc_LitIsCompl(pNtk->Root) )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Kit_DsdTruthComputeNodeTwo_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp, int iVar, unsigned * pTruthDec )
{
Kit_DsdObj_t * pObj;
int pfBoundSet[16];
unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp;
unsigned i, iLit, fCompl, nPartial, uSuppFan, uSuppCur;
// unsigned m, nMints, * pTruthPrime, * pTruthMint;
assert( uSupp > 0 );
// get the node with this ID
pObj = Kit_DsdNtkObj( pNtk, Id );
pTruthRes = (unsigned *)Vec_PtrEntry( p->vTtNodes, Id );
if ( pObj == NULL )
{
assert( Id < pNtk->nVars );
return pTruthRes;
}
assert( pObj->Type != KIT_DSD_CONST1 );
assert( pObj->Type != KIT_DSD_VAR );
// count the number of intersecting fanins
// collect the total support of the intersecting fanins
nPartial = 0;
uSuppFan = 0;
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
uSuppCur = Kit_DsdLitSupport(pNtk, iLit);
if ( uSupp & uSuppCur )
{
nPartial++;
uSuppFan |= uSuppCur;
}
}
// if there is no intersection, or full intersection, use simple procedure
if ( nPartial == 0 || nPartial == pObj->nFans )
return Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Id, 0 );
// if support of the component includes some other variables
// we need to continue constructing it as usual by the two-function procedure
if ( uSuppFan != (uSuppFan & uSupp) )
{
assert( nPartial == 1 );
// return Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Id, uSupp, iVar, pTruthDec );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
if ( uSupp & Kit_DsdLitSupport(pNtk, iLit) )
pTruthFans[i] = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Abc_Lit2Var(iLit), uSupp, iVar, pTruthDec );
else
pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), 0 );
}
// create composition/decomposition functions
if ( pObj->Type == KIT_DSD_AND )
{
Kit_TruthFill( pTruthRes, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
return pTruthRes;
}
if ( pObj->Type == KIT_DSD_XOR )
{
Kit_TruthClear( pTruthRes, pNtk->nVars );
fCompl = 0;
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
fCompl ^= Abc_LitIsCompl(iLit);
Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
}
if ( fCompl )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
assert( pObj->Type == KIT_DSD_PRIME );
}
else
{
assert( uSuppFan == (uSuppFan & uSupp) );
assert( nPartial < pObj->nFans );
// the support of the insecting component(s) is contained in the bound-set
// and yet there are components that are not contained in the bound set
// solve the fanins and collect info, which components belong to the bound set
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Abc_Lit2Var(iLit), 0 );
pfBoundSet[i] = (int)((uSupp & Kit_DsdLitSupport(pNtk, iLit)) > 0);
}
// create composition/decomposition functions
if ( pObj->Type == KIT_DSD_AND )
{
Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar );
Kit_TruthFill( pTruthDec, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( pfBoundSet[i] )
Kit_TruthAndPhase( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
else
Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Abc_LitIsCompl(iLit) );
return pTruthRes;
}
if ( pObj->Type == KIT_DSD_XOR )
{
Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar );
Kit_TruthClear( pTruthDec, pNtk->nVars );
fCompl = 0;
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
{
fCompl ^= Abc_LitIsCompl(iLit);
if ( pfBoundSet[i] )
Kit_TruthXor( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars );
else
Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars );
}
if ( fCompl )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
assert( pObj->Type == KIT_DSD_PRIME );
assert( nPartial == 1 );
// find the only non-empty component
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( pfBoundSet[i] )
break;
assert( i < pObj->nFans );
// save this component as the decomposed function
Kit_TruthCopy( pTruthDec, pTruthFans[i], pNtk->nVars );
// set the corresponding component to be the new variable
Kit_TruthIthVar( pTruthFans[i], pNtk->nVars, iVar );
}
/*
// get the truth table of the prime node
pTruthPrime = Kit_DsdObjTruth( pObj );
// get storage for the temporary minterm
pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes);
// go through the minterms
nMints = (1 << pObj->nFans);
Kit_TruthClear( pTruthRes, pNtk->nVars );
for ( m = 0; m < nMints; m++ )
{
if ( !Kit_TruthHasBit(pTruthPrime, m) )
continue;
Kit_TruthFill( pTruthMint, pNtk->nVars );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Abc_LitIsCompl(iLit) );
Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars );
}
*/
// Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
// assert( !Abc_LitIsCompl(iLit) );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthFans[i], pTruthFans[i], pNtk->nVars );
pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes );
Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars );
return pTruthRes;
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Kit_DsdTruthComputeTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthDec )
{
unsigned * pTruthRes, uSuppAll;
int i;
assert( uSupp > 0 );
assert( pNtk->nVars <= p->nVars );
// compute support of all nodes
uSuppAll = Kit_DsdGetSupports( pNtk );
// consider special case - there is no overlap
if ( (uSupp & uSuppAll) == 0 )
{
Kit_TruthClear( pTruthDec, pNtk->nVars );
return Kit_DsdTruthCompute( p, pNtk );
}
// consider special case - support is fully contained
if ( (uSupp & uSuppAll) == uSuppAll )
{
pTruthRes = Kit_DsdTruthCompute( p, pNtk );
Kit_TruthCopy( pTruthDec, pTruthRes, pNtk->nVars );
Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar );
return pTruthRes;
}
// assign elementary truth tables
for ( i = 0; i < (int)pNtk->nVars; i++ )
Kit_TruthCopy( (unsigned *)Vec_PtrEntry(p->vTtNodes, i), (unsigned *)Vec_PtrEntry(p->vTtElems, i), p->nVars );
// compute truth table for each node
pTruthRes = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Abc_Lit2Var(pNtk->Root), uSupp, iVar, pTruthDec );
// complement the truth table if needed
if ( Abc_LitIsCompl(pNtk->Root) )
Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars );
return pTruthRes;
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes )
{
Kit_DsdMan_t * p;
unsigned * pTruth;
p = Kit_DsdManAlloc( pNtk->nVars, Kit_DsdNtkObjNum(pNtk) );
pTruth = Kit_DsdTruthCompute( p, pNtk );
Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars );
Kit_DsdManFree( p );
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec )
{
unsigned * pTruth = Kit_DsdTruthComputeTwo( p, pNtk, uSupp, iVar, pTruthDec );
if ( pTruthCo )
Kit_TruthCopy( pTruthCo, pTruth, pNtk->nVars );
}
/**Function*************************************************************
Synopsis [Derives the truth table of the DSD network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp )
{
unsigned * pTruth = Kit_DsdTruthComputeOne( p, pNtk, uSupp );
Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars );
/*
// verification
{
// compute the same function using different procedure
unsigned * pTruthTemp = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes + 1);
pNtk->pSupps = NULL;
Kit_DsdTruthComputeTwo( p, pNtk, uSupp, -1, pTruthTemp );
// if ( !Kit_TruthIsEqual( pTruthTemp, pTruthRes, pNtk->nVars ) )
if ( !Kit_TruthIsEqualWithPhase( pTruthTemp, pTruthRes, pNtk->nVars ) )
{
printf( "Verification FAILED!\n" );
Kit_DsdPrint( stdout, pNtk );
Kit_DsdPrintFromTruth( pTruthRes, pNtk->nVars );
Kit_DsdPrintFromTruth( pTruthTemp, pNtk->nVars );
}
// else
// printf( "Verification successful.\n" );
}
*/
}
/**Function*************************************************************
Synopsis [Counts the number of blocks of the given number of inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCountLuts_rec( Kit_DsdNtk_t * pNtk, int nLutSize, int Id, int * pCounter )
{
Kit_DsdObj_t * pObj;
unsigned iLit, i, Res0, Res1;
pObj = Kit_DsdNtkObj( pNtk, Id );
if ( pObj == NULL )
return 0;
if ( pObj->Type == KIT_DSD_AND || pObj->Type == KIT_DSD_XOR )
{
assert( pObj->nFans == 2 );
Res0 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(pObj->pFans[0]), pCounter );
Res1 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(pObj->pFans[1]), pCounter );
if ( Res0 == 0 && Res1 > 0 )
return Res1 - 1;
if ( Res0 > 0 && Res1 == 0 )
return Res0 - 1;
(*pCounter)++;
return nLutSize - 2;
}
assert( pObj->Type == KIT_DSD_PRIME );
if ( (int)pObj->nFans > nLutSize ) //+ 1 )
{
*pCounter = 1000;
return 0;
}
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(iLit), pCounter );
(*pCounter)++;
// if ( (int)pObj->nFans == nLutSize + 1 )
// (*pCounter)++;
return nLutSize - pObj->nFans;
}
/**Function*************************************************************
Synopsis [Counts the number of blocks of the given number of inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCountLuts( Kit_DsdNtk_t * pNtk, int nLutSize )
{
int Counter = 0;
if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_CONST1 )
return 0;
if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_VAR )
return 0;
Kit_DsdCountLuts_rec( pNtk, nLutSize, Abc_Lit2Var(pNtk->Root), &Counter );
if ( Counter >= 1000 )
return -1;
return Counter;
}
/**Function*************************************************************
Synopsis [Returns the size of the largest non-DSD block.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk )
{
Kit_DsdObj_t * pObj;
unsigned i, nSizeMax = 0;
Kit_DsdNtkForEachObj( pNtk, pObj, i )
{
if ( pObj->Type != KIT_DSD_PRIME )
continue;
if ( nSizeMax < pObj->nFans )
nSizeMax = pObj->nFans;
}
return nSizeMax;
}
/**Function*************************************************************
Synopsis [Returns the largest non-DSD block.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdObj_t * Kit_DsdNonDsdPrimeMax( Kit_DsdNtk_t * pNtk )
{
Kit_DsdObj_t * pObj, * pObjMax = NULL;
unsigned i, nSizeMax = 0;
Kit_DsdNtkForEachObj( pNtk, pObj, i )
{
if ( pObj->Type != KIT_DSD_PRIME )
continue;
if ( nSizeMax < pObj->nFans )
{
nSizeMax = pObj->nFans;
pObjMax = pObj;
}
}
return pObjMax;
}
/**Function*************************************************************
Synopsis [Finds the union of supports of the non-DSD blocks.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk )
{
Kit_DsdObj_t * pObj;
unsigned i, uSupport = 0;
// ABC_FREE( pNtk->pSupps );
Kit_DsdGetSupports( pNtk );
Kit_DsdNtkForEachObj( pNtk, pObj, i )
{
if ( pObj->Type != KIT_DSD_PRIME )
continue;
uSupport |= Kit_DsdLitSupport( pNtk, Abc_Var2Lit(pObj->Id,0) );
}
return uSupport;
}
/**Function*************************************************************
Synopsis [Expands the node.]
Description [Returns the new literal.]
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdExpandCollectAnd_rec( Kit_DsdNtk_t * p, unsigned iLit, unsigned * piLitsNew, int * nLitsNew )
{
Kit_DsdObj_t * pObj;
unsigned i, iLitFanin;
// check the end of the supergate
pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
if ( Abc_LitIsCompl(iLit) || Abc_Lit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_AND )
{
piLitsNew[(*nLitsNew)++] = iLit;
return;
}
// iterate through the fanins
Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
Kit_DsdExpandCollectAnd_rec( p, iLitFanin, piLitsNew, nLitsNew );
}
/**Function*************************************************************
Synopsis [Expands the node.]
Description [Returns the new literal.]
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdExpandCollectXor_rec( Kit_DsdNtk_t * p, unsigned iLit, unsigned * piLitsNew, int * nLitsNew )
{
Kit_DsdObj_t * pObj;
unsigned i, iLitFanin;
// check the end of the supergate
pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
if ( Abc_Lit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_XOR )
{
piLitsNew[(*nLitsNew)++] = iLit;
return;
}
// iterate through the fanins
pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
Kit_DsdExpandCollectXor_rec( p, iLitFanin, piLitsNew, nLitsNew );
// if the literal was complemented, pass the complemented attribute somewhere
if ( Abc_LitIsCompl(iLit) )
piLitsNew[0] = Abc_LitNot( piLitsNew[0] );
}
/**Function*************************************************************
Synopsis [Expands the node.]
Description [Returns the new literal.]
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdExpandNode_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit )
{
unsigned * pTruth, * pTruthNew;
unsigned i, iLitFanin, piLitsNew[16], nLitsNew = 0;
Kit_DsdObj_t * pObj, * pObjNew;
// consider the case of simple gate
pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
if ( pObj == NULL )
return iLit;
if ( pObj->Type == KIT_DSD_AND )
{
Kit_DsdExpandCollectAnd_rec( p, Abc_LitRegular(iLit), piLitsNew, (int *)&nLitsNew );
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, nLitsNew );
for ( i = 0; i < pObjNew->nFans; i++ )
pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, piLitsNew[i] );
return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
}
if ( pObj->Type == KIT_DSD_XOR )
{
int fCompl = Abc_LitIsCompl(iLit);
Kit_DsdExpandCollectXor_rec( p, Abc_LitRegular(iLit), piLitsNew, (int *)&nLitsNew );
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, nLitsNew );
for ( i = 0; i < pObjNew->nFans; i++ )
{
pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, Abc_LitRegular(piLitsNew[i]) );
fCompl ^= Abc_LitIsCompl(piLitsNew[i]);
}
return Abc_Var2Lit( pObjNew->Id, fCompl );
}
assert( pObj->Type == KIT_DSD_PRIME );
// create new PRIME node
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans );
// copy the truth table
pTruth = Kit_DsdObjTruth( pObj );
pTruthNew = Kit_DsdObjTruth( pObjNew );
Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans );
// create fanins
Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i )
{
pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, iLitFanin );
// complement the corresponding inputs of the truth table
if ( Abc_LitIsCompl(pObjNew->pFans[i]) )
{
pObjNew->pFans[i] = Abc_LitRegular(pObjNew->pFans[i]);
Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i );
}
}
if ( pObj->nFans == 3 &&
(pTruthNew[0] == 0xCACACACA || pTruthNew[0] == 0xC5C5C5C5 ||
pTruthNew[0] == 0x3A3A3A3A || pTruthNew[0] == 0x35353535) )
{
// translate into regular MUXes
if ( pTruthNew[0] == 0xC5C5C5C5 )
pObjNew->pFans[0] = Abc_LitNot(pObjNew->pFans[0]);
else if ( pTruthNew[0] == 0x3A3A3A3A )
pObjNew->pFans[1] = Abc_LitNot(pObjNew->pFans[1]);
else if ( pTruthNew[0] == 0x35353535 )
{
pObjNew->pFans[0] = Abc_LitNot(pObjNew->pFans[0]);
pObjNew->pFans[1] = Abc_LitNot(pObjNew->pFans[1]);
}
pTruthNew[0] = 0xCACACACA;
// resolve the complemented control input
if ( Abc_LitIsCompl(pObjNew->pFans[2]) )
{
unsigned char Temp = pObjNew->pFans[0];
pObjNew->pFans[0] = pObjNew->pFans[1];
pObjNew->pFans[1] = Temp;
pObjNew->pFans[2] = Abc_LitNot(pObjNew->pFans[2]);
}
// resolve the complemented true input
if ( Abc_LitIsCompl(pObjNew->pFans[1]) )
{
iLit = Abc_LitNot(iLit);
pObjNew->pFans[0] = Abc_LitNot(pObjNew->pFans[0]);
pObjNew->pFans[1] = Abc_LitNot(pObjNew->pFans[1]);
}
return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
}
else
{
// if the incoming phase is complemented, absorb it into the prime node
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans );
return Abc_Var2Lit( pObjNew->Id, 0 );
}
}
/**Function*************************************************************
Synopsis [Expands the network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p )
{
Kit_DsdNtk_t * pNew;
Kit_DsdObj_t * pObjNew;
assert( p->nVars <= 16 );
// create a new network
pNew = Kit_DsdNtkAlloc( p->nVars );
// consider simple special cases
if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 );
pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
return pNew;
}
if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 );
pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0];
pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
return pNew;
}
// convert the root node
pNew->Root = Kit_DsdExpandNode_rec( pNew, p, p->Root );
return pNew;
}
/**Function*************************************************************
Synopsis [Sorts the literals by their support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdCompSort( int pPrios[], unsigned uSupps[], unsigned short * piLits, int nVars, unsigned piLitsRes[] )
{
int nSuppSizes[16], Priority[16], pOrder[16];
int i, k, iVarBest, SuppMax, PrioMax;
// compute support sizes and priorities of the components
for ( i = 0; i < nVars; i++ )
{
assert( uSupps[i] );
pOrder[i] = i;
Priority[i] = KIT_INFINITY;
for ( k = 0; k < 16; k++ )
if ( uSupps[i] & (1 << k) )
Priority[i] = KIT_MIN( Priority[i], pPrios[k] );
assert( Priority[i] != 16 );
nSuppSizes[i] = Kit_WordCountOnes(uSupps[i]);
}
// sort the components by pririty
Extra_BubbleSort( pOrder, Priority, nVars, 0 );
// find the component by with largest size and lowest priority
iVarBest = -1;
SuppMax = 0;
PrioMax = 0;
for ( i = 0; i < nVars; i++ )
{
if ( SuppMax < nSuppSizes[i] || (SuppMax == nSuppSizes[i] && PrioMax < Priority[i]) )
{
SuppMax = nSuppSizes[i];
PrioMax = Priority[i];
iVarBest = i;
}
}
assert( iVarBest != -1 );
// copy the resulting literals
k = 0;
piLitsRes[k++] = piLits[iVarBest];
for ( i = 0; i < nVars; i++ )
{
if ( pOrder[i] == iVarBest )
continue;
piLitsRes[k++] = piLits[pOrder[i]];
}
assert( k == nVars );
}
/**Function*************************************************************
Synopsis [Shrinks multi-input nodes.]
Description [Takes the array of variable priorities pPrios.]
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdShrink_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit, int pPrios[] )
{
Kit_DsdObj_t * pObj;
Kit_DsdObj_t * pObjNew = NULL; // Suppress "might be used uninitialized"
unsigned * pTruth, * pTruthNew;
unsigned i, piLitsNew[16], uSupps[16];
int iLitFanin, iLitNew;
// consider the case of simple gate
pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
if ( pObj == NULL )
return iLit;
if ( pObj->Type == KIT_DSD_AND )
{
// get the supports
Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
uSupps[i] = Kit_DsdLitSupport( p, iLitFanin );
// put the largest component last
// sort other components in the decreasing order of priority of their vars
Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew );
// construct the two-input node network
iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios );
for ( i = 1; i < pObj->nFans; i++ )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, 2 );
pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios );
pObjNew->pFans[1] = iLitNew;
iLitNew = Abc_Var2Lit( pObjNew->Id, 0 );
}
return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
}
if ( pObj->Type == KIT_DSD_XOR )
{
// get the supports
Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
{
assert( !Abc_LitIsCompl(iLitFanin) );
uSupps[i] = Kit_DsdLitSupport( p, iLitFanin );
}
// put the largest component last
// sort other components in the decreasing order of priority of their vars
Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew );
// construct the two-input node network
iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios );
for ( i = 1; i < pObj->nFans; i++ )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, 2 );
pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios );
pObjNew->pFans[1] = iLitNew;
iLitNew = Abc_Var2Lit( pObjNew->Id, 0 );
}
return Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(iLit) );
}
assert( pObj->Type == KIT_DSD_PRIME );
// create new PRIME node
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans );
// copy the truth table
pTruth = Kit_DsdObjTruth( pObj );
pTruthNew = Kit_DsdObjTruth( pObjNew );
Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans );
// create fanins
Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i )
{
pObjNew->pFans[i] = Kit_DsdShrink_rec( pNew, p, iLitFanin, pPrios );
// complement the corresponding inputs of the truth table
if ( Abc_LitIsCompl(pObjNew->pFans[i]) )
{
pObjNew->pFans[i] = Abc_LitRegular(pObjNew->pFans[i]);
Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i );
}
}
// if the incoming phase is complemented, absorb it into the prime node
if ( Abc_LitIsCompl(iLit) )
Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans );
return Abc_Var2Lit( pObjNew->Id, 0 );
}
/**Function*************************************************************
Synopsis [Shrinks the network.]
Description [Transforms the network to have two-input nodes so that the
higher-ordered nodes were decomposed out first.]
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] )
{
Kit_DsdNtk_t * pNew;
Kit_DsdObj_t * pObjNew;
assert( p->nVars <= 16 );
// create a new network
pNew = Kit_DsdNtkAlloc( p->nVars );
// consider simple special cases
if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 );
pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
return pNew;
}
if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 );
pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0];
pNew->Root = Abc_Var2Lit( pObjNew->Id, Abc_LitIsCompl(p->Root) );
return pNew;
}
// convert the root node
pNew->Root = Kit_DsdShrink_rec( pNew, p, p->Root, pPrios );
return pNew;
}
/**Function*************************************************************
Synopsis [Rotates the network.]
Description [Transforms prime nodes to have the fanin with the
highest frequency of supports go first.]
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] )
{
Kit_DsdObj_t * pObj;
unsigned * pIn, * pOut, * pTemp, k;
int i, v, Temp, uSuppFanin, iFaninLit, WeightMax, FaninMax, nSwaps;
int Weights[16];
// go through the prime nodes
Kit_DsdNtkForEachObj( p, pObj, i )
{
if ( pObj->Type != KIT_DSD_PRIME )
continue;
// count the fanin frequencies
Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k )
{
uSuppFanin = Kit_DsdLitSupport( p, iFaninLit );
Weights[k] = 0;
for ( v = 0; v < 16; v++ )
if ( uSuppFanin & (1 << v) )
Weights[k] += pFreqs[v] - 1;
}
// find the most frequent fanin
WeightMax = 0;
FaninMax = -1;
for ( k = 0; k < pObj->nFans; k++ )
if ( WeightMax < Weights[k] )
{
WeightMax = Weights[k];
FaninMax = k;
}
// no need to reorder if there are no frequent fanins
if ( FaninMax == -1 )
continue;
// move the fanins number k to the first place
nSwaps = 0;
pIn = Kit_DsdObjTruth(pObj);
pOut = p->pMem;
// for ( v = FaninMax; v < ((int)pObj->nFans)-1; v++ )
for ( v = FaninMax-1; v >= 0; v-- )
{
// swap the fanins
Temp = pObj->pFans[v];
pObj->pFans[v] = pObj->pFans[v+1];
pObj->pFans[v+1] = Temp;
// swap the truth table variables
Kit_TruthSwapAdjacentVars( pOut, pIn, pObj->nFans, v );
pTemp = pIn; pIn = pOut; pOut = pTemp;
nSwaps++;
}
if ( nSwaps & 1 )
Kit_TruthCopy( pOut, pIn, pObj->nFans );
}
}
/**Function*************************************************************
Synopsis [Compute the support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Kit_DsdGetSupports_rec( Kit_DsdNtk_t * p, int iLit )
{
Kit_DsdObj_t * pObj;
unsigned uSupport, k;
int iFaninLit;
pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
if ( pObj == NULL )
return Kit_DsdLitSupport( p, iLit );
uSupport = 0;
Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k )
uSupport |= Kit_DsdGetSupports_rec( p, iFaninLit );
p->pSupps[pObj->Id - p->nVars] = uSupport;
assert( uSupport <= 0xFFFF );
return uSupport;
}
/**Function*************************************************************
Synopsis [Compute the support.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p )
{
Kit_DsdObj_t * pRoot;
unsigned uSupport;
assert( p->pSupps == NULL );
p->pSupps = ABC_ALLOC( unsigned, p->nNodes );
// consider simple special cases
pRoot = Kit_DsdNtkRoot(p);
if ( pRoot->Type == KIT_DSD_CONST1 )
{
assert( p->nNodes == 1 );
uSupport = p->pSupps[0] = 0;
}
if ( pRoot->Type == KIT_DSD_VAR )
{
assert( p->nNodes == 1 );
uSupport = p->pSupps[0] = Kit_DsdLitSupport( p, pRoot->pFans[0] );
}
else
uSupport = Kit_DsdGetSupports_rec( p, p->Root );
assert( uSupport <= 0xFFFF );
return uSupport;
}
/**Function*************************************************************
Synopsis [Returns 1 if there is a component with more than 3 inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdFindLargeBox_rec( Kit_DsdNtk_t * pNtk, int Id, int Size )
{
Kit_DsdObj_t * pObj;
unsigned iLit, i, RetValue;
pObj = Kit_DsdNtkObj( pNtk, Id );
if ( pObj == NULL )
return 0;
if ( pObj->Type == KIT_DSD_PRIME && (int)pObj->nFans > Size )
return 1;
RetValue = 0;
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
RetValue |= Kit_DsdFindLargeBox_rec( pNtk, Abc_Lit2Var(iLit), Size );
return RetValue;
}
/**Function*************************************************************
Synopsis [Returns 1 if there is a component with more than 3 inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdFindLargeBox( Kit_DsdNtk_t * pNtk, int Size )
{
return Kit_DsdFindLargeBox_rec( pNtk, Abc_Lit2Var(pNtk->Root), Size );
}
/**Function*************************************************************
Synopsis [Returns 1 if there is a component with more than 3 inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCountAigNodes_rec( Kit_DsdNtk_t * pNtk, int Id )
{
Kit_DsdObj_t * pObj;
unsigned iLit, i, RetValue = 0;
pObj = Kit_DsdNtkObj( pNtk, Id );
if ( pObj == NULL )
return 0;
if ( pObj->Type == KIT_DSD_CONST1 || pObj->Type == KIT_DSD_VAR )
return 0;
if ( pObj->nFans < 2 ) // why this happens? - need to figure out
return 0;
assert( pObj->nFans > 1 );
if ( pObj->Type == KIT_DSD_AND )
RetValue = ((int)pObj->nFans - 1);
else if ( pObj->Type == KIT_DSD_XOR )
RetValue = ((int)pObj->nFans - 1) * 3;
else if ( pObj->Type == KIT_DSD_PRIME )
{
// assuming MUX decomposition
assert( (int)pObj->nFans == 3 );
RetValue = 3;
}
else assert( 0 );
Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i )
RetValue += Kit_DsdCountAigNodes_rec( pNtk, Abc_Lit2Var(iLit) );
return RetValue;
}
/**Function*************************************************************
Synopsis [Returns 1 if there is a component with more than 3 inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCountAigNodes2( Kit_DsdNtk_t * pNtk )
{
return Kit_DsdCountAigNodes_rec( pNtk, Abc_Lit2Var(pNtk->Root) );
}
/**Function*************************************************************
Synopsis [Returns 1 if there is a component with more than 3 inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCountAigNodes( Kit_DsdNtk_t * pNtk )
{
Kit_DsdObj_t * pObj;
int i, Counter = 0;
for ( i = 0; i < pNtk->nNodes; i++ )
{
pObj = pNtk->pNodes[i];
if ( pObj->Type == KIT_DSD_AND )
Counter += ((int)pObj->nFans - 1);
else if ( pObj->Type == KIT_DSD_XOR )
Counter += ((int)pObj->nFans - 1) * 3;
else if ( pObj->Type == KIT_DSD_PRIME ) // assuming MUX decomposition
Counter += 3;
}
return Counter;
}
/**Function*************************************************************
Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdRootNodeHasCommonVars( Kit_DsdObj_t * pObj0, Kit_DsdObj_t * pObj1 )
{
unsigned i, k;
for ( i = 0; i < pObj0->nFans; i++ )
{
if ( Abc_Lit2Var(pObj0->pFans[i]) >= 4 )
continue;
for ( k = 0; k < pObj1->nFans; k++ )
if ( Abc_Lit2Var(pObj0->pFans[i]) == Abc_Lit2Var(pObj1->pFans[k]) )
return 1;
}
return 0;
}
/**Function*************************************************************
Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCheckVar4Dec2( Kit_DsdNtk_t * pNtk0, Kit_DsdNtk_t * pNtk1 )
{
assert( pNtk0->nVars == 4 );
assert( pNtk1->nVars == 4 );
if ( Kit_DsdFindLargeBox(pNtk0, 2) )
return 0;
if ( Kit_DsdFindLargeBox(pNtk1, 2) )
return 0;
return Kit_DsdRootNodeHasCommonVars( Kit_DsdNtkRoot(pNtk0), Kit_DsdNtkRoot(pNtk1) );
}
/**Function*************************************************************
Synopsis [Performs decomposition of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdDecompose_rec( Kit_DsdNtk_t * pNtk, Kit_DsdObj_t * pObj, unsigned uSupp, unsigned short * pPar, int nDecMux )
{
Kit_DsdObj_t * pRes, * pRes0, * pRes1;
int nWords = Kit_TruthWordNum(pObj->nFans);
unsigned * pTruth = Kit_DsdObjTruth(pObj);
unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + nWords };
unsigned * pCofs4[2][2] = { {pNtk->pMem + 2 * nWords, pNtk->pMem + 3 * nWords}, {pNtk->pMem + 4 * nWords, pNtk->pMem + 5 * nWords} };
int i, iLit0, iLit1, nFans0, nFans1, nPairs;
int fEquals[2][2], fOppos, fPairs[4][4];
unsigned j, k, nFansNew, uSupp0, uSupp1;
assert( pObj->nFans > 0 );
assert( pObj->Type == KIT_DSD_PRIME );
assert( uSupp == (uSupp0 = (unsigned)Kit_TruthSupport(pTruth, pObj->nFans)) );
// compress the truth table
if ( uSupp != Kit_BitMask(pObj->nFans) )
{
nFansNew = Kit_WordCountOnes(uSupp);
Kit_TruthShrink( pNtk->pMem, pTruth, nFansNew, pObj->nFans, uSupp, 1 );
for ( j = k = 0; j < pObj->nFans; j++ )
if ( uSupp & (1 << j) )
pObj->pFans[k++] = pObj->pFans[j];
assert( k == nFansNew );
pObj->nFans = k;
uSupp = Kit_BitMask(pObj->nFans);
}
// consider the single variable case
if ( pObj->nFans == 1 )
{
pObj->Type = KIT_DSD_NONE;
if ( pTruth[0] == 0x55555555 )
pObj->pFans[0] = Abc_LitNot(pObj->pFans[0]);
else
assert( pTruth[0] == 0xAAAAAAAA );
// update the parent pointer
*pPar = Abc_LitNotCond( pObj->pFans[0], Abc_LitIsCompl(*pPar) );
return;
}
// decompose the output
if ( !pObj->fMark )
for ( i = pObj->nFans - 1; i >= 0; i-- )
{
// get the two-variable cofactors
Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i );
Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i );
// assert( !Kit_TruthVarInSupport( pCofs2[0], pObj->nFans, i) );
// assert( !Kit_TruthVarInSupport( pCofs2[1], pObj->nFans, i) );
// get the constant cofs
fEquals[0][0] = Kit_TruthIsConst0( pCofs2[0], pObj->nFans );
fEquals[0][1] = Kit_TruthIsConst0( pCofs2[1], pObj->nFans );
fEquals[1][0] = Kit_TruthIsConst1( pCofs2[0], pObj->nFans );
fEquals[1][1] = Kit_TruthIsConst1( pCofs2[1], pObj->nFans );
fOppos = Kit_TruthIsOpposite( pCofs2[0], pCofs2[1], pObj->nFans );
assert( !Kit_TruthIsEqual(pCofs2[0], pCofs2[1], pObj->nFans) );
if ( fEquals[0][0] + fEquals[0][1] + fEquals[1][0] + fEquals[1][1] + fOppos == 0 )
{
// check the MUX decomposition
uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans );
uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans );
assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) );
if ( uSupp0 & uSupp1 )
continue;
// perform MUX decomposition
pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
for ( k = 0; k < pObj->nFans; k++ )
{
pRes0->pFans[k] = (uSupp0 & (1 << k))? pObj->pFans[k] : 127;
pRes1->pFans[k] = (uSupp1 & (1 << k))? pObj->pFans[k] : 127;
}
Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans );
Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans );
// update the current one
assert( pObj->Type == KIT_DSD_PRIME );
pTruth[0] = 0xCACACACA;
pObj->nFans = 3;
pObj->pFans[2] = pObj->pFans[i];
pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++;
pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++;
// call recursively
Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux );
Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux );
return;
}
// create the new node
pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 );
pRes->nRefs++;
pRes->nFans = 2;
pRes->pFans[0] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i);
pRes->pFans[1] = 2*pObj->Id;
// update the parent pointer
*pPar = Abc_LitNotCond( 2 * pRes->Id, Abc_LitIsCompl(*pPar) );
// consider different decompositions
if ( fEquals[0][0] )
{
Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans );
}
else if ( fEquals[0][1] )
{
pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans );
}
else if ( fEquals[1][0] )
{
*pPar = Abc_LitNot(*pPar);
pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans );
}
else if ( fEquals[1][1] )
{
*pPar = Abc_LitNot(*pPar);
pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans );
}
else if ( fOppos )
{
pRes->Type = KIT_DSD_XOR;
Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans );
}
else
assert( 0 );
// decompose the remainder
assert( Kit_DsdObjTruth(pObj) == pTruth );
Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pRes->pFans + 1, nDecMux );
return;
}
pObj->fMark = 1;
// decompose the input
for ( i = pObj->nFans - 1; i >= 0; i-- )
{
assert( Kit_TruthVarInSupport( pTruth, pObj->nFans, i ) );
// get the single variale cofactors
Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i );
Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i );
// check the existence of MUX decomposition
uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans );
uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans );
assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) );
// if one of the cofs is a constant, it is time to check the output again
if ( uSupp0 == 0 || uSupp1 == 0 )
{
pObj->fMark = 0;
Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux );
return;
}
assert( uSupp0 && uSupp1 );
// get the number of unique variables
nFans0 = Kit_WordCountOnes( uSupp0 & ~uSupp1 );
nFans1 = Kit_WordCountOnes( uSupp1 & ~uSupp0 );
if ( nFans0 == 1 && nFans1 == 1 )
{
// get the cofactors w.r.t. the unique variables
iLit0 = Kit_WordFindFirstBit( uSupp0 & ~uSupp1 );
iLit1 = Kit_WordFindFirstBit( uSupp1 & ~uSupp0 );
// get four cofactors
Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, iLit0 );
Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, iLit0 );
Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, iLit1 );
Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, iLit1 );
// check existence conditions
fEquals[0][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans );
fEquals[0][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans );
fEquals[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans );
fEquals[1][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans );
if ( (fEquals[0][0] && fEquals[0][1]) || (fEquals[1][0] && fEquals[1][1]) )
{
// construct the MUX
pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, 3 );
Kit_DsdObjTruth(pRes)[0] = 0xCACACACA;
pRes->nRefs++;
pRes->nFans = 3;
pRes->pFans[0] = pObj->pFans[iLit0]; pObj->pFans[iLit0] = 127; uSupp &= ~(1 << iLit0);
pRes->pFans[1] = pObj->pFans[iLit1]; pObj->pFans[iLit1] = 127; uSupp &= ~(1 << iLit1);
pRes->pFans[2] = pObj->pFans[i]; pObj->pFans[i] = 2 * pRes->Id; // remains in support
// update the node
// if ( fEquals[0][0] && fEquals[0][1] )
// Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, i );
// else
// Kit_TruthMuxVar( pTruth, pCofs4[0][1], pCofs4[0][0], pObj->nFans, i );
Kit_TruthMuxVar( pTruth, pCofs4[1][0], pCofs4[1][1], pObj->nFans, i );
if ( fEquals[1][0] && fEquals[1][1] )
pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
// decompose the remainder
Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux );
return;
}
}
// try other inputs
for ( k = i+1; k < pObj->nFans; k++ )
{
// get four cofactors ik
Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, k ); // 00
Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, k ); // 01
Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, k ); // 10
Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, k ); // 11
// compare equal pairs
fPairs[0][1] = fPairs[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[0][1], pObj->nFans );
fPairs[0][2] = fPairs[2][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans );
fPairs[0][3] = fPairs[3][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans );
fPairs[1][2] = fPairs[2][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans );
fPairs[1][3] = fPairs[3][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans );
fPairs[2][3] = fPairs[3][2] = Kit_TruthIsEqual( pCofs4[1][0], pCofs4[1][1], pObj->nFans );
nPairs = fPairs[0][1] + fPairs[0][2] + fPairs[0][3] + fPairs[1][2] + fPairs[1][3] + fPairs[2][3];
if ( nPairs != 3 && nPairs != 2 )
continue;
// decomposition exists
pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 );
pRes->nRefs++;
pRes->nFans = 2;
pRes->pFans[0] = pObj->pFans[k]; pObj->pFans[k] = 2 * pRes->Id; // remains in support
pRes->pFans[1] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i);
if ( !fPairs[0][1] && !fPairs[0][2] && !fPairs[0][3] ) // 00
{
pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
Kit_TruthMuxVar( pTruth, pCofs4[1][1], pCofs4[0][0], pObj->nFans, k );
}
else if ( !fPairs[1][0] && !fPairs[1][2] && !fPairs[1][3] ) // 01
{
pRes->pFans[1] = Abc_LitNot(pRes->pFans[1]);
Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k );
}
else if ( !fPairs[2][0] && !fPairs[2][1] && !fPairs[2][3] ) // 10
{
pRes->pFans[0] = Abc_LitNot(pRes->pFans[0]);
Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][0], pObj->nFans, k );
}
else if ( !fPairs[3][0] && !fPairs[3][1] && !fPairs[3][2] ) // 11
{
// unsigned uSupp0 = Kit_TruthSupport(pCofs4[0][0], pObj->nFans);
// unsigned uSupp1 = Kit_TruthSupport(pCofs4[1][1], pObj->nFans);
// unsigned uSupp;
// Extra_PrintBinary( stdout, &uSupp0, pObj->nFans ); printf( "\n" );
// Extra_PrintBinary( stdout, &uSupp1, pObj->nFans ); printf( "\n" );
Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][1], pObj->nFans, k );
// uSupp = Kit_TruthSupport(pTruth, pObj->nFans);
// Extra_PrintBinary( stdout, &uSupp, pObj->nFans ); printf( "\n" ); printf( "\n" );
}
else
{
assert( fPairs[0][3] && fPairs[1][2] );
pRes->Type = KIT_DSD_XOR;;
Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k );
}
// decompose the remainder
Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux );
return;
}
}
// if all decomposition methods failed and we are still above the limit, perform MUX-decomposition
if ( nDecMux > 0 && (int)pObj->nFans > nDecMux )
{
int iBestVar = Kit_TruthBestCofVar( pTruth, pObj->nFans, pCofs2[0], pCofs2[1] );
uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans );
uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans );
// perform MUX decomposition
pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans );
for ( k = 0; k < pObj->nFans; k++ )
pRes0->pFans[k] = pRes1->pFans[k] = pObj->pFans[k];
Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans );
Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans );
// update the current one
assert( pObj->Type == KIT_DSD_PRIME );
pTruth[0] = 0xCACACACA;
pObj->nFans = 3;
pObj->pFans[2] = pObj->pFans[iBestVar];
pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++;
pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++;
// call recursively
Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux );
Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux );
}
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdDecomposeInt( unsigned * pTruth, int nVars, int nDecMux )
{
Kit_DsdNtk_t * pNtk;
Kit_DsdObj_t * pObj;
unsigned uSupp;
int i, nVarsReal;
assert( nVars <= 16 );
pNtk = Kit_DsdNtkAlloc( nVars );
pNtk->Root = Abc_Var2Lit( pNtk->nVars, 0 );
// create the first node
pObj = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, nVars );
assert( pNtk->pNodes[0] == pObj );
for ( i = 0; i < nVars; i++ )
pObj->pFans[i] = Abc_Var2Lit( i, 0 );
Kit_TruthCopy( Kit_DsdObjTruth(pObj), pTruth, nVars );
uSupp = Kit_TruthSupport( pTruth, nVars );
// consider special cases
nVarsReal = Kit_WordCountOnes( uSupp );
if ( nVarsReal == 0 )
{
pObj->Type = KIT_DSD_CONST1;
pObj->nFans = 0;
if ( pTruth[0] == 0 )
pNtk->Root = Abc_LitNot(pNtk->Root);
return pNtk;
}
if ( nVarsReal == 1 )
{
pObj->Type = KIT_DSD_VAR;
pObj->nFans = 1;
pObj->pFans[0] = Abc_Var2Lit( Kit_WordFindFirstBit(uSupp), (pTruth[0] & 1) );
return pNtk;
}
Kit_DsdDecompose_rec( pNtk, pNtk->pNodes[0], uSupp, &pNtk->Root, nDecMux );
return pNtk;
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars )
{
return Kit_DsdDecomposeInt( pTruth, nVars, 0 );
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars )
{
Kit_DsdNtk_t * pNtk, * pTemp;
pNtk = Kit_DsdDecomposeInt( pTruth, nVars, 0 );
pNtk = Kit_DsdExpand( pTemp = pNtk );
Kit_DsdNtkFree( pTemp );
return pNtk;
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description [Uses MUXes to break-down large prime nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux )
{
/*
Kit_DsdNtk_t * pNew;
Kit_DsdObj_t * pObjNew;
assert( nVars <= 16 );
// create a new network
pNew = Kit_DsdNtkAlloc( nVars );
// consider simple special cases
if ( nVars == 0 )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 );
pNew->Root = Abc_Var2Lit( pObjNew->Id, (int)(pTruth[0] == 0) );
return pNew;
}
if ( nVars == 1 )
{
pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 );
pObjNew->pFans[0] = Abc_Var2Lit( 0, 0 );
pNew->Root = Abc_Var2Lit( pObjNew->Id, (int)(pTruth[0] != 0xAAAAAAAA) );
return pNew;
}
*/
return Kit_DsdDecomposeInt( pTruth, nVars, nDecMux );
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdTestCofs( Kit_DsdNtk_t * pNtk, unsigned * pTruthInit )
{
Kit_DsdNtk_t * pNtk0, * pNtk1, * pTemp;
// Kit_DsdObj_t * pRoot;
unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + Kit_TruthWordNum(pNtk->nVars) };
unsigned i, * pTruth;
int fVerbose = 1;
int RetValue = 0;
pTruth = pTruthInit;
// pRoot = Kit_DsdNtkRoot(pNtk);
// pTruth = Kit_DsdObjTruth(pRoot);
// assert( pRoot->nFans == pNtk->nVars );
if ( fVerbose )
{
printf( "Function: " );
// Extra_PrintBinary( stdout, pTruth, (1 << pNtk->nVars) );
Extra_PrintHexadecimal( stdout, pTruth, pNtk->nVars );
printf( "\n" );
Kit_DsdPrint( stdout, pNtk ), printf( "\n" );
}
for ( i = 0; i < pNtk->nVars; i++ )
{
Kit_TruthCofactor0New( pCofs2[0], pTruth, pNtk->nVars, i );
pNtk0 = Kit_DsdDecompose( pCofs2[0], pNtk->nVars );
pNtk0 = Kit_DsdExpand( pTemp = pNtk0 );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
{
printf( "Cof%d0: ", i );
Kit_DsdPrint( stdout, pNtk0 ), printf( "\n" );
}
Kit_TruthCofactor1New( pCofs2[1], pTruth, pNtk->nVars, i );
pNtk1 = Kit_DsdDecompose( pCofs2[1], pNtk->nVars );
pNtk1 = Kit_DsdExpand( pTemp = pNtk1 );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
{
printf( "Cof%d1: ", i );
Kit_DsdPrint( stdout, pNtk1 ), printf( "\n" );
}
// if ( Kit_DsdCheckVar4Dec2( pNtk0, pNtk1 ) )
// RetValue = 1;
Kit_DsdNtkFree( pNtk0 );
Kit_DsdNtkFree( pNtk1 );
}
if ( fVerbose )
printf( "\n" );
return RetValue;
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdEval( unsigned * pTruth, int nVars, int nLutSize )
{
Kit_DsdMan_t * p;
Kit_DsdNtk_t * pNtk;
unsigned * pTruthC;
int Result;
// decompose the function
pNtk = Kit_DsdDecompose( pTruth, nVars );
Result = Kit_DsdCountLuts( pNtk, nLutSize );
// printf( "\n" );
// Kit_DsdPrint( stdout, pNtk );
// printf( "Eval = %d.\n", Result );
// recompute the truth table
p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) );
pTruthC = Kit_DsdTruthCompute( p, pNtk );
if ( !Kit_TruthIsEqual( pTruth, pTruthC, nVars ) )
printf( "Verification failed.\n" );
Kit_DsdManFree( p );
Kit_DsdNtkFree( pNtk );
return Result;
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars )
{
Kit_DsdMan_t * p;
unsigned * pTruthC;
p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk)+2 );
pTruthC = Kit_DsdTruthCompute( p, pNtk );
if ( !Extra_TruthIsEqual( pTruth, pTruthC, nVars ) )
printf( "Verification failed.\n" );
Kit_DsdManFree( p );
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdTest( unsigned * pTruth, int nVars )
{
Kit_DsdMan_t * p;
unsigned * pTruthC;
Kit_DsdNtk_t * pNtk, * pTemp;
pNtk = Kit_DsdDecompose( pTruth, nVars );
// if ( Kit_DsdFindLargeBox(pNtk, Abc_Lit2Var(pNtk->Root)) )
// Kit_DsdPrint( stdout, pNtk );
// if ( Kit_DsdNtkRoot(pNtk)->nFans == (unsigned)nVars && nVars == 6 )
// printf( "\n" );
// Kit_DsdPrint( stdout, pNtk );
pNtk = Kit_DsdExpand( pTemp = pNtk );
Kit_DsdNtkFree( pTemp );
Kit_DsdPrint( stdout, pNtk ), printf( "\n" );
// if ( Kit_DsdFindLargeBox(pNtk, Abc_Lit2Var(pNtk->Root)) )
// Kit_DsdTestCofs( pNtk, pTruth );
// recompute the truth table
p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) );
pTruthC = Kit_DsdTruthCompute( p, pNtk );
// Extra_PrintBinary( stdout, pTruth, 1 << nVars ); printf( "\n" );
// Extra_PrintBinary( stdout, pTruthC, 1 << nVars ); printf( "\n" );
if ( Extra_TruthIsEqual( pTruth, pTruthC, nVars ) )
{
// printf( "Verification is okay.\n" );
}
else
printf( "Verification failed.\n" );
Kit_DsdManFree( p );
Kit_DsdNtkFree( pNtk );
}
/**Function*************************************************************
Synopsis [Performs decomposition of the truth table.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrecompute4Vars()
{
Kit_DsdMan_t * p;
Kit_DsdNtk_t * pNtk, * pTemp;
FILE * pFile;
unsigned uTruth;
unsigned * pTruthC;
char Buffer[256];
int i, RetValue;
int Counter1 = 0, Counter2 = 0;
pFile = fopen( "5npn/npn4.txt", "r" );
for ( i = 0; fgets( Buffer, 100, pFile ); i++ )
{
Buffer[6] = 0;
Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 );
uTruth = ((uTruth & 0xffff) << 16) | (uTruth & 0xffff);
pNtk = Kit_DsdDecompose( &uTruth, 4 );
pNtk = Kit_DsdExpand( pTemp = pNtk );
Kit_DsdNtkFree( pTemp );
if ( Kit_DsdFindLargeBox(pNtk, 3) )
{
// RetValue = 0;
RetValue = Kit_DsdTestCofs( pNtk, &uTruth );
printf( "\n" );
printf( "%3d : Non-DSD function %s %s\n", i, Buffer + 2, RetValue? "implementable" : "" );
Kit_DsdPrint( stdout, pNtk ), printf( "\n" );
Counter1++;
Counter2 += RetValue;
}
/*
printf( "%3d : Function %s ", i, Buffer + 2 );
if ( !Kit_DsdFindLargeBox(pNtk, 3) )
Kit_DsdPrint( stdout, pNtk );
else
printf( "\n" );
*/
p = Kit_DsdManAlloc( 4, Kit_DsdNtkObjNum(pNtk) );
pTruthC = Kit_DsdTruthCompute( p, pNtk );
if ( !Extra_TruthIsEqual( &uTruth, pTruthC, 4 ) )
printf( "Verification failed.\n" );
Kit_DsdManFree( p );
Kit_DsdNtkFree( pNtk );
}
fclose( pFile );
printf( "non-DSD = %d implementable = %d\n", Counter1, Counter2 );
}
/**Function*************************************************************
Synopsis [Returns the set of cofactoring variables.]
Description [If there is no DSD components returns 0.]
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCofactoringGetVars( Kit_DsdNtk_t ** ppNtk, int nSize, int * pVars )
{
Kit_DsdObj_t * pObj;
unsigned m;
int i, k, v, Var, nVars, iFaninLit;
// go through all the networks
nVars = 0;
for ( i = 0; i < nSize; i++ )
{
// go through the prime objects of each networks
Kit_DsdNtkForEachObj( ppNtk[i], pObj, k )
{
if ( pObj->Type != KIT_DSD_PRIME )
continue;
if ( pObj->nFans == 3 )
continue;
// collect direct fanin variables
Kit_DsdObjForEachFanin( ppNtk[i], pObj, iFaninLit, m )
{
if ( !Kit_DsdLitIsLeaf(ppNtk[i], iFaninLit) )
continue;
// add it to the array
Var = Abc_Lit2Var( iFaninLit );
for ( v = 0; v < nVars; v++ )
if ( pVars[v] == Var )
break;
if ( v == nVars )
pVars[nVars++] = Var;
}
}
}
return nVars;
}
/**Function*************************************************************
Synopsis [Canonical decomposition into completely DSD-structure.]
Description [Returns the number of cofactoring steps. Also returns
the cofactoring variables in pVars.]
SideEffects []
SeeAlso []
***********************************************************************/
int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose )
{
Kit_DsdNtk_t * ppNtks[5][16] = {
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
};
Kit_DsdNtk_t * pTemp;
unsigned * ppCofs[5][16];
int pTryVars[16], nTryVars;
int nPrimeSizeMin, nPrimeSizeMax, nPrimeSizeCur;
int nSuppSizeMin, nSuppSizeMax, iVarBest;
int i, k, v, nStep, nSize, nMemSize;
assert( nLimit < 5 );
// allocate storage for cofactors
nMemSize = Kit_TruthWordNum(nVars);
ppCofs[0][0] = ABC_ALLOC( unsigned, 80 * nMemSize );
nSize = 0;
for ( i = 0; i < 5; i++ )
for ( k = 0; k < 16; k++ )
ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++;
assert( nSize == 80 );
// copy the function
Kit_TruthCopy( ppCofs[0][0], pTruth, nVars );
ppNtks[0][0] = Kit_DsdDecompose( ppCofs[0][0], nVars );
if ( fVerbose )
printf( "\nProcessing prime function with %d support variables:\n", nVars );
// perform recursive cofactoring
for ( nStep = 0; nStep < nLimit; nStep++ )
{
nSize = (1 << nStep);
// find the variables to use in the cofactoring step
nTryVars = Kit_DsdCofactoringGetVars( ppNtks[nStep], nSize, pTryVars );
if ( nTryVars == 0 )
break;
// cofactor w.r.t. the above variables
iVarBest = -1;
nPrimeSizeMin = 10000;
nSuppSizeMin = 10000;
for ( v = 0; v < nTryVars; v++ )
{
nPrimeSizeMax = 0;
nSuppSizeMax = 0;
for ( i = 0; i < nSize; i++ )
{
// cofactor and decompose cofactors
Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, pTryVars[v] );
Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, pTryVars[v] );
ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars );
ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars );
// compute the largest non-decomp block
nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+0]);
nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+1]);
nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
// compute the sum total of supports
nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+0], nVars );
nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+1], nVars );
// free the networks
Kit_DsdNtkFree( ppNtks[nStep+1][2*i+0] );
Kit_DsdNtkFree( ppNtks[nStep+1][2*i+1] );
}
// find the min max support size of the prime component
if ( nPrimeSizeMin > nPrimeSizeMax || (nPrimeSizeMin == nPrimeSizeMax && nSuppSizeMin > nSuppSizeMax) )
{
nPrimeSizeMin = nPrimeSizeMax;
nSuppSizeMin = nSuppSizeMax;
iVarBest = pTryVars[v];
}
}
assert( iVarBest != -1 );
// save the variable
if ( pCofVars )
pCofVars[nStep] = iVarBest;
// cofactor w.r.t. the best
for ( i = 0; i < nSize; i++ )
{
Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, iVarBest );
Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, iVarBest );
ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars );
ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars );
if ( fVerbose )
{
ppNtks[nStep+1][2*i+0] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+0] );
Kit_DsdNtkFree( pTemp );
ppNtks[nStep+1][2*i+1] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+1] );
Kit_DsdNtkFree( pTemp );
printf( "Cof%d%d: ", nStep+1, 2*i+0 );
Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+0] ), printf( "\n" );
printf( "Cof%d%d: ", nStep+1, 2*i+1 );
Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+1] ), printf( "\n" );
}
}
}
// free the networks
for ( i = 0; i < 5; i++ )
for ( k = 0; k < 16; k++ )
if ( ppNtks[i][k] )
Kit_DsdNtkFree( ppNtks[i][k] );
ABC_FREE( ppCofs[0][0] );
assert( nStep <= nLimit );
return nStep;
}
/**Function*************************************************************
Synopsis [Canonical decomposition into completely DSD-structure.]
Description [Returns the number of cofactoring steps. Also returns
the cofactoring variables in pVars.]
SideEffects []
SeeAlso []
***********************************************************************/
void Kit_DsdPrintCofactors( unsigned * pTruth, int nVars, int nCofLevel, int fVerbose )
{
Kit_DsdNtk_t * ppNtks[32] = {0}, * pTemp;
unsigned * ppCofs[5][16];
int piCofVar[5];
int nPrimeSizeMax, nPrimeSizeCur, nSuppSizeMax;
int i, k, v1, v2, v3, v4, s, nSteps, nSize, nMemSize;
assert( nCofLevel < 5 );
// print the function
ppNtks[0] = Kit_DsdDecompose( pTruth, nVars );
ppNtks[0] = Kit_DsdExpand( pTemp = ppNtks[0] );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
Kit_DsdPrint( stdout, ppNtks[0] ), printf( "\n" );
Kit_DsdNtkFree( ppNtks[0] );
// allocate storage for cofactors
nMemSize = Kit_TruthWordNum(nVars);
ppCofs[0][0] = ABC_ALLOC( unsigned, 80 * nMemSize );
nSize = 0;
for ( i = 0; i < 5; i++ )
for ( k = 0; k < 16; k++ )
ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++;
assert( nSize == 80 );
// copy the function
Kit_TruthCopy( ppCofs[0][0], pTruth, nVars );
if ( nCofLevel == 1 )
for ( v1 = 0; v1 < nVars; v1++ )
{
nSteps = 0;
piCofVar[nSteps++] = v1;
printf( " Variables { " );
for ( i = 0; i < nSteps; i++ )
printf( "%c ", 'a' + piCofVar[i] );
printf( "}\n" );
// single cofactors
for ( s = 1; s <= nSteps; s++ )
{
for ( k = 0; k < s; k++ )
{
nSize = (1 << k);
for ( i = 0; i < nSize; i++ )
{
Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
}
}
}
// compute DSD networks
nSize = (1 << nSteps);
nPrimeSizeMax = 0;
nSuppSizeMax = 0;
for ( i = 0; i < nSize; i++ )
{
ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
{
printf( "Cof%d%d: ", nSteps, i );
Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
}
// compute the largest non-decomp block
nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
Kit_DsdNtkFree( ppNtks[i] );
nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
}
printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
}
if ( nCofLevel == 2 )
for ( v1 = 0; v1 < nVars; v1++ )
for ( v2 = v1+1; v2 < nVars; v2++ )
{
nSteps = 0;
piCofVar[nSteps++] = v1;
piCofVar[nSteps++] = v2;
printf( " Variables { " );
for ( i = 0; i < nSteps; i++ )
printf( "%c ", 'a' + piCofVar[i] );
printf( "}\n" );
// single cofactors
for ( s = 1; s <= nSteps; s++ )
{
for ( k = 0; k < s; k++ )
{
nSize = (1 << k);
for ( i = 0; i < nSize; i++ )
{
Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
}
}
}
// compute DSD networks
nSize = (1 << nSteps);
nPrimeSizeMax = 0;
nSuppSizeMax = 0;
for ( i = 0; i < nSize; i++ )
{
ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
{
printf( "Cof%d%d: ", nSteps, i );
Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
}
// compute the largest non-decomp block
nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
Kit_DsdNtkFree( ppNtks[i] );
nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
}
printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
}
if ( nCofLevel == 3 )
for ( v1 = 0; v1 < nVars; v1++ )
for ( v2 = v1+1; v2 < nVars; v2++ )
for ( v3 = v2+1; v3 < nVars; v3++ )
{
nSteps = 0;
piCofVar[nSteps++] = v1;
piCofVar[nSteps++] = v2;
piCofVar[nSteps++] = v3;
printf( " Variables { " );
for ( i = 0; i < nSteps; i++ )
printf( "%c ", 'a' + piCofVar[i] );
printf( "}\n" );
// single cofactors
for ( s = 1; s <= nSteps; s++ )
{
for ( k = 0; k < s; k++ )
{
nSize = (1 << k);
for ( i = 0; i < nSize; i++ )
{
Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
}
}
}
// compute DSD networks
nSize = (1 << nSteps);
nPrimeSizeMax = 0;
nSuppSizeMax = 0;
for ( i = 0; i < nSize; i++ )
{
ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
{
printf( "Cof%d%d: ", nSteps, i );
Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
}
// compute the largest non-decomp block
nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
Kit_DsdNtkFree( ppNtks[i] );
nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
}
printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
}
if ( nCofLevel == 4 )
for ( v1 = 0; v1 < nVars; v1++ )
for ( v2 = v1+1; v2 < nVars; v2++ )
for ( v3 = v2+1; v3 < nVars; v3++ )
for ( v4 = v3+1; v4 < nVars; v4++ )
{
nSteps = 0;
piCofVar[nSteps++] = v1;
piCofVar[nSteps++] = v2;
piCofVar[nSteps++] = v3;
piCofVar[nSteps++] = v4;
printf( " Variables { " );
for ( i = 0; i < nSteps; i++ )
printf( "%c ", 'a' + piCofVar[i] );
printf( "}\n" );
// single cofactors
for ( s = 1; s <= nSteps; s++ )
{
for ( k = 0; k < s; k++ )
{
nSize = (1 << k);
for ( i = 0; i < nSize; i++ )
{
Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] );
Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] );
}
}
}
// compute DSD networks
nSize = (1 << nSteps);
nPrimeSizeMax = 0;
nSuppSizeMax = 0;
for ( i = 0; i < nSize; i++ )
{
ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars );
ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] );
Kit_DsdNtkFree( pTemp );
if ( fVerbose )
{
printf( "Cof%d%d: ", nSteps, i );
Kit_DsdPrint( stdout, ppNtks[i] ), printf( "\n" );
}
// compute the largest non-decomp block
nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]);
nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur );
Kit_DsdNtkFree( ppNtks[i] );
nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars );
}
printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax );
}
ABC_FREE( ppCofs[0][0] );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char ** Kit_DsdNpn4ClassNames()
{
static const char * pNames[222] = {
"F = 0", /* 0 */
"F = (!d*(!c*(!b*!a)))", /* 1 */
"F = (!d*(!c*!b))", /* 2 */
"F = (!d*(!c*(b+a)))", /* 3 */
"F = (!d*(!c*!(b*a)))", /* 4 */
"F = (!d*!c)", /* 5 */
"F = (!d*16(a,b,c))", /* 6 */
"F = (!d*17(a,b,c))", /* 7 */
"F = (!d*18(a,b,c))", /* 8 */
"F = (!d*19(a,b,c))", /* 9 */
"F = (!d*CA(!b,!c,a))", /* 10 */
"F = (!d*(c+!(!b*!a)))", /* 11 */
"F = (!d*!(c*!(!b*!a)))", /* 12 */
"F = (!d*(c+b))", /* 13 */
"F = (!d*3D(a,b,c))", /* 14 */
"F = (!d*!(c*b))", /* 15 */
"F = (!d*(c+(b+!a)))", /* 16 */
"F = (!d*6B(a,b,c))", /* 17 */
"F = (!d*!(c*!(b+a)))", /* 18 */
"F = (!d*7E(a,b,c))", /* 19 */
"F = (!d*!(c*(b*a)))", /* 20 */
"F = (!d)", /* 21 */
"F = 0116(a,b,c,d)", /* 22 */
"F = 0117(a,b,c,d)", /* 23 */
"F = 0118(a,b,c,d)", /* 24 */
"F = 0119(a,b,c,d)", /* 25 */
"F = 011A(a,b,c,d)", /* 26 */
"F = 011B(a,b,c,d)", /* 27 */
"F = 29((!b*!a),c,d)", /* 28 */
"F = 2B((!b*!a),c,d)", /* 29 */
"F = 012C(a,b,c,d)", /* 30 */
"F = 012D(a,b,c,d)", /* 31 */
"F = 012F(a,b,c,d)", /* 32 */
"F = 013C(a,b,c,d)", /* 33 */
"F = 013D(a,b,c,d)", /* 34 */
"F = 013E(a,b,c,d)", /* 35 */
"F = 013F(a,b,c,d)", /* 36 */
"F = 0168(a,b,c,d)", /* 37 */
"F = 0169(a,b,c,d)", /* 38 */
"F = 016A(a,b,c,d)", /* 39 */
"F = 016B(a,b,c,d)", /* 40 */
"F = 016E(a,b,c,d)", /* 41 */
"F = 016F(a,b,c,d)", /* 42 */
"F = 017E(a,b,c,d)", /* 43 */
"F = 017F(a,b,c,d)", /* 44 */
"F = 0180(a,b,c,d)", /* 45 */
"F = 0181(a,b,c,d)", /* 46 */
"F = 0182(a,b,c,d)", /* 47 */
"F = 0183(a,b,c,d)", /* 48 */
"F = 0186(a,b,c,d)", /* 49 */
"F = 0187(a,b,c,d)", /* 50 */
"F = 0189(a,b,c,d)", /* 51 */
"F = 018B(a,b,c,d)", /* 52 */
"F = 018F(a,b,c,d)", /* 53 */
"F = 0196(a,b,c,d)", /* 54 */
"F = 0197(a,b,c,d)", /* 55 */
"F = 0198(a,b,c,d)", /* 56 */
"F = 0199(a,b,c,d)", /* 57 */
"F = 019A(a,b,c,d)", /* 58 */
"F = 019B(a,b,c,d)", /* 59 */
"F = 019E(a,b,c,d)", /* 60 */
"F = 019F(a,b,c,d)", /* 61 */
"F = 42(a,(!c*!b),d)", /* 62 */
"F = 46(a,(!c*!b),d)", /* 63 */
"F = 4A(a,(!c*!b),d)", /* 64 */
"F = CA((!c*!b),!d,a)", /* 65 */
"F = 01AC(a,b,c,d)", /* 66 */
"F = 01AD(a,b,c,d)", /* 67 */
"F = 01AE(a,b,c,d)", /* 68 */
"F = 01AF(a,b,c,d)", /* 69 */
"F = 01BC(a,b,c,d)", /* 70 */
"F = 01BD(a,b,c,d)", /* 71 */
"F = 01BE(a,b,c,d)", /* 72 */
"F = 01BF(a,b,c,d)", /* 73 */
"F = 01E8(a,b,c,d)", /* 74 */
"F = 01E9(a,b,c,d)", /* 75 */
"F = 01EA(a,b,c,d)", /* 76 */
"F = 01EB(a,b,c,d)", /* 77 */
"F = 25((!b*!a),c,d)", /* 78 */
"F = !CA(d,c,(!b*!a))", /* 79 */
"F = (d+!(!c*(!b*!a)))", /* 80 */
"F = 16(b,c,d)", /* 81 */
"F = 033D(a,b,c,d)", /* 82 */
"F = 17(b,c,d)", /* 83 */
"F = ((!d*!a)+(!c*!b))", /* 84 */
"F = !(!(!c*!b)*!(!d*!a))", /* 85 */
"F = 0358(a,b,c,d)", /* 86 */
"F = 0359(a,b,c,d)", /* 87 */
"F = 035A(a,b,c,d)", /* 88 */
"F = 035B(a,b,c,d)", /* 89 */
"F = 035E(a,b,c,d)", /* 90 */
"F = 035F(a,b,c,d)", /* 91 */
"F = 0368(a,b,c,d)", /* 92 */
"F = 0369(a,b,c,d)", /* 93 */
"F = 036A(a,b,c,d)", /* 94 */
"F = 036B(a,b,c,d)", /* 95 */
"F = 036C(a,b,c,d)", /* 96 */
"F = 036D(a,b,c,d)", /* 97 */
"F = 036E(a,b,c,d)", /* 98 */
"F = 036F(a,b,c,d)", /* 99 */
"F = 037C(a,b,c,d)", /* 100 */
"F = 037D(a,b,c,d)", /* 101 */
"F = 037E(a,b,c,d)", /* 102 */
"F = 18(b,c,d)", /* 103 */
"F = 03C1(a,b,c,d)", /* 104 */
"F = 19(b,c,d)", /* 105 */
"F = 03C5(a,b,c,d)", /* 106 */
"F = 03C6(a,b,c,d)", /* 107 */
"F = 03C7(a,b,c,d)", /* 108 */
"F = CA(!c,!d,b)", /* 109 */
"F = 03D4(a,b,c,d)", /* 110 */
"F = 03D5(a,b,c,d)", /* 111 */
"F = 03D6(a,b,c,d)", /* 112 */
"F = 03D7(a,b,c,d)", /* 113 */
"F = 03D8(a,b,c,d)", /* 114 */
"F = 03D9(a,b,c,d)", /* 115 */
"F = 03DB(a,b,c,d)", /* 116 */
"F = 03DC(a,b,c,d)", /* 117 */
"F = 03DD(a,b,c,d)", /* 118 */
"F = 03DE(a,b,c,d)", /* 119 */
"F = (d+!(!c*!b))", /* 120 */
"F = ((d+c)*(b+a))", /* 121 */
"F = 0661(a,b,c,d)", /* 122 */
"F = 0662(a,b,c,d)", /* 123 */
"F = 0663(a,b,c,d)", /* 124 */
"F = (!(d*c)*(b+a))", /* 125 */
"F = 0667(a,b,c,d)", /* 126 */
"F = 29((b+a),c,d)", /* 127 */
"F = 066B(a,b,c,d)", /* 128 */
"F = 2B((b+a),c,d)", /* 129 */
"F = 0672(a,b,c,d)", /* 130 */
"F = 0673(a,b,c,d)", /* 131 */
"F = 0676(a,b,c,d)", /* 132 */
"F = 0678(a,b,c,d)", /* 133 */
"F = 0679(a,b,c,d)", /* 134 */
"F = 067A(a,b,c,d)", /* 135 */
"F = 067B(a,b,c,d)", /* 136 */
"F = 067E(a,b,c,d)", /* 137 */
"F = 24((b+a),c,d)", /* 138 */
"F = 0691(a,b,c,d)", /* 139 */
"F = 0693(a,b,c,d)", /* 140 */
"F = 26((b+a),c,d)", /* 141 */
"F = 0697(a,b,c,d)", /* 142 */
"F = !CA(d,c,(b+a))", /* 143 */
"F = 06B0(a,b,c,d)", /* 144 */
"F = 06B1(a,b,c,d)", /* 145 */
"F = 06B2(a,b,c,d)", /* 146 */
"F = 06B3(a,b,c,d)", /* 147 */
"F = 06B4(a,b,c,d)", /* 148 */
"F = 06B5(a,b,c,d)", /* 149 */
"F = 06B6(a,b,c,d)", /* 150 */
"F = 06B7(a,b,c,d)", /* 151 */
"F = 06B9(a,b,c,d)", /* 152 */
"F = 06BD(a,b,c,d)", /* 153 */
"F = 2C((b+a),c,d)", /* 154 */
"F = 06F1(a,b,c,d)", /* 155 */
"F = 06F2(a,b,c,d)", /* 156 */
"F = CA((b+a),!d,c)", /* 157 */
"F = (d+!(!c*!(b+!a)))", /* 158 */
"F = 0776(a,b,c,d)", /* 159 */
"F = 16((b*a),c,d)", /* 160 */
"F = 0779(a,b,c,d)", /* 161 */
"F = 077A(a,b,c,d)", /* 162 */
"F = 077E(a,b,c,d)", /* 163 */
"F = 07B0(a,b,c,d)", /* 164 */
"F = 07B1(a,b,c,d)", /* 165 */
"F = 07B4(a,b,c,d)", /* 166 */
"F = 07B5(a,b,c,d)", /* 167 */
"F = 07B6(a,b,c,d)", /* 168 */
"F = 07BC(a,b,c,d)", /* 169 */
"F = 07E0(a,b,c,d)", /* 170 */
"F = 07E1(a,b,c,d)", /* 171 */
"F = 07E2(a,b,c,d)", /* 172 */
"F = 07E3(a,b,c,d)", /* 173 */
"F = 07E6(a,b,c,d)", /* 174 */
"F = 07E9(a,b,c,d)", /* 175 */
"F = 1C((b*a),c,d)", /* 176 */
"F = 07F1(a,b,c,d)", /* 177 */
"F = 07F2(a,b,c,d)", /* 178 */
"F = (d+!(!c*!(b*a)))", /* 179 */
"F = (d+c)", /* 180 */
"F = 1668(a,b,c,d)", /* 181 */
"F = 1669(a,b,c,d)", /* 182 */
"F = 166A(a,b,c,d)", /* 183 */
"F = 166B(a,b,c,d)", /* 184 */
"F = 166E(a,b,c,d)", /* 185 */
"F = 167E(a,b,c,d)", /* 186 */
"F = 1681(a,b,c,d)", /* 187 */
"F = 1683(a,b,c,d)", /* 188 */
"F = 1686(a,b,c,d)", /* 189 */
"F = 1687(a,b,c,d)", /* 190 */
"F = 1689(a,b,c,d)", /* 191 */
"F = 168B(a,b,c,d)", /* 192 */
"F = 168E(a,b,c,d)", /* 193 */
"F = 1696(a,b,c,d)", /* 194 */
"F = 1697(a,b,c,d)", /* 195 */
"F = 1698(a,b,c,d)", /* 196 */
"F = 1699(a,b,c,d)", /* 197 */
"F = 169A(a,b,c,d)", /* 198 */
"F = 169B(a,b,c,d)", /* 199 */
"F = 169E(a,b,c,d)", /* 200 */
"F = 16A9(a,b,c,d)", /* 201 */
"F = 16AC(a,b,c,d)", /* 202 */
"F = 16AD(a,b,c,d)", /* 203 */
"F = 16BC(a,b,c,d)", /* 204 */
"F = (d+E9(a,b,c))", /* 205 */
"F = 177E(a,b,c,d)", /* 206 */
"F = 178E(a,b,c,d)", /* 207 */
"F = 1796(a,b,c,d)", /* 208 */
"F = 1798(a,b,c,d)", /* 209 */
"F = 179A(a,b,c,d)", /* 210 */
"F = 17AC(a,b,c,d)", /* 211 */
"F = (d+E8(a,b,c))", /* 212 */
"F = (d+E7(a,b,c))", /* 213 */
"F = 19E1(a,b,c,d)", /* 214 */
"F = 19E3(a,b,c,d)", /* 215 */
"F = (d+E6(a,b,c))", /* 216 */
"F = 1BD8(a,b,c,d)", /* 217 */
"F = (d+CA(b,c,a))", /* 218 */
"F = (d+(c+(!b*!a)))", /* 219 */
"F = (d+(c+!b))", /* 220 */
"F = (d+(c+(b+a)))" /* 221 */
};
return (char **)pNames;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END