blob: f10971adfd6bc71332f86c935002781746ef3ad3 [file] [log] [blame]
/**CFile****************************************************************
FileName [fpgaUtils.c]
PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]
Synopsis [Technology mapping for variable-size-LUT FPGAs.]
Author [MVSIS Group]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - August 18, 2004.]
Revision [$Id: fpgaUtils.c,v 1.3 2004/07/06 04:55:58 alanmi Exp $]
***********************************************************************/
#include "fpgaInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define FPGA_CO_LIST_SIZE 5
static void Fpga_MappingDfs_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes, int fCollectEquiv );
static void Fpga_MappingDfsCuts_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes );
static int Fpga_MappingCompareOutputDelay( Fpga_Node_t ** ppNode1, Fpga_Node_t ** ppNode2 );
static void Fpga_MappingFindLatest( Fpga_Man_t * p, int * pNodes, int nNodesMax );
static void Fpga_DfsLim_rec( Fpga_Node_t * pNode, int Level, Fpga_NodeVec_t * vNodes );
static int Fpga_CollectNodeTfo_rec( Fpga_Node_t * pNode, Fpga_Node_t * pPivot, Fpga_NodeVec_t * vVisited, Fpga_NodeVec_t * vTfo );
static Fpga_NodeVec_t * Fpga_MappingOrderCosByLevel( Fpga_Man_t * pMan );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingDfs( Fpga_Man_t * pMan, int fCollectEquiv )
{
Fpga_NodeVec_t * vNodes;//, * vNodesCo;
Fpga_Node_t * pNode;
int i;
// collect the CO nodes by level
// vNodesCo = Fpga_MappingOrderCosByLevel( pMan );
// start the array
vNodes = Fpga_NodeVecAlloc( 100 );
// collect the PIs
for ( i = 0; i < pMan->nInputs; i++ )
{
pNode = pMan->pInputs[i];
Fpga_NodeVecPush( vNodes, pNode );
pNode->fMark0 = 1;
}
// perform the traversal
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_MappingDfs_rec( Fpga_Regular(pMan->pOutputs[i]), vNodes, fCollectEquiv );
// for ( i = vNodesCo->nSize - 1; i >= 0 ; i-- )
// for ( pNode = vNodesCo->pArray[i]; pNode; pNode = (Fpga_Node_t *)pNode->pData0 )
// Fpga_MappingDfs_rec( pNode, vNodes, fCollectEquiv );
// clean the node marks
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
// for ( i = 0; i < pMan->nOutputs; i++ )
// Fpga_MappingUnmark_rec( Fpga_Regular(pMan->pOutputs[i]) );
// Fpga_NodeVecFree( vNodesCo );
return vNodes;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingDfs_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes, int fCollectEquiv )
{
assert( !Fpga_IsComplement(pNode) );
if ( pNode->fMark0 )
return;
// visit the transitive fanin
if ( Fpga_NodeIsAnd(pNode) )
{
Fpga_MappingDfs_rec( Fpga_Regular(pNode->p1), vNodes, fCollectEquiv );
Fpga_MappingDfs_rec( Fpga_Regular(pNode->p2), vNodes, fCollectEquiv );
}
// visit the equivalent nodes
if ( fCollectEquiv && pNode->pNextE )
Fpga_MappingDfs_rec( pNode->pNextE, vNodes, fCollectEquiv );
// make sure the node is not visited through the equivalent nodes
assert( pNode->fMark0 == 0 );
// mark the node as visited
pNode->fMark0 = 1;
// add the node to the list
Fpga_NodeVecPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingDfsNodes( Fpga_Man_t * pMan, Fpga_Node_t ** ppNodes, int nNodes, int fEquiv )
{
Fpga_NodeVec_t * vNodes;
int i;
// perform the traversal
vNodes = Fpga_NodeVecAlloc( 200 );
for ( i = 0; i < nNodes; i++ )
Fpga_MappingDfs_rec( ppNodes[i], vNodes, fEquiv );
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
return vNodes;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingGetAreaFlow( Fpga_Man_t * p )
{
float aFlowFlowTotal = 0;
int i;
for ( i = 0; i < p->nOutputs; i++ )
{
if ( Fpga_NodeIsConst(p->pOutputs[i]) )
continue;
aFlowFlowTotal += Fpga_Regular(p->pOutputs[i])->pCutBest->aFlow;
}
return aFlowFlowTotal;
}
/**Function*************************************************************
Synopsis [Computes the area of the current mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingArea( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode;
float aTotal;
int i;
// perform the traversal
aTotal = 0;
for ( i = 0; i < pMan->vMapping->nSize; i++ )
{
pNode = pMan->vMapping->pArray[i];
aTotal += pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
}
return aTotal;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingArea_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes )
{
float aArea;
int i;
assert( !Fpga_IsComplement(pNode) );
if ( !Fpga_NodeIsAnd(pNode) )
return 0;
if ( pNode->fMark0 )
return 0;
assert( pNode->pCutBest != NULL );
// visit the transitive fanin of the selected cut
aArea = 0;
for ( i = 0; i < pNode->pCutBest->nLeaves; i++ )
aArea += Fpga_MappingArea_rec( pMan, pNode->pCutBest->ppLeaves[i], vNodes );
// make sure the node is not visited through the fanin nodes
assert( pNode->fMark0 == 0 );
// mark the node as visited
pNode->fMark0 = 1;
// add the node to the list
aArea += pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
// add the node to the list
Fpga_NodeVecPush( vNodes, pNode );
return aArea;
}
/**Function*************************************************************
Synopsis [Computes the area of the current mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingAreaTrav( Fpga_Man_t * pMan )
{
Fpga_NodeVec_t * vNodes;
float aTotal;
int i;
// perform the traversal
aTotal = 0;
vNodes = Fpga_NodeVecAlloc( 100 );
for ( i = 0; i < pMan->nOutputs; i++ )
aTotal += Fpga_MappingArea_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), vNodes );
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
Fpga_NodeVecFree( vNodes );
return aTotal;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingSetRefsAndArea_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, Fpga_Node_t ** ppStore )
{
float aArea;
int i;
assert( !Fpga_IsComplement(pNode) );
if ( pNode->nRefs++ )
return 0;
if ( !Fpga_NodeIsAnd(pNode) )
return 0;
assert( pNode->pCutBest != NULL );
// store the node in the structure by level
pNode->pData0 = (char *)ppStore[pNode->Level];
ppStore[pNode->Level] = pNode;
// visit the transitive fanin of the selected cut
aArea = pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
for ( i = 0; i < pNode->pCutBest->nLeaves; i++ )
aArea += Fpga_MappingSetRefsAndArea_rec( pMan, pNode->pCutBest->ppLeaves[i], ppStore );
return aArea;
}
/**Function*************************************************************
Synopsis [Sets the correct reference counts for the mapping.]
Description [Collects the nodes in reverse topological order
and places in them in array pMan->vMapping.]
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingSetRefsAndArea( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode, ** ppStore;
float aArea;
int i, LevelMax;
// clean all references
for ( i = 0; i < pMan->vNodesAll->nSize; i++ )
pMan->vNodesAll->pArray[i]->nRefs = 0;
// allocate place to store the nodes
LevelMax = Fpga_MappingMaxLevel( pMan );
ppStore = ABC_ALLOC( Fpga_Node_t *, LevelMax + 1 );
memset( ppStore, 0, sizeof(Fpga_Node_t *) * (LevelMax + 1) );
// collect nodes reachable from POs in the DFS order through the best cuts
aArea = 0;
for ( i = 0; i < pMan->nOutputs; i++ )
{
pNode = Fpga_Regular(pMan->pOutputs[i]);
if ( pNode == pMan->pConst1 )
continue;
aArea += Fpga_MappingSetRefsAndArea_rec( pMan, pNode, ppStore );
pNode->nRefs++;
}
// reconnect the nodes in reverse topological order
pMan->vMapping->nSize = 0;
for ( i = LevelMax; i >= 0; i-- )
for ( pNode = ppStore[i]; pNode; pNode = (Fpga_Node_t *)pNode->pData0 )
Fpga_NodeVecPush( pMan->vMapping, pNode );
ABC_FREE( ppStore );
return aArea;
}
/**Function*************************************************************
Synopsis [Compares the outputs by their arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_MappingCompareOutputDelay( Fpga_Node_t ** ppNode1, Fpga_Node_t ** ppNode2 )
{
Fpga_Node_t * pNode1 = Fpga_Regular(*ppNode1);
Fpga_Node_t * pNode2 = Fpga_Regular(*ppNode2);
float Arrival1 = pNode1->pCutBest? pNode1->pCutBest->tArrival : 0;
float Arrival2 = pNode2->pCutBest? pNode2->pCutBest->tArrival : 0;
if ( Arrival1 < Arrival2 )
return -1;
if ( Arrival1 > Arrival2 )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Finds given number of latest arriving COs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingFindLatest( Fpga_Man_t * p, int * pNodes, int nNodesMax )
{
int nNodes, i, k, v;
assert( p->nOutputs >= nNodesMax );
pNodes[0] = 0;
nNodes = 1;
for ( i = 1; i < p->nOutputs; i++ )
{
for ( k = nNodes - 1; k >= 0; k-- )
if ( Fpga_MappingCompareOutputDelay( &p->pOutputs[pNodes[k]], &p->pOutputs[i] ) >= 0 )
break;
if ( k == nNodesMax - 1 )
continue;
if ( nNodes < nNodesMax )
nNodes++;
for ( v = nNodes - 1; v > k+1; v-- )
pNodes[v] = pNodes[v-1];
pNodes[k+1] = i;
}
}
/**Function*************************************************************
Synopsis [Prints a bunch of latest arriving outputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingPrintOutputArrivals( Fpga_Man_t * p )
{
Fpga_Node_t * pNode;
int pSorted[FPGA_CO_LIST_SIZE];
int fCompl, Limit, MaxNameSize, i;
// determine the number of nodes to print
Limit = (p->nOutputs > FPGA_CO_LIST_SIZE)? FPGA_CO_LIST_SIZE : p->nOutputs;
// determine the order
Fpga_MappingFindLatest( p, pSorted, Limit );
// determine max size of the node's name
MaxNameSize = 0;
for ( i = 0; i < Limit; i++ )
if ( MaxNameSize < (int)strlen(p->ppOutputNames[pSorted[i]]) )
MaxNameSize = strlen(p->ppOutputNames[pSorted[i]]);
// print the latest outputs
for ( i = 0; i < Limit; i++ )
{
// get the i-th latest output
pNode = Fpga_Regular(p->pOutputs[pSorted[i]]);
fCompl = Fpga_IsComplement(p->pOutputs[pSorted[i]]);
// print out the best arrival time
printf( "Output %-*s : ", MaxNameSize + 3, p->ppOutputNames[pSorted[i]] );
printf( "Delay = %8.2f ", (double)pNode->pCutBest->tArrival );
if ( fCompl )
printf( "NEG" );
else
printf( "POS" );
printf( "\n" );
}
}
/**Function*************************************************************
Synopsis [Sets up the truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSetupTruthTables( unsigned uTruths[][2] )
{
int m, v;
// set up the truth tables
for ( m = 0; m < 32; m++ )
for ( v = 0; v < 5; v++ )
if ( m & (1 << v) )
uTruths[v][0] |= (1 << m);
// make adjustments for the case of 6 variables
for ( v = 0; v < 5; v++ )
uTruths[v][1] = uTruths[v][0];
uTruths[5][0] = 0;
uTruths[5][1] = FPGA_FULL;
}
/**Function*************************************************************
Synopsis [Sets up the mask.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSetupMask( unsigned uMask[], int nVarsMax )
{
if ( nVarsMax == 6 )
uMask[0] = uMask[1] = FPGA_FULL;
else
{
uMask[0] = FPGA_MASK(1 << nVarsMax);
uMask[1] = 0;
}
}
/**Function*************************************************************
Synopsis [Verify one useful property.]
Description [This procedure verifies one useful property. After
the FRAIG construction with choice nodes is over, each primary node
should have fanins that are primary nodes. The primary nodes is the
one that does not have pNode->pRepr set to point to another node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_ManCheckConsistency( Fpga_Man_t * p )
{
Fpga_Node_t * pNode;
Fpga_NodeVec_t * pVec;
int i;
pVec = Fpga_MappingDfs( p, 0 );
for ( i = 0; i < pVec->nSize; i++ )
{
pNode = pVec->pArray[i];
if ( Fpga_NodeIsVar(pNode) )
{
if ( pNode->pRepr )
printf( "Primary input %d is a secondary node.\n", pNode->Num );
}
else if ( Fpga_NodeIsConst(pNode) )
{
if ( pNode->pRepr )
printf( "Constant 1 %d is a secondary node.\n", pNode->Num );
}
else
{
if ( pNode->pRepr )
printf( "Internal node %d is a secondary node.\n", pNode->Num );
if ( Fpga_Regular(pNode->p1)->pRepr )
printf( "Internal node %d has first fanin that is a secondary node.\n", pNode->Num );
if ( Fpga_Regular(pNode->p2)->pRepr )
printf( "Internal node %d has second fanin that is a secondary node.\n", pNode->Num );
}
}
Fpga_NodeVecFree( pVec );
return 1;
}
/**Function*************************************************************
Synopsis [Compares the supergates by their level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_CompareNodesByLevelDecreasing( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
if ( Fpga_Regular(*ppS1)->Level > Fpga_Regular(*ppS2)->Level )
return -1;
if ( Fpga_Regular(*ppS1)->Level < Fpga_Regular(*ppS2)->Level )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Compares the supergates by their level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_CompareNodesByLevelIncreasing( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
if ( Fpga_Regular(*ppS1)->Level < Fpga_Regular(*ppS2)->Level )
return -1;
if ( Fpga_Regular(*ppS1)->Level > Fpga_Regular(*ppS2)->Level )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Orders the nodes in the decreasing order of levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSortByLevel( Fpga_Man_t * pMan, Fpga_NodeVec_t * vNodes, int fIncreasing )
{
if ( fIncreasing )
qsort( (void *)vNodes->pArray, vNodes->nSize, sizeof(Fpga_Node_t *),
(int (*)(const void *, const void *)) Fpga_CompareNodesByLevelIncreasing );
else
qsort( (void *)vNodes->pArray, vNodes->nSize, sizeof(Fpga_Node_t *),
(int (*)(const void *, const void *)) Fpga_CompareNodesByLevelDecreasing );
// assert( Fpga_CompareNodesByLevel( vNodes->pArray, vNodes->pArray + vNodes->nSize - 1 ) <= 0 );
}
/**Function*************************************************************
Synopsis [Computes the limited DFS ordering for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_DfsLim( Fpga_Man_t * pMan, Fpga_Node_t * pNode, int nLevels )
{
Fpga_NodeVec_t * vNodes;
int i;
// perform the traversal
vNodes = Fpga_NodeVecAlloc( 100 );
Fpga_DfsLim_rec( pNode, nLevels, vNodes );
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
return vNodes;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_DfsLim_rec( Fpga_Node_t * pNode, int Level, Fpga_NodeVec_t * vNodes )
{
assert( !Fpga_IsComplement(pNode) );
if ( pNode->fMark0 )
return;
pNode->fMark0 = 1;
// visit the transitive fanin
Level--;
if ( Level > 0 && Fpga_NodeIsAnd(pNode) )
{
Fpga_DfsLim_rec( Fpga_Regular(pNode->p1), Level, vNodes );
Fpga_DfsLim_rec( Fpga_Regular(pNode->p2), Level, vNodes );
}
// add the node to the list
Fpga_NodeVecPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Computes the limited DFS ordering for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_ManCleanData0( Fpga_Man_t * pMan )
{
int i;
for ( i = 0; i < pMan->vNodesAll->nSize; i++ )
pMan->vNodesAll->pArray[i]->pData0 = 0;
}
/**Function*************************************************************
Synopsis [Collects the TFO of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_CollectNodeTfo( Fpga_Man_t * pMan, Fpga_Node_t * pNode )
{
Fpga_NodeVec_t * vVisited, * vTfo;
int i;
// perform the traversal
vVisited = Fpga_NodeVecAlloc( 100 );
vTfo = Fpga_NodeVecAlloc( 100 );
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_CollectNodeTfo_rec( Fpga_Regular(pMan->pOutputs[i]), pNode, vVisited, vTfo );
for ( i = 0; i < vVisited->nSize; i++ )
vVisited->pArray[i]->fMark0 = vVisited->pArray[i]->fMark1 = 0;
Fpga_NodeVecFree( vVisited );
return vTfo;
}
/**Function*************************************************************
Synopsis [Collects the TFO of the node.]
Description [Returns 1 if the node should be collected.]
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_CollectNodeTfo_rec( Fpga_Node_t * pNode, Fpga_Node_t * pPivot, Fpga_NodeVec_t * vVisited, Fpga_NodeVec_t * vTfo )
{
int Ret1, Ret2;
assert( !Fpga_IsComplement(pNode) );
// skip visited nodes
if ( pNode->fMark0 )
return pNode->fMark1;
pNode->fMark0 = 1;
Fpga_NodeVecPush( vVisited, pNode );
// return the pivot node
if ( pNode == pPivot )
{
pNode->fMark1 = 1;
return 1;
}
if ( pNode->Level < pPivot->Level )
{
pNode->fMark1 = 0;
return 0;
}
// visit the transitive fanin
assert( Fpga_NodeIsAnd(pNode) );
Ret1 = Fpga_CollectNodeTfo_rec( Fpga_Regular(pNode->p1), pPivot, vVisited, vTfo );
Ret2 = Fpga_CollectNodeTfo_rec( Fpga_Regular(pNode->p2), pPivot, vVisited, vTfo );
if ( Ret1 || Ret2 )
{
pNode->fMark1 = 1;
Fpga_NodeVecPush( vTfo, pNode );
}
else
pNode->fMark1 = 0;
return pNode->fMark1;
}
/**Function*************************************************************
Synopsis [Levelizes the nodes accessible from the POs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingLevelize( Fpga_Man_t * pMan, Fpga_NodeVec_t * vNodes )
{
Fpga_NodeVec_t * vLevels;
Fpga_Node_t ** ppNodes;
Fpga_Node_t * pNode;
int nNodes, nLevelsMax, i;
// reassign the levels (this may be necessary for networks which choices)
ppNodes = vNodes->pArray;
nNodes = vNodes->nSize;
for ( i = 0; i < nNodes; i++ )
{
pNode = ppNodes[i];
if ( !Fpga_NodeIsAnd(pNode) )
{
pNode->Level = 0;
continue;
}
pNode->Level = 1 + FPGA_MAX( Fpga_Regular(pNode->p1)->Level, Fpga_Regular(pNode->p2)->Level );
}
// get the max levels
nLevelsMax = 0;
for ( i = 0; i < pMan->nOutputs; i++ )
nLevelsMax = FPGA_MAX( nLevelsMax, (int)Fpga_Regular(pMan->pOutputs[i])->Level );
nLevelsMax++;
// allocate storage for levels
vLevels = Fpga_NodeVecAlloc( nLevelsMax );
for ( i = 0; i < nLevelsMax; i++ )
Fpga_NodeVecPush( vLevels, NULL );
// go through the nodes and add them to the levels
for ( i = 0; i < nNodes; i++ )
{
pNode = ppNodes[i];
pNode->pLevel = NULL;
if ( !Fpga_NodeIsAnd(pNode) )
continue;
// attach the node to this level
pNode->pLevel = Fpga_NodeVecReadEntry( vLevels, pNode->Level );
Fpga_NodeVecWriteEntry( vLevels, pNode->Level, pNode );
}
return vLevels;
}
/**Function*************************************************************
Synopsis [Sets up the mask.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_MappingMaxLevel( Fpga_Man_t * pMan )
{
int nLevelMax, i;
nLevelMax = 0;
for ( i = 0; i < pMan->nOutputs; i++ )
nLevelMax = nLevelMax > (int)Fpga_Regular(pMan->pOutputs[i])->Level?
nLevelMax : (int)Fpga_Regular(pMan->pOutputs[i])->Level;
return nLevelMax;
}
/**Function*************************************************************
Synopsis [Analyses choice nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_MappingUpdateLevel_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, int fMaximum )
{
Fpga_Node_t * pTemp;
int Level1, Level2, LevelE;
assert( !Fpga_IsComplement(pNode) );
if ( !Fpga_NodeIsAnd(pNode) )
return pNode->Level;
// skip the visited node
if ( pNode->TravId == pMan->nTravIds )
return pNode->Level;
pNode->TravId = pMan->nTravIds;
// compute levels of the children nodes
Level1 = Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pNode->p1), fMaximum );
Level2 = Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pNode->p2), fMaximum );
pNode->Level = 1 + FPGA_MAX( Level1, Level2 );
if ( pNode->pNextE )
{
LevelE = Fpga_MappingUpdateLevel_rec( pMan, pNode->pNextE, fMaximum );
if ( fMaximum )
{
if ( pNode->Level < (unsigned)LevelE )
pNode->Level = LevelE;
}
else
{
if ( pNode->Level > (unsigned)LevelE )
pNode->Level = LevelE;
}
// set the level of all equivalent nodes to be the same minimum
if ( pNode->pRepr == NULL ) // the primary node
for ( pTemp = pNode->pNextE; pTemp; pTemp = pTemp->pNextE )
pTemp->Level = pNode->Level;
}
return pNode->Level;
}
/**Function*************************************************************
Synopsis [Resets the levels of the nodes in the choice graph.]
Description [Makes the level of the choice nodes to be equal to the
maximum of the level of the nodes in the equivalence class. This way
sorting by level leads to the reverse topological order, which is
needed for the required time computation.]
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSetChoiceLevels( Fpga_Man_t * pMan )
{
int i;
pMan->nTravIds++;
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), 1 );
}
/**Function*************************************************************
Synopsis [Reports statistics on choice nodes.]
Description [The number of choice nodes is the number of primary nodes,
which has pNextE set to a pointer. The number of choices is the number
of entries in the equivalent-node lists of the primary nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_ManReportChoices( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode, * pTemp;
int nChoiceNodes, nChoices;
int i, LevelMax1, LevelMax2;
// report the number of levels
LevelMax1 = Fpga_MappingMaxLevel( pMan );
pMan->nTravIds++;
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), 0 );
LevelMax2 = Fpga_MappingMaxLevel( pMan );
// report statistics about choices
nChoiceNodes = nChoices = 0;
for ( i = 0; i < pMan->vAnds->nSize; i++ )
{
pNode = pMan->vAnds->pArray[i];
if ( pNode->pRepr == NULL && pNode->pNextE != NULL )
{ // this is a choice node = the primary node that has equivalent nodes
nChoiceNodes++;
for ( pTemp = pNode; pTemp; pTemp = pTemp->pNextE )
nChoices++;
}
}
if ( pMan->fVerbose )
{
printf( "Maximum level: Original = %d. Reduced due to choices = %d.\n", LevelMax1, LevelMax2 );
printf( "Choice stats: Choice nodes = %d. Total choices = %d.\n", nChoiceNodes, nChoices );
}
/*
{
FILE * pTable;
pTable = fopen( "stats_choice.txt", "a+" );
fprintf( pTable, "%s ", pMan->pFileName );
fprintf( pTable, "%4d ", LevelMax1 );
fprintf( pTable, "%4d ", pMan->vAnds->nSize - pMan->nInputs );
fprintf( pTable, "%4d ", LevelMax2 );
fprintf( pTable, "%7d ", nChoiceNodes );
fprintf( pTable, "%7d ", nChoices + nChoiceNodes );
fprintf( pTable, "\n" );
fclose( pTable );
}
*/
}
/**Function*************************************************************
Synopsis [Returns the array of CO nodes sorted by level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingOrderCosByLevel( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode;
Fpga_NodeVec_t * vNodes;
int i, nLevels;
// get the largest level of a CO
nLevels = Fpga_MappingMaxLevel( pMan );
// allocate the array of nodes
vNodes = Fpga_NodeVecAlloc( nLevels + 1 );
for ( i = 0; i <= nLevels; i++ )
Fpga_NodeVecPush( vNodes, NULL );
// clean the marks
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_Regular(pMan->pOutputs[i])->fMark0 = 0;
// put the nodes into the structure
for ( i = 0; i < pMan->nOutputs; i++ )
{
pNode = Fpga_Regular(pMan->pOutputs[i]);
if ( pNode->fMark0 )
continue;
pNode->fMark0 = 1;
pNode->pData0 = (char *)Fpga_NodeVecReadEntry( vNodes, pNode->Level );
Fpga_NodeVecWriteEntry( vNodes, pNode->Level, pNode );
}
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_Regular(pMan->pOutputs[i])->fMark0 = 0;
return vNodes;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END