blob: 50d18f2e1d41a38b73067ea828ed372fb9e78cb1 [file] [log] [blame]
#ifndef VTR_MATH_H
#define VTR_MATH_H
#include <map>
#include <cmath>
#include "vtr_assert.h"
namespace vtr {
/*********************** Math operations *************************************/
int ipow(int base, int exp);
template<typename X, typename Y>
Y linear_interpolate_or_extrapolate(const std::map<X,Y> *xy_map, X requested_x);
constexpr int nint(float val) { return static_cast<int>(val + 0.5); }
template<typename InputIterator>
double geomean(InputIterator first, InputIterator last, double init=1.) {
//Compute the geometric mean of the elments in range [first, last)
//
//To avoid potential round-off issues we transform the standard formula:
//
// geomean = ( v_1 * v_2 * ... * v_n) ^ (1/n)
//
//by taking the log:
//
// geomean = exp( (1 / n) * (log(v_1) + log(v_2) + ... + log(v_n)))
double log_sum = std::log(init);
size_t n = 0;
for(auto iter = first; iter != last; ++iter) {
log_sum += std::log(*iter);
n += 1;
}
VTR_ASSERT(n > 0.);
return std::exp( (1. / n) * log_sum );
}
//Return the greatest common divisor of x and y
// Note that T should be an integral type
template<typename T>
static T gcd(T x, T y){
static_assert(std::is_integral<T>::value, "T must be integral");
//Euclidean algorithm
if (y == 0){
return x;
}
return gcd(y, x % y);
}
//Return the least common multiple of x and y
// Note that T should be an integral type
template<typename T>
T lcm(T x, T y) {
static_assert(std::is_integral<T>::value, "T must be integral");
if (x == 0 && y == 0) {
return 0;
} else {
return (x / gcd(x,y)) * y;
}
}
}
#endif