blob: efd03dd30d24a02941dfae7cfe77f4f238a27da2 [file] [log] [blame]
/**CFile****************************************************************
FileName [satInter.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT sat_solver.]
Synopsis [Interpolation package.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: satInter.c,v 1.4 2005/09/16 22:55:03 casem Exp $]
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "satStore.h"
#include "misc/vec/vec.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// variable assignments
static const lit LIT_UNDEF = 0xffffffff;
// interpolation manager
struct Intp_Man_t_
{
// clauses of the problems
Sto_Man_t * pCnf; // the set of CNF clauses for A and B
// various parameters
int fVerbose; // verbosiness flag
int fProofVerif; // verifies the proof
int fProofWrite; // writes the proof file
int nVarsAlloc; // the allocated size of var arrays
int nClosAlloc; // the allocated size of clause arrays
// internal BCP
int nRootSize; // the number of root level assignments
int nTrailSize; // the number of assignments made
lit * pTrail; // chronological order of assignments (size nVars)
lit * pAssigns; // assignments by variable (size nVars)
char * pSeens; // temporary mark (size nVars)
Sto_Cls_t ** pReasons; // reasons for each assignment (size nVars)
Sto_Cls_t ** pWatches; // watched clauses for each literal (size 2*nVars)
// proof data
// Vec_Int_t * vAnties; // anticedents for all clauses
// Vec_Int_t * vBreaks; // beginnings of anticedents for each clause
Vec_Ptr_t * vAntClas; // anticedant clauses
int nAntStart; // starting antecedant clause
// proof recording
int Counter; // counter of resolved clauses
int * pProofNums; // the proof numbers for each clause (size nClauses)
FILE * pFile; // the file for proof recording
// internal verification
lit * pResLits; // the literals of the resolvent
int nResLits; // the number of literals of the resolvent
int nResLitsAlloc;// the number of literals of the resolvent
// runtime stats
abctime timeBcp; // the runtime for BCP
abctime timeTrace; // the runtime of trace construction
abctime timeTotal; // the total runtime of interpolation
};
// reading/writing the proof for a clause
static inline int Intp_ManProofGet( Intp_Man_t * p, Sto_Cls_t * pCls ) { return p->pProofNums[pCls->Id]; }
static inline void Intp_ManProofSet( Intp_Man_t * p, Sto_Cls_t * pCls, int n ) { p->pProofNums[pCls->Id] = n; }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocate proof manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Intp_Man_t * Intp_ManAlloc()
{
Intp_Man_t * p;
// allocate the manager
p = (Intp_Man_t *)ABC_ALLOC( char, sizeof(Intp_Man_t) );
memset( p, 0, sizeof(Intp_Man_t) );
// verification
p->nResLitsAlloc = (1<<16);
p->pResLits = ABC_ALLOC( lit, p->nResLitsAlloc );
// proof recording
// p->vAnties = Vec_IntAlloc( 1000 );
// p->vBreaks = Vec_IntAlloc( 1000 );
p->vAntClas = Vec_PtrAlloc( 1000 );
p->nAntStart = 0;
// parameters
p->fProofWrite = 0;
p->fProofVerif = 1;
return p;
}
/**Function*************************************************************
Synopsis [Resize proof manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManResize( Intp_Man_t * p )
{
// check if resizing is needed
if ( p->nVarsAlloc < p->pCnf->nVars )
{
// find the new size
if ( p->nVarsAlloc == 0 )
p->nVarsAlloc = 1;
while ( p->nVarsAlloc < p->pCnf->nVars )
p->nVarsAlloc *= 2;
// resize the arrays
p->pTrail = ABC_REALLOC(lit, p->pTrail, p->nVarsAlloc );
p->pAssigns = ABC_REALLOC(lit, p->pAssigns, p->nVarsAlloc );
p->pSeens = ABC_REALLOC(char, p->pSeens, p->nVarsAlloc );
// p->pVarTypes = ABC_REALLOC(int, p->pVarTypes, p->nVarsAlloc );
p->pReasons = ABC_REALLOC(Sto_Cls_t *, p->pReasons, p->nVarsAlloc );
p->pWatches = ABC_REALLOC(Sto_Cls_t *, p->pWatches, p->nVarsAlloc*2 );
}
// clean the free space
memset( p->pAssigns , 0xff, sizeof(lit) * p->pCnf->nVars );
memset( p->pSeens , 0, sizeof(char) * p->pCnf->nVars );
// memset( p->pVarTypes, 0, sizeof(int) * p->pCnf->nVars );
memset( p->pReasons , 0, sizeof(Sto_Cls_t *) * p->pCnf->nVars );
memset( p->pWatches , 0, sizeof(Sto_Cls_t *) * p->pCnf->nVars*2 );
// check if resizing of clauses is needed
if ( p->nClosAlloc < p->pCnf->nClauses )
{
// find the new size
if ( p->nClosAlloc == 0 )
p->nClosAlloc = 1;
while ( p->nClosAlloc < p->pCnf->nClauses )
p->nClosAlloc *= 2;
// resize the arrays
p->pProofNums = ABC_REALLOC( int, p->pProofNums, p->nClosAlloc );
}
memset( p->pProofNums, 0, sizeof(int) * p->pCnf->nClauses );
}
/**Function*************************************************************
Synopsis [Deallocate proof manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManFree( Intp_Man_t * p )
{
/*
printf( "Runtime stats:\n" );
ABC_PRT( "BCP ", p->timeBcp );
ABC_PRT( "Trace ", p->timeTrace );
ABC_PRT( "TOTAL ", p->timeTotal );
*/
// Vec_IntFree( p->vAnties );
// Vec_IntFree( p->vBreaks );
Vec_VecFree( (Vec_Vec_t *)p->vAntClas );
// ABC_FREE( p->pInters );
ABC_FREE( p->pProofNums );
ABC_FREE( p->pTrail );
ABC_FREE( p->pAssigns );
ABC_FREE( p->pSeens );
// ABC_FREE( p->pVarTypes );
ABC_FREE( p->pReasons );
ABC_FREE( p->pWatches );
ABC_FREE( p->pResLits );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Prints the clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManPrintClause( Intp_Man_t * p, Sto_Cls_t * pClause )
{
int i;
printf( "Clause ID = %d. Proof = %d. {", pClause->Id, Intp_ManProofGet(p, pClause) );
for ( i = 0; i < (int)pClause->nLits; i++ )
printf( " %d", pClause->pLits[i] );
printf( " }\n" );
}
/**Function*************************************************************
Synopsis [Prints the resolvent.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManPrintResolvent( lit * pResLits, int nResLits )
{
int i;
printf( "Resolvent: {" );
for ( i = 0; i < nResLits; i++ )
printf( " %d", pResLits[i] );
printf( " }\n" );
}
/**Function*************************************************************
Synopsis [Prints the interpolant for one clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManPrintInterOne( Intp_Man_t * p, Sto_Cls_t * pClause )
{
printf( "Clause %2d : ", pClause->Id );
// Extra_PrintBinary___( stdout, Intp_ManAigRead(p, pClause), (1 << p->nVarsAB) );
printf( "\n" );
}
/**Function*************************************************************
Synopsis [Adds one clause to the watcher list.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Intp_ManWatchClause( Intp_Man_t * p, Sto_Cls_t * pClause, lit Lit )
{
assert( lit_check(Lit, p->pCnf->nVars) );
if ( pClause->pLits[0] == Lit )
pClause->pNext0 = p->pWatches[lit_neg(Lit)];
else
{
assert( pClause->pLits[1] == Lit );
pClause->pNext1 = p->pWatches[lit_neg(Lit)];
}
p->pWatches[lit_neg(Lit)] = pClause;
}
/**Function*************************************************************
Synopsis [Records implication.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Intp_ManEnqueue( Intp_Man_t * p, lit Lit, Sto_Cls_t * pReason )
{
int Var = lit_var(Lit);
if ( p->pAssigns[Var] != LIT_UNDEF )
return p->pAssigns[Var] == Lit;
p->pAssigns[Var] = Lit;
p->pReasons[Var] = pReason;
p->pTrail[p->nTrailSize++] = Lit;
//printf( "assigning var %d value %d\n", Var, !lit_sign(Lit) );
return 1;
}
/**Function*************************************************************
Synopsis [Records implication.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Intp_ManCancelUntil( Intp_Man_t * p, int Level )
{
lit Lit;
int i, Var;
for ( i = p->nTrailSize - 1; i >= Level; i-- )
{
Lit = p->pTrail[i];
Var = lit_var( Lit );
p->pReasons[Var] = NULL;
p->pAssigns[Var] = LIT_UNDEF;
//printf( "cancelling var %d\n", Var );
}
p->nTrailSize = Level;
}
/**Function*************************************************************
Synopsis [Propagate one assignment.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline Sto_Cls_t * Intp_ManPropagateOne( Intp_Man_t * p, lit Lit )
{
Sto_Cls_t ** ppPrev, * pCur, * pTemp;
lit LitF = lit_neg(Lit);
int i;
// iterate through the literals
ppPrev = p->pWatches + Lit;
for ( pCur = p->pWatches[Lit]; pCur; pCur = *ppPrev )
{
// make sure the false literal is in the second literal of the clause
if ( pCur->pLits[0] == LitF )
{
pCur->pLits[0] = pCur->pLits[1];
pCur->pLits[1] = LitF;
pTemp = pCur->pNext0;
pCur->pNext0 = pCur->pNext1;
pCur->pNext1 = pTemp;
}
assert( pCur->pLits[1] == LitF );
// if the first literal is true, the clause is satisfied
if ( pCur->pLits[0] == p->pAssigns[lit_var(pCur->pLits[0])] )
{
ppPrev = &pCur->pNext1;
continue;
}
// look for a new literal to watch
for ( i = 2; i < (int)pCur->nLits; i++ )
{
// skip the case when the literal is false
if ( lit_neg(pCur->pLits[i]) == p->pAssigns[lit_var(pCur->pLits[i])] )
continue;
// the literal is either true or unassigned - watch it
pCur->pLits[1] = pCur->pLits[i];
pCur->pLits[i] = LitF;
// remove this clause from the watch list of Lit
*ppPrev = pCur->pNext1;
// add this clause to the watch list of pCur->pLits[i] (now it is pCur->pLits[1])
Intp_ManWatchClause( p, pCur, pCur->pLits[1] );
break;
}
if ( i < (int)pCur->nLits ) // found new watch
continue;
// clause is unit - enqueue new implication
if ( Intp_ManEnqueue(p, pCur->pLits[0], pCur) )
{
ppPrev = &pCur->pNext1;
continue;
}
// conflict detected - return the conflict clause
return pCur;
}
return NULL;
}
/**Function*************************************************************
Synopsis [Propagate the current assignments.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Sto_Cls_t * Intp_ManPropagate( Intp_Man_t * p, int Start )
{
Sto_Cls_t * pClause;
int i;
abctime clk = Abc_Clock();
for ( i = Start; i < p->nTrailSize; i++ )
{
pClause = Intp_ManPropagateOne( p, p->pTrail[i] );
if ( pClause )
{
p->timeBcp += Abc_Clock() - clk;
return pClause;
}
}
p->timeBcp += Abc_Clock() - clk;
return NULL;
}
/**Function*************************************************************
Synopsis [Writes one root clause into a file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManProofWriteOne( Intp_Man_t * p, Sto_Cls_t * pClause )
{
Intp_ManProofSet( p, pClause, ++p->Counter );
if ( p->fProofWrite )
{
int v;
fprintf( p->pFile, "%d", Intp_ManProofGet(p, pClause) );
for ( v = 0; v < (int)pClause->nLits; v++ )
fprintf( p->pFile, " %d", lit_print(pClause->pLits[v]) );
fprintf( p->pFile, " 0 0\n" );
}
}
/**Function*************************************************************
Synopsis [Traces the proof for one clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Intp_ManProofTraceOne( Intp_Man_t * p, Sto_Cls_t * pConflict, Sto_Cls_t * pFinal )
{
Sto_Cls_t * pReason;
int i, v, Var, PrevId;
int fPrint = 0;
abctime clk = Abc_Clock();
// collect resolvent literals
if ( p->fProofVerif )
{
assert( (int)pConflict->nLits <= p->nResLitsAlloc );
memcpy( p->pResLits, pConflict->pLits, sizeof(lit) * pConflict->nLits );
p->nResLits = pConflict->nLits;
}
// mark all the variables in the conflict as seen
for ( v = 0; v < (int)pConflict->nLits; v++ )
p->pSeens[lit_var(pConflict->pLits[v])] = 1;
// start the anticedents
// pFinal->pAntis = Vec_PtrAlloc( 32 );
// Vec_PtrPush( pFinal->pAntis, pConflict );
// assert( pFinal->Id == Vec_IntSize(p->vBreaks) );
// Vec_IntPush( p->vBreaks, Vec_IntSize(p->vAnties) );
// Vec_IntPush( p->vAnties, pConflict->Id );
{
Vec_Int_t * vAnts = Vec_IntAlloc( 16 );
assert( Vec_PtrSize(p->vAntClas) == pFinal->Id - p->nAntStart );
Vec_IntPush( vAnts, pConflict->Id );
Vec_PtrPush( p->vAntClas, vAnts );
}
// if ( p->pCnf->nClausesA )
// Intp_ManAigCopy( p, Intp_ManAigRead(p, pFinal), Intp_ManAigRead(p, pConflict) );
// follow the trail backwards
PrevId = Intp_ManProofGet(p, pConflict);
for ( i = p->nTrailSize - 1; i >= 0; i-- )
{
// skip literals that are not involved
Var = lit_var(p->pTrail[i]);
if ( !p->pSeens[Var] )
continue;
p->pSeens[Var] = 0;
// skip literals of the resulting clause
pReason = p->pReasons[Var];
if ( pReason == NULL )
continue;
assert( p->pTrail[i] == pReason->pLits[0] );
// add the variables to seen
for ( v = 1; v < (int)pReason->nLits; v++ )
p->pSeens[lit_var(pReason->pLits[v])] = 1;
// record the reason clause
assert( Intp_ManProofGet(p, pReason) > 0 );
p->Counter++;
if ( p->fProofWrite )
fprintf( p->pFile, "%d * %d %d 0\n", p->Counter, PrevId, Intp_ManProofGet(p, pReason) );
PrevId = p->Counter;
// if ( p->pCnf->nClausesA )
// {
// if ( p->pVarTypes[Var] == 1 ) // var of A
// Intp_ManAigOr( p, Intp_ManAigRead(p, pFinal), Intp_ManAigRead(p, pReason) );
// else
// Intp_ManAigAnd( p, Intp_ManAigRead(p, pFinal), Intp_ManAigRead(p, pReason) );
// }
// resolve the temporary resolvent with the reason clause
if ( p->fProofVerif )
{
int v1, v2;
if ( fPrint )
Intp_ManPrintResolvent( p->pResLits, p->nResLits );
// check that the var is present in the resolvent
for ( v1 = 0; v1 < p->nResLits; v1++ )
if ( lit_var(p->pResLits[v1]) == Var )
break;
if ( v1 == p->nResLits )
printf( "Recording clause %d: Cannot find variable %d in the temporary resolvent.\n", pFinal->Id, Var );
if ( p->pResLits[v1] != lit_neg(pReason->pLits[0]) )
printf( "Recording clause %d: The resolved variable %d is in the wrong polarity.\n", pFinal->Id, Var );
// remove this variable from the resolvent
assert( lit_var(p->pResLits[v1]) == Var );
p->nResLits--;
for ( ; v1 < p->nResLits; v1++ )
p->pResLits[v1] = p->pResLits[v1+1];
// add variables of the reason clause
for ( v2 = 1; v2 < (int)pReason->nLits; v2++ )
{
for ( v1 = 0; v1 < p->nResLits; v1++ )
if ( lit_var(p->pResLits[v1]) == lit_var(pReason->pLits[v2]) )
break;
// if it is a new variable, add it to the resolvent
if ( v1 == p->nResLits )
{
if ( p->nResLits == p->nResLitsAlloc )
printf( "Recording clause %d: Ran out of space for intermediate resolvent.\n", pFinal->Id );
p->pResLits[ p->nResLits++ ] = pReason->pLits[v2];
continue;
}
// if the variable is the same, the literal should be the same too
if ( p->pResLits[v1] == pReason->pLits[v2] )
continue;
// the literal is different
printf( "Recording clause %d: Trying to resolve the clause with more than one opposite literal.\n", pFinal->Id );
}
}
// Vec_PtrPush( pFinal->pAntis, pReason );
// Vec_IntPush( p->vAnties, pReason->Id );
Vec_IntPush( (Vec_Int_t *)Vec_PtrEntryLast(p->vAntClas), pReason->Id );
}
// unmark all seen variables
// for ( i = p->nTrailSize - 1; i >= 0; i-- )
// p->pSeens[lit_var(p->pTrail[i])] = 0;
// check that the literals are unmarked
// for ( i = p->nTrailSize - 1; i >= 0; i-- )
// assert( p->pSeens[lit_var(p->pTrail[i])] == 0 );
// use the resulting clause to check the correctness of resolution
if ( p->fProofVerif )
{
int v1, v2;
if ( fPrint )
Intp_ManPrintResolvent( p->pResLits, p->nResLits );
for ( v1 = 0; v1 < p->nResLits; v1++ )
{
for ( v2 = 0; v2 < (int)pFinal->nLits; v2++ )
if ( pFinal->pLits[v2] == p->pResLits[v1] )
break;
if ( v2 < (int)pFinal->nLits )
continue;
break;
}
if ( v1 < p->nResLits )
{
printf( "Recording clause %d: The final resolvent is wrong.\n", pFinal->Id );
Intp_ManPrintClause( p, pConflict );
Intp_ManPrintResolvent( p->pResLits, p->nResLits );
Intp_ManPrintClause( p, pFinal );
}
// if there are literals in the clause that are not in the resolvent
// it means that the derived resolvent is stronger than the clause
// we can replace the clause with the resolvent by removing these literals
if ( p->nResLits != (int)pFinal->nLits )
{
for ( v1 = 0; v1 < (int)pFinal->nLits; v1++ )
{
for ( v2 = 0; v2 < p->nResLits; v2++ )
if ( pFinal->pLits[v1] == p->pResLits[v2] )
break;
if ( v2 < p->nResLits )
continue;
// remove literal v1 from the final clause
pFinal->nLits--;
for ( v2 = v1; v2 < (int)pFinal->nLits; v2++ )
pFinal->pLits[v2] = pFinal->pLits[v2+1];
v1--;
}
assert( p->nResLits == (int)pFinal->nLits );
}
}
p->timeTrace += Abc_Clock() - clk;
// return the proof pointer
// if ( p->pCnf->nClausesA )
// {
// Intp_ManPrintInterOne( p, pFinal );
// }
Intp_ManProofSet( p, pFinal, p->Counter );
// make sure the same proof ID is not asssigned to two consecutive clauses
assert( p->pProofNums[pFinal->Id-1] != p->Counter );
// if ( p->pProofNums[pFinal->Id] == p->pProofNums[pFinal->Id-1] )
// p->pProofNums[pFinal->Id] = p->pProofNums[pConflict->Id];
return p->Counter;
}
/**Function*************************************************************
Synopsis [Records the proof for one clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Intp_ManProofRecordOne( Intp_Man_t * p, Sto_Cls_t * pClause )
{
Sto_Cls_t * pConflict;
int i;
// empty clause never ends up there
assert( pClause->nLits > 0 );
if ( pClause->nLits == 0 )
printf( "Error: Empty clause is attempted.\n" );
assert( !pClause->fRoot );
assert( p->nTrailSize == p->nRootSize );
// if any of the clause literals are already assumed
// it means that the clause is redundant and can be skipped
for ( i = 0; i < (int)pClause->nLits; i++ )
if ( p->pAssigns[lit_var(pClause->pLits[i])] == pClause->pLits[i] )
{
// Vec_IntPush( p->vBreaks, Vec_IntSize(p->vAnties) );
Vec_PtrPush( p->vAntClas, Vec_IntAlloc(0) );
return 1;
}
// add assumptions to the trail
for ( i = 0; i < (int)pClause->nLits; i++ )
if ( !Intp_ManEnqueue( p, lit_neg(pClause->pLits[i]), NULL ) )
{
assert( 0 ); // impossible
return 0;
}
// propagate the assumptions
pConflict = Intp_ManPropagate( p, p->nRootSize );
if ( pConflict == NULL )
{
assert( 0 ); // cannot prove
return 0;
}
// skip the clause if it is weaker or the same as the conflict clause
if ( pClause->nLits >= pConflict->nLits )
{
// check if every literal of conflict clause can be found in the given clause
int j;
for ( i = 0; i < (int)pConflict->nLits; i++ )
{
for ( j = 0; j < (int)pClause->nLits; j++ )
if ( pConflict->pLits[i] == pClause->pLits[j] )
break;
if ( j == (int)pClause->nLits ) // literal pConflict->pLits[i] is not found
break;
}
if ( i == (int)pConflict->nLits ) // all lits are found
{
// undo to the root level
Intp_ManCancelUntil( p, p->nRootSize );
// Vec_IntPush( p->vBreaks, Vec_IntSize(p->vAnties) );
Vec_PtrPush( p->vAntClas, Vec_IntAlloc(0) );
return 1;
}
}
// construct the proof
Intp_ManProofTraceOne( p, pConflict, pClause );
// undo to the root level
Intp_ManCancelUntil( p, p->nRootSize );
// add large clauses to the watched lists
if ( pClause->nLits > 1 )
{
Intp_ManWatchClause( p, pClause, pClause->pLits[0] );
Intp_ManWatchClause( p, pClause, pClause->pLits[1] );
return 1;
}
assert( pClause->nLits == 1 );
// if the clause proved is unit, add it and propagate
if ( !Intp_ManEnqueue( p, pClause->pLits[0], pClause ) )
{
assert( 0 ); // impossible
return 0;
}
// propagate the assumption
pConflict = Intp_ManPropagate( p, p->nRootSize );
if ( pConflict )
{
// insert place-holders till the empty clause
while ( Vec_PtrSize(p->vAntClas) < p->pCnf->pEmpty->Id - p->nAntStart )
Vec_PtrPush( p->vAntClas, Vec_IntAlloc(0) );
// construct the proof for the empty clause
Intp_ManProofTraceOne( p, pConflict, p->pCnf->pEmpty );
// if ( p->fVerbose )
// printf( "Found last conflict after adding unit clause number %d!\n", pClause->Id );
return 0;
}
// update the root level
p->nRootSize = p->nTrailSize;
return 1;
}
/**Function*************************************************************
Synopsis [Propagate the root clauses.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Intp_ManProcessRoots( Intp_Man_t * p )
{
Sto_Cls_t * pClause;
int Counter;
// make sure the root clauses are preceeding the learnt clauses
Counter = 0;
Sto_ManForEachClause( p->pCnf, pClause )
{
assert( (int)pClause->fA == (Counter < (int)p->pCnf->nClausesA) );
assert( (int)pClause->fRoot == (Counter < (int)p->pCnf->nRoots) );
Counter++;
}
assert( p->pCnf->nClauses == Counter );
// make sure the last clause if empty
assert( p->pCnf->pTail->nLits == 0 );
// go through the root unit clauses
p->nTrailSize = 0;
Sto_ManForEachClauseRoot( p->pCnf, pClause )
{
// create watcher lists for the root clauses
if ( pClause->nLits > 1 )
{
Intp_ManWatchClause( p, pClause, pClause->pLits[0] );
Intp_ManWatchClause( p, pClause, pClause->pLits[1] );
}
// empty clause and large clauses
if ( pClause->nLits != 1 )
continue;
// unit clause
assert( lit_check(pClause->pLits[0], p->pCnf->nVars) );
if ( !Intp_ManEnqueue( p, pClause->pLits[0], pClause ) )
{
// detected root level conflict
// printf( "Error in Intp_ManProcessRoots(): Detected a root-level conflict too early!\n" );
// assert( 0 );
// detected root level conflict
Intp_ManProofTraceOne( p, pClause, p->pCnf->pEmpty );
if ( p->fVerbose )
printf( "Found root level conflict!\n" );
return 0;
}
}
// propagate the root unit clauses
pClause = Intp_ManPropagate( p, 0 );
if ( pClause )
{
// detected root level conflict
Intp_ManProofTraceOne( p, pClause, p->pCnf->pEmpty );
if ( p->fVerbose )
printf( "Found root level conflict!\n" );
return 0;
}
// set the root level
p->nRootSize = p->nTrailSize;
return 1;
}
/**Function*************************************************************
Synopsis [Verifies the UNSAT core.]
Description [Takes the interpolation manager, the CNF derived by the SAT
solver, which includes the root clauses and the learned clauses. Returns
the array of integers representing the number of root clauses that are in
the UNSAT core.]
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManUnsatCoreVerify( Sto_Man_t * pCnf, Vec_Int_t * vCore )
{
int fVerbose = 0;
int nConfMax = 1000000;
sat_solver * pSat;
Sto_Cls_t * pClause;
Vec_Ptr_t * vClauses;
int i, iClause, RetValue;
abctime clk = Abc_Clock();
// collect the clauses
vClauses = Vec_PtrAlloc( 1000 );
Sto_ManForEachClauseRoot( pCnf, pClause )
{
assert( Vec_PtrSize(vClauses) == pClause->Id );
Vec_PtrPush( vClauses, pClause );
}
// create new SAT solver
pSat = sat_solver_new();
// sat_solver_setnvars( pSat, nSatVars );
Vec_IntForEachEntry( vCore, iClause, i )
{
pClause = (Sto_Cls_t *)Vec_PtrEntry( vClauses, iClause );
if ( !sat_solver_addclause( pSat, pClause->pLits, pClause->pLits+pClause->nLits ) )
{
printf( "The core verification problem is trivially UNSAT.\n" );
break;
}
}
Vec_PtrFree( vClauses );
// solve the problem
RetValue = sat_solver_solve( pSat, NULL, NULL, (ABC_INT64_T)nConfMax, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
sat_solver_delete( pSat );
if ( fVerbose )
{
if ( RetValue == l_Undef )
printf( "Conflict limit is reached. " );
else if ( RetValue == l_True )
printf( "UNSAT core verification FAILED. " );
else
printf( "UNSAT core verification succeeded. " );
ABC_PRT( "Time", Abc_Clock() - clk );
}
else
{
if ( RetValue == l_True )
printf( "UNSAT core verification FAILED. \n" );
}
}
/**Function*************************************************************
Synopsis [Recursively computes the UNSAT core.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManUnsatCore_rec( Vec_Ptr_t * vAntClas, int iThis, Vec_Int_t * vCore, int nRoots, Vec_Str_t * vVisited, int fLearned )
{
// int i, iStop, iStart;
Vec_Int_t * vAnt;
int i, Entry;
// skip visited clauses
if ( Vec_StrEntry( vVisited, iThis ) )
return;
Vec_StrWriteEntry( vVisited, iThis, 1 );
// add a root clause to the core
if ( iThis < nRoots )
{
if ( !fLearned )
Vec_IntPush( vCore, iThis );
return;
}
// iterate through the clauses
// iStart = Vec_IntEntry( vBreaks, iThis );
// iStop = Vec_IntEntry( vBreaks, iThis+1 );
// assert( iStop != -1 );
// for ( i = iStart; i < iStop; i++ )
vAnt = (Vec_Int_t *)Vec_PtrEntry( vAntClas, iThis - nRoots );
Vec_IntForEachEntry( vAnt, Entry, i )
// Intp_ManUnsatCore_rec( vAntClas, Vec_IntEntry(vAnties, i), vCore, nRoots, vVisited );
Intp_ManUnsatCore_rec( vAntClas, Entry, vCore, nRoots, vVisited, fLearned );
// collect learned clause
if ( fLearned )
Vec_IntPush( vCore, iThis );
}
/**Function*************************************************************
Synopsis [Computes UNSAT core of the satisfiablity problem.]
Description [Takes the interpolation manager, the CNF derived by the SAT
solver, which includes the root clauses and the learned clauses. Returns
the array of integers representing the number of root clauses that are in
the UNSAT core.]
SideEffects []
SeeAlso []
***********************************************************************/
void * Intp_ManUnsatCore( Intp_Man_t * p, Sto_Man_t * pCnf, int fLearned, int fVerbose )
{
Vec_Int_t * vCore;
Vec_Str_t * vVisited;
Sto_Cls_t * pClause;
int RetValue = 1;
abctime clkTotal = Abc_Clock();
// check that the CNF makes sense
assert( pCnf->nVars > 0 && pCnf->nClauses > 0 );
p->pCnf = pCnf;
p->fVerbose = fVerbose;
// adjust the manager
Intp_ManResize( p );
// construct proof for each clause
// start the proof
if ( p->fProofWrite )
{
p->pFile = fopen( "proof.cnf_", "w" );
p->Counter = 0;
}
// write the root clauses
// Vec_IntClear( p->vAnties );
// Vec_IntFill( p->vBreaks, p->pCnf->nRoots, 0 );
Vec_PtrClear( p->vAntClas );
p->nAntStart = p->pCnf->nRoots;
Sto_ManForEachClauseRoot( p->pCnf, pClause )
Intp_ManProofWriteOne( p, pClause );
// propagate root level assignments
if ( Intp_ManProcessRoots( p ) )
{
// if there is no conflict, consider learned clauses
Sto_ManForEachClause( p->pCnf, pClause )
{
if ( pClause->fRoot )
continue;
if ( !Intp_ManProofRecordOne( p, pClause ) )
{
RetValue = 0;
break;
}
}
}
// add the last breaker
// assert( p->pCnf->pEmpty->Id == Vec_IntSize(p->vBreaks) - 1 );
// Vec_IntPush( p->vBreaks, Vec_IntSize(p->vAnties) );
assert( p->pCnf->pEmpty->Id - p->nAntStart == Vec_PtrSize(p->vAntClas) - 1 );
Vec_PtrPush( p->vAntClas, Vec_IntAlloc(0) );
// stop the proof
if ( p->fProofWrite )
{
fclose( p->pFile );
// Sat_ProofChecker( "proof.cnf_" );
p->pFile = NULL;
}
if ( fVerbose )
{
// ABC_PRT( "Core", Abc_Clock() - clkTotal );
printf( "Vars = %d. Roots = %d. Learned = %d. Resol steps = %d. Ave = %.2f. Mem = %.2f MB\n",
p->pCnf->nVars, p->pCnf->nRoots, p->pCnf->nClauses-p->pCnf->nRoots, p->Counter,
1.0*(p->Counter-p->pCnf->nRoots)/(p->pCnf->nClauses-p->pCnf->nRoots),
1.0*Sto_ManMemoryReport(p->pCnf)/(1<<20) );
p->timeTotal += Abc_Clock() - clkTotal;
}
// derive the UNSAT core
vCore = Vec_IntAlloc( 1000 );
vVisited = Vec_StrStart( p->pCnf->pEmpty->Id+1 );
Intp_ManUnsatCore_rec( p->vAntClas, p->pCnf->pEmpty->Id, vCore, p->pCnf->nRoots, vVisited, fLearned );
Vec_StrFree( vVisited );
if ( fVerbose )
printf( "Root clauses = %d. Learned clauses = %d. UNSAT core size = %d.\n",
p->pCnf->nRoots, p->pCnf->nClauses-p->pCnf->nRoots, Vec_IntSize(vCore) );
// Intp_ManUnsatCoreVerify( p->pCnf, vCore );
return vCore;
}
/**Function*************************************************************
Synopsis [Prints learned clauses in terms of original problem varibles.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Intp_ManUnsatCorePrintForBmc( FILE * pFile, Sto_Man_t * pCnf, void * vCore0, void * vVarMap0 )
{
Vec_Int_t * vCore = (Vec_Int_t *)vCore0;
Vec_Int_t * vVarMap = (Vec_Int_t *)vVarMap0;
Vec_Ptr_t * vClaMap;
Sto_Cls_t * pClause;
int v, i, iClause, fCompl, iObj, iFrame;
// create map of clause
vClaMap = Vec_PtrAlloc( pCnf->nClauses );
Sto_ManForEachClause( pCnf, pClause )
Vec_PtrPush( vClaMap, pClause );
// print clauses
fprintf( pFile, "UNSAT contains %d learned clauses:\n", Vec_IntSize(vCore) );
Vec_IntForEachEntry( vCore, iClause, i )
{
pClause = (Sto_Cls_t *)Vec_PtrEntry(vClaMap, iClause);
fprintf( pFile, "%6d : %6d : ", i, iClause - pCnf->nRoots );
for ( v = 0; v < (int)pClause->nLits; v++ )
{
fCompl = Abc_LitIsCompl(pClause->pLits[v]);
iObj = Vec_IntEntry(vVarMap, 2*Abc_Lit2Var(pClause->pLits[v]));
iFrame = Vec_IntEntry(vVarMap, 2*Abc_Lit2Var(pClause->pLits[v])+1);
fprintf( pFile, "%s%d(%d) ", fCompl ? "!":"", iObj, iFrame );
}
if ( pClause->nLits == 0 )
fprintf( pFile, "Empty" );
fprintf( pFile, "\n" );
}
Vec_PtrFree( vClaMap );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END