blob: e431fb086d8e5fb495445110a32b855d961ff032 [file] [log] [blame]
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "util.h"
#include "physical_types.h"
#include "vpr_types.h"
#include "globals.h"
#include "mst.h"
#include "route_export.h"
#include "route_common.h"
#include "cluster_legality.h"
#include "rr_graph.h"
static struct s_linked_vptr *rr_mem_chunk_list_head = NULL;
static int chunk_bytes_avail = 0;
static char *chunk_next_avail_mem = NULL;
static struct s_trace **best_routing;
/* nets_in_cluster: array of all nets contained in the cluster */
static int *nets_in_cluster; /* [0..num_nets_in_cluster-1] */
static int num_nets_in_cluster;
static int curr_cluster_index;
static int ext_input_rr_node_index, ext_output_rr_node_index, ext_clock_rr_node_index, max_ext_index;
static int **saved_net_rr_terminals;
static float pres_fac;
static float *rr_intrinsic_cost;
static int num_rr_intrinsic_cost = 0;
/********************* Subroutines local to this module *********************/
static boolean is_net_in_cluster(INP int inet);
static boolean add_net_rr_terminal_cluster(int iblk_net, t_pb * primitive, int ilogical_block, t_model_ports * model_port, int ipin);
static boolean reload_ext_net_rr_terminal_cluster();
static boolean try_breadth_first_route_cluster();
static boolean breadth_first_route_net_cluster(int inet);
static void breadth_first_expand_trace_segment_cluster(struct s_trace *start_ptr,
int remaining_connections_to_sink);
static void breadth_first_expand_neighbours_cluster(int inode,
float pcost,
int inet,
boolean first_time);
static void breadth_first_add_source_to_heap_cluster(int inet);
static void alloc_net_rr_terminals_cluster();
static void save_and_reset_routing_cluster();
static void restore_routing_cluster();
static int get_num_violated_nets();
static void mark_ends_cluster(int inet);
static void print_intra_cluster_route(char *route_file);
static float rr_node_intrinsic_cost(int inode);
/************************ Subroutine definitions ****************************/
static boolean is_net_in_cluster(INP int inet) {
int i;
for(i = 0; i < num_nets_in_cluster; i++) {
if(nets_in_cluster[i] == inet) {
return TRUE;
}
}
return FALSE;
}
/* load rr_node for source and sinks of net if exists, return FALSE otherwise */
/* Todo: Note this is an inefficient way to determine port, better to use a lookup, worry about this if runtime becomes an issue */
static boolean add_net_rr_terminal_cluster(int iblk_net, t_pb * primitive, int ilogical_block, t_model_ports * model_port, int ipin) {
/* Ensure at most one external input/clock source and one external output sink for net */
int i, net_pin;
t_port *prim_port;
const t_pb_type *pb_type;
boolean found;
int input_port;
int output_port;
int clock_port;
input_port = output_port = clock_port = 0;
pb_type = primitive->pb_graph_node->pb_type;
prim_port = NULL;
assert(pb_type->num_modes == 0);
found = FALSE;
/* TODO: This is inelegant design, I should change the primitive ports in pb_type to be input, output, or clock instead of this lookup */
for(i = 0; i < pb_type->num_ports && !found; i++) {
prim_port = &pb_type->ports[i];
if(pb_type->ports[i].model_port == model_port) {
found = TRUE;
} else {
if(prim_port->is_clock) {
clock_port++;
assert(prim_port->type == IN_PORT);
} else if(prim_port->type == IN_PORT) {
input_port++;
} else if(prim_port->type == OUT_PORT) {
output_port++;
} else {
assert(0);
}
}
}
if(!found) {
return FALSE;
}
if(ipin >= prim_port->num_pins) {
return FALSE;
} else {
net_pin = OPEN;
if(prim_port->is_clock) {
for(i = 1; i <= vpack_net[iblk_net].num_sinks; i++) {
if(vpack_net[iblk_net].node_block[i] == ilogical_block &&
vpack_net[iblk_net].node_block_port[i] == model_port->index &&
vpack_net[iblk_net].node_block_pin[i] == ipin) {
net_pin = i;
break;
}
}
assert(net_pin != OPEN);
net_rr_terminals[iblk_net][net_pin] =
primitive->pb_graph_node->clock_pins[clock_port][ipin].pin_count_in_cluster;
} else if(prim_port->type == IN_PORT) {
for(i = 1; i <= vpack_net[iblk_net].num_sinks; i++) {
if(vpack_net[iblk_net].node_block[i] == ilogical_block &&
vpack_net[iblk_net].node_block_port[i] == model_port->index &&
vpack_net[iblk_net].node_block_pin[i] == ipin) {
net_pin = i;
break;
}
}
assert(net_pin != OPEN);
net_rr_terminals[iblk_net][net_pin] =
primitive->pb_graph_node->input_pins[input_port][ipin].pin_count_in_cluster;
} else if(prim_port->type == OUT_PORT) {
i = 0;
if(vpack_net[iblk_net].node_block[i] == ilogical_block &&
vpack_net[iblk_net].node_block_port[i] == model_port->index &&
vpack_net[iblk_net].node_block_pin[i] == ipin) {
net_pin = i;
}
assert(net_pin != OPEN);
net_rr_terminals[iblk_net][net_pin] =
primitive->pb_graph_node->output_pins[output_port][ipin].pin_count_in_cluster;
} else {
assert(0);
}
return TRUE;
}
}
static boolean reload_ext_net_rr_terminal_cluster() {
int i, j, net_index;
boolean has_ext_sink, has_ext_source;
int curr_ext_output, curr_ext_input, curr_ext_clock;
curr_ext_input = ext_input_rr_node_index;
curr_ext_output = ext_output_rr_node_index;
curr_ext_clock = ext_clock_rr_node_index;
for(i = 0; i < num_nets_in_cluster; i++)
{
net_index = nets_in_cluster[i];
has_ext_sink = FALSE;
has_ext_source = (logical_block[vpack_net[net_index].node_block[0]].clb_index != curr_cluster_index);
if(has_ext_source) {
/* Instantiate a source of this net */
if(vpack_net[net_index].is_global) {
net_rr_terminals[net_index][0] = curr_ext_clock;
curr_ext_clock++;
} else {
net_rr_terminals[net_index][0] = curr_ext_input;
curr_ext_input++;
}
}
for(j = 1; j <= vpack_net[net_index].num_sinks; j++) {
if(logical_block[vpack_net[net_index].node_block[j]].clb_index != curr_cluster_index) {
if(has_ext_sink || has_ext_source) {
/* Only need one node driving external routing, either this cluster drives external routing or another cluster does it */
net_rr_terminals[net_index][j] = OPEN;
} else {
/* External sink, only need to route once, externally routing will take care of the rest */
net_rr_terminals[net_index][j] = curr_ext_output;
curr_ext_output++;
has_ext_sink = TRUE;
}
}
}
if( curr_ext_input > ext_output_rr_node_index ||
curr_ext_output > ext_clock_rr_node_index ||
curr_ext_clock > max_ext_index) {
/* failed, not enough pins of proper type, overran index */
return FALSE;
}
}
return TRUE;
}
void alloc_and_load_cluster_legality_checker() {
best_routing = (struct s_trace **)my_calloc(num_logical_nets, sizeof(struct s_trace *));
nets_in_cluster = my_malloc(num_logical_nets * sizeof(int));
num_nets_in_cluster = 0;
num_nets = num_logical_nets;
/* inside a cluster, I do not consider rr_indexed_data cost, set to 1 since other costs are multiplied by it */
num_rr_indexed_data = 1;
rr_indexed_data = my_calloc(1, sizeof(t_rr_indexed_data));
rr_indexed_data[0].base_cost = 1;
/* alloc routing structures */
alloc_route_static_structs();
alloc_net_rr_terminals_cluster();
}
void free_cluster_legality_checker() {
int inet;
free(rr_indexed_data);
free_rr_node_route_structs();
free_route_structs(NULL);
free_trace_structs();
free_chunk_memory(rr_mem_chunk_list_head);
rr_mem_chunk_list_head = NULL;
for(inet = 0; inet < num_logical_nets; inet++)
{
free(saved_net_rr_terminals[inet]);
}
free(net_rr_terminals);
free(saved_net_rr_terminals);
}
void alloc_and_load_rr_graph_for_pb_graph_node(INP t_pb_graph_node *pb_graph_node, INP const t_arch* arch, int mode) {
int i, j, k, index;
boolean is_primitive;
is_primitive = (pb_graph_node->pb_type->num_modes == 0);
for(i = 0; i < pb_graph_node->num_input_ports; i++) {
for(j = 0; j < pb_graph_node->num_input_pins[i]; j++) {
index = pb_graph_node->input_pins[i][j].pin_count_in_cluster;
rr_node[index].pb_graph_pin = &pb_graph_node->input_pins[i][j];
rr_node[index].fan_in = pb_graph_node->input_pins[i][j].num_input_edges;
rr_node[index].num_edges = pb_graph_node->input_pins[i][j].num_output_edges;
rr_node[index].pack_intrinsic_cost = 1 + (float)rr_node[index].num_edges / 5; /* need to normalize better than 5 */
rr_node[index].edges = my_malloc(rr_node[index].num_edges * sizeof(int));
rr_node[index].switches = my_calloc(rr_node[index].num_edges, sizeof(int));
rr_node[index].net_num = OPEN;
rr_node[index].prev_node = OPEN;
rr_node[index].prev_edge = OPEN;
if(mode == 0) { /* default mode is the first mode */
rr_node[index].capacity = 1;
} else {
rr_node[index].capacity = 0;
}
for(k = 0; k < pb_graph_node->input_pins[i][j].num_output_edges; k++) {
/* TODO: Intention was to do bus-based implementation here */
rr_node[index].edges[k] = pb_graph_node->input_pins[i][j].output_edges[k]->output_pins[0]->pin_count_in_cluster;
rr_node[index].switches[k] = arch->num_switches - 1; /* last switch in arch switch properties is a delayless switch */
assert(pb_graph_node->input_pins[i][j].output_edges[k]->num_output_pins == 1);
}
rr_node[index].type = INTRA_CLUSTER_EDGE;
if(is_primitive) {
rr_node[index].type = SINK;
}
}
}
for(i = 0; i < pb_graph_node->num_output_ports; i++) {
for(j = 0; j < pb_graph_node->num_output_pins[i]; j++) {
index = pb_graph_node->output_pins[i][j].pin_count_in_cluster;
rr_node[index].pb_graph_pin = &pb_graph_node->output_pins[i][j];
rr_node[index].fan_in = pb_graph_node->output_pins[i][j].num_input_edges;
rr_node[index].num_edges = pb_graph_node->output_pins[i][j].num_output_edges;
rr_node[index].pack_intrinsic_cost = 1 + (float)rr_node[index].num_edges / 5; /* need to normalize better than 5 */
rr_node[index].edges = my_malloc(rr_node[index].num_edges * sizeof(int));
rr_node[index].switches = my_calloc(rr_node[index].num_edges, sizeof(int));
rr_node[index].net_num = OPEN;
rr_node[index].prev_node = OPEN;
rr_node[index].prev_edge = OPEN;
if(mode == 0) { /* Default mode is the first mode */
rr_node[index].capacity = 1;
} else {
rr_node[index].capacity = 0;
}
for(k = 0; k < pb_graph_node->output_pins[i][j].num_output_edges; k++) {
/* TODO: Intention was to do bus-based implementation here */
rr_node[index].edges[k] = pb_graph_node->output_pins[i][j].output_edges[k]->output_pins[0]->pin_count_in_cluster;
rr_node[index].switches[k] = arch->num_switches - 1;
assert(pb_graph_node->output_pins[i][j].output_edges[k]->num_output_pins == 1);
}
rr_node[index].type = INTRA_CLUSTER_EDGE;
if(is_primitive) {
rr_node[index].type = SOURCE;
}
}
}
for(i = 0; i < pb_graph_node->num_clock_ports; i++) {
for(j = 0; j < pb_graph_node->num_clock_pins[i]; j++) {
index = pb_graph_node->clock_pins[i][j].pin_count_in_cluster;
rr_node[index].pb_graph_pin = &pb_graph_node->clock_pins[i][j];
rr_node[index].fan_in = pb_graph_node->clock_pins[i][j].num_input_edges;
rr_node[index].num_edges = pb_graph_node->clock_pins[i][j].num_output_edges;
rr_node[index].pack_intrinsic_cost = 1 + (float)rr_node[index].num_edges / 5; /* need to normalize better than 5 */
rr_node[index].edges = my_malloc(rr_node[index].num_edges * sizeof(int));
rr_node[index].switches = my_calloc(rr_node[index].num_edges, sizeof(int));
rr_node[index].net_num = OPEN;
rr_node[index].prev_node = OPEN;
rr_node[index].prev_edge = OPEN;
if(mode == 0) { /* default mode is the first mode (useful for routing */
rr_node[index].capacity = 1;
} else {
rr_node[index].capacity = 0;
}
for(k = 0; k < pb_graph_node->clock_pins[i][j].num_output_edges; k++) {
/* TODO: Intention was to do bus-based implementation here */
rr_node[index].edges[k] = pb_graph_node->clock_pins[i][j].output_edges[k]->output_pins[0]->pin_count_in_cluster;
rr_node[index].switches[k] = arch->num_switches - 1;
assert(pb_graph_node->clock_pins[i][j].output_edges[k]->num_output_pins == 1);
}
rr_node[index].type = INTRA_CLUSTER_EDGE;
if(is_primitive) {
rr_node[index].type = SINK;
}
}
}
for(i = 0; i < pb_graph_node->pb_type->num_modes; i++) {
for(j = 0; j < pb_graph_node->pb_type->modes[i].num_pb_type_children; j++) {
for(k = 0; k < pb_graph_node->pb_type->modes[i].pb_type_children[j].num_pb; k++) {
alloc_and_load_rr_graph_for_pb_graph_node(&pb_graph_node->child_pb_graph_nodes[i][j][k], arch, i);
}
}
}
}
void alloc_and_load_legalizer_for_cluster(INP t_block* clb, INP int clb_index, INP const t_arch *arch) {
/**
* Structure: Model external routing and internal routing
*
* 1. Model external routing
* num input pins == num external sources for input pins, fully connect them to input pins (simulates external routing)
* num output pins == num external sinks for output pins, fully connect them to output pins (simulates external routing)
* num clock pins == num external sources for clock pins, fully connect them to clock pins (simulates external routing)
* 2. Model internal routing
*
*/
/* make each rr_node one correspond with pin and correspond with pin's index pin_count_in_cluster */
int i, j, k, m, index, pb_graph_rr_index;
int count_pins;
t_pb_type * pb_type;
t_pb_graph_node *pb_graph_node;
int ipin;
/* Create rr_graph */
pb_type = clb->type->pb_type;
pb_graph_node = clb->type->pb_graph_head;
num_rr_nodes = pb_graph_node->total_pb_pins + pb_type->num_input_pins +
pb_type->num_output_pins + pb_type->num_clock_pins;
if(num_rr_nodes > num_rr_intrinsic_cost) {
free(rr_intrinsic_cost);
rr_intrinsic_cost = my_calloc(num_rr_nodes, sizeof(float));
num_rr_intrinsic_cost = num_rr_nodes;
}
rr_node = my_calloc(num_rr_nodes, sizeof(t_rr_node));
clb->pb->rr_graph = rr_node;
alloc_and_load_rr_graph_for_pb_graph_node(pb_graph_node, arch, 0);
curr_cluster_index = clb_index;
/* Alloc and load rr_graph external sources and sinks */
ext_input_rr_node_index = pb_graph_node->total_pb_pins;
ext_output_rr_node_index = pb_type->num_input_pins + pb_graph_node->total_pb_pins;
ext_clock_rr_node_index = pb_type->num_input_pins + pb_type->num_output_pins + pb_graph_node->total_pb_pins;
max_ext_index = pb_type->num_input_pins + pb_type->num_output_pins + pb_type->num_clock_pins + pb_graph_node->total_pb_pins;
for(i = 0; i < pb_type->num_input_pins; i++) {
index = i + pb_graph_node->total_pb_pins;
rr_node[index].type = SOURCE;
rr_node[index].fan_in = 0;
rr_node[index].num_edges = pb_type->num_input_pins;
rr_node[index].pack_intrinsic_cost = 1 + (float)rr_node[index].num_edges / 5; /* need to normalize better than 5 */
rr_node[index].edges = my_malloc(rr_node[index].num_edges * sizeof(int));
rr_node[index].switches = my_calloc(rr_node[index].num_edges, sizeof(int));
rr_node[index].capacity = 1;
rr_intrinsic_cost[index] = 0;
}
for(i = 0; i < pb_type->num_output_pins; i++) {
index = i + pb_type->num_input_pins + pb_graph_node->total_pb_pins;
rr_node[index].type = SINK;
rr_node[index].fan_in = pb_type->num_output_pins;
rr_node[index].num_edges = 0;
rr_node[index].pack_intrinsic_cost = 1 + (float)rr_node[index].num_edges / 5; /* need to normalize better than 5 */
rr_node[index].capacity = 1;
rr_intrinsic_cost[index] = 0;
}
for(i = 0; i < pb_type->num_clock_pins; i++) {
index = i + pb_type->num_input_pins + pb_type->num_output_pins + pb_graph_node->total_pb_pins;
rr_node[index].type = SOURCE;
rr_node[index].fan_in = 0;
rr_node[index].num_edges = pb_type->num_clock_pins;
rr_node[index].pack_intrinsic_cost = 1 + (float)rr_node[index].num_edges / 5; /* need to normalize better than 5 */
rr_node[index].edges = my_malloc(rr_node[index].num_edges * sizeof(int));
rr_node[index].switches = my_calloc(rr_node[index].num_edges, sizeof(int));
rr_node[index].capacity = 1;
rr_intrinsic_cost[index] = 0;
}
ipin = 0;
for(i = 0; i < pb_graph_node->num_input_ports; i++) {
for(j = 0; j < pb_graph_node->num_input_pins[i]; j++) {
pb_graph_rr_index = pb_graph_node->input_pins[i][j].pin_count_in_cluster;
for(k = 0; k < pb_type->num_input_pins; k++) {
index = k + pb_graph_node->total_pb_pins;
rr_node[index].edges[ipin] = pb_graph_rr_index;
rr_node[index].switches[ipin] = arch->num_switches - 1;
}
rr_node[pb_graph_rr_index].pack_intrinsic_cost = MAX_SHORT; /* using an input pin should be made costly */
ipin++;
}
}
/* Must attach output pins to input pins because if a connection cannot fit using intra-cluster routing, it can also use external routing */
for(i = 0; i < pb_graph_node->num_output_ports; i++) {
for(j = 0; j < pb_graph_node->num_output_pins[i]; j++) {
count_pins = pb_graph_node->output_pins[i][j].num_output_edges + pb_type->num_output_pins + pb_type->num_input_pins;
pb_graph_rr_index = pb_graph_node->output_pins[i][j].pin_count_in_cluster;
rr_node[pb_graph_rr_index].edges = my_realloc(rr_node[pb_graph_rr_index].edges,
(count_pins) * sizeof(int));
rr_node[pb_graph_rr_index].switches = my_realloc(rr_node[pb_graph_rr_index].switches,
(count_pins) * sizeof(int));
ipin = 0;
for(k = 0; k < pb_graph_node->num_input_ports; k++) {
for(m = 0; m < pb_graph_node->num_input_pins[k]; m++) {
index = pb_graph_node->input_pins[k][m].pin_count_in_cluster;
rr_node[pb_graph_rr_index].edges[ipin + pb_graph_node->output_pins[i][j].num_output_edges] = index;
rr_node[pb_graph_rr_index].switches[ipin + pb_graph_node->output_pins[i][j].num_output_edges] = arch->num_switches - 1;
ipin++;
}
}
for(k = 0; k < pb_type->num_output_pins; k++) {
index = k + pb_type->num_input_pins + pb_graph_node->total_pb_pins;
rr_node[pb_graph_rr_index].edges[k + pb_type->num_input_pins + pb_graph_node->output_pins[i][j].num_output_edges] = index;
rr_node[pb_graph_rr_index].switches[k + pb_type->num_input_pins + pb_graph_node->output_pins[i][j].num_output_edges] = arch->num_switches - 1;
}
rr_node[pb_graph_rr_index].num_edges += pb_type->num_output_pins + pb_type->num_input_pins;
rr_node[pb_graph_rr_index].pack_intrinsic_cost = 1 + (float)rr_node[pb_graph_rr_index].num_edges / 5; /* need to normalize better than 5 */
}
}
ipin = 0;
for(i = 0; i < pb_graph_node->num_clock_ports; i++) {
for(j = 0; j < pb_graph_node->num_clock_pins[i]; j++) {
for(k = 0; k < pb_type->num_clock_pins; k++) {
index = k + pb_type->num_input_pins + pb_type->num_output_pins + pb_graph_node->total_pb_pins;
pb_graph_rr_index = pb_graph_node->clock_pins[i][j].pin_count_in_cluster;
rr_node[index].edges[ipin] = pb_graph_rr_index;
rr_node[index].switches[ipin] = arch->num_switches - 1;
}
ipin++;
}
}
alloc_and_load_rr_node_route_structs();
num_nets_in_cluster = 0;
}
void free_legalizer_for_cluster(INP t_block* clb) {
int i;
free_rr_node_route_structs();
for(i = 0; i < num_rr_nodes; i++) {
if(clb->pb->rr_graph[i].edges != NULL) {
free(clb->pb->rr_graph[i].edges);
}
if(clb->pb->rr_graph[i].switches != NULL) {
free(clb->pb->rr_graph[i].switches);
}
}
free(clb->pb->rr_graph);
}
void reset_legalizer_for_cluster(t_block *clb) {
int i;
for(i = 0; i < num_nets_in_cluster; i++) {
free_traceback(nets_in_cluster[i]);
trace_head[nets_in_cluster[i]] = best_routing[nets_in_cluster[i]];
free_traceback(nets_in_cluster[i]);
best_routing[nets_in_cluster[i]] = NULL;
}
free_rr_node_route_structs();
num_nets_in_cluster = 0;
}
/**
*
* internal_nets: index of nets to route [0..num_internal_nets - 1]
*/
static boolean try_breadth_first_route_cluster()
{
/* Iterated maze router ala Pathfinder Negotiated Congestion algorithm, *
* (FPGA 95 p. 111). Returns TRUE if it can route this FPGA, FALSE if *
* it can't. */
/* For different modes, when a mode is turned on, I set the max occupancy of all rr_nodes in the mode to 1 and all others to 0 */
/* TODO: There is a bug for route-throughs where edges in route-throughs do not get turned off because the rr_edge is in a particular mode but the two rr_nodes are outside */
boolean success, is_routable;
int itry, inet, net_index;
struct s_router_opts router_opts;
/* Usually the first iteration uses a very small (or 0) pres_fac to find *
* the shortest path and get a congestion map. For fast compiles, I set *
* pres_fac high even for the first iteration. */
/* sets up a fast breadth-first router */
router_opts.first_iter_pres_fac = 10;
router_opts.max_router_iterations = 20;
router_opts.initial_pres_fac = 10;
router_opts.pres_fac_mult = 2;
router_opts.acc_fac = 1;
pres_fac = router_opts.first_iter_pres_fac;
for(itry = 1; itry <= router_opts.max_router_iterations; itry++)
{
for(inet = 0; inet < num_nets_in_cluster; inet++)
{
net_index = nets_in_cluster[inet];
pathfinder_update_one_cost(trace_head[net_index], -1,
pres_fac);
is_routable =
breadth_first_route_net_cluster(net_index);
/* Impossible to route? (disconnected rr_graph) */
if(!is_routable)
{
/* TODO: Inelegant, can be more intelligent */
printf("Failed routing net %s\n", vpack_net[net_index].name);
printf("Routing failed. Disconnected rr_graph\n");
return FALSE;
}
pathfinder_update_one_cost(trace_head[net_index], 1,
pres_fac);
}
success = feasible_routing();
if(success)
{
return (TRUE);
}
if(itry == 1)
pres_fac = router_opts.initial_pres_fac;
else
pres_fac *= router_opts.pres_fac_mult;
pres_fac = min (pres_fac, HUGE_FLOAT / 1e5);
pathfinder_update_cost(pres_fac, router_opts.acc_fac);
}
return (FALSE);
}
static boolean
breadth_first_route_net_cluster(int inet)
{
/* Uses a maze routing (Dijkstra's) algorithm to route a net. The net *
* begins at the net output, and expands outward until it hits a target *
* pin. The algorithm is then restarted with the entire first wire segment *
* included as part of the source this time. For an n-pin net, the maze *
* router is invoked n-1 times to complete all the connections. Inet is *
* the index of the net to be routed. *
* If this routine finds that a net *cannot* be connected (due to a complete *
* lack of potential paths, rather than congestion), it returns FALSE, as *
* routing is impossible on this architecture. Otherwise it returns TRUE. */
int i, inode, prev_node, remaining_connections_to_sink;
float pcost, new_pcost;
struct s_heap *current;
struct s_trace *tptr;
boolean first_time;
free_traceback(inet);
breadth_first_add_source_to_heap_cluster(inet);
mark_ends_cluster(inet);
tptr = NULL;
remaining_connections_to_sink = 0;
for(i = 1; i <= vpack_net[inet].num_sinks; i++)
{ /* Need n-1 wires to connect n pins */
/* Do not connect open terminals */
if(net_rr_terminals[inet][i] == OPEN)
continue;
/* Expand and begin routing */
breadth_first_expand_trace_segment_cluster(tptr,
remaining_connections_to_sink);
current = get_heap_head();
if(current == NULL)
{ /* Infeasible routing. No possible path for net. */
reset_path_costs(); /* Clean up before leaving. */
return (FALSE);
}
inode = current->index;
while(rr_node_route_inf[inode].target_flag == 0)
{
pcost = rr_node_route_inf[inode].path_cost;
new_pcost = current->cost;
if(pcost > new_pcost)
{ /* New path is lowest cost. */
rr_node_route_inf[inode].path_cost = new_pcost;
prev_node = current->u.prev_node;
rr_node_route_inf[inode].prev_node = prev_node;
rr_node_route_inf[inode].prev_edge =
current->prev_edge;
first_time = FALSE;
if(pcost > 0.99 * HUGE_FLOAT) /* First time touched. */ {
add_to_mod_list(&rr_node_route_inf[inode].
path_cost);
first_time = TRUE;
}
breadth_first_expand_neighbours_cluster(inode, new_pcost, inet, first_time);
}
free_heap_data(current);
current = get_heap_head();
if(current == NULL)
{ /* Impossible routing. No path for net. */
reset_path_costs();
return (FALSE);
}
inode = current->index;
}
rr_node_route_inf[inode].target_flag--; /* Connected to this SINK. */
remaining_connections_to_sink =
rr_node_route_inf[inode].target_flag;
tptr = update_traceback(current, inet);
free_heap_data(current);
}
empty_heap();
reset_path_costs();
return (TRUE);
}
static void
breadth_first_expand_trace_segment_cluster(struct s_trace *start_ptr,
int remaining_connections_to_sink)
{
/* Adds all the rr_nodes in the traceback segment starting at tptr (and *
* continuing to the end of the traceback) to the heap with a cost of zero. *
* This allows expansion to begin from the existing wiring. The *
* remaining_connections_to_sink value is 0 if the route segment ending *
* at this location is the last one to connect to the SINK ending the route *
* segment. This is the usual case. If it is not the last connection this *
* net must make to this SINK, I have a hack to ensure the next connection *
* to this SINK goes through a different IPIN. Without this hack, the *
* router would always put all the connections from this net to this SINK *
* through the same IPIN. With LUTs or cluster-based logic blocks, you *
* should never have a net connecting to two logically-equivalent pins on *
* the same logic block, so the hack will never execute. If your logic *
* block is an and-gate, however, nets might connect to two and-inputs on *
* the same logic block, and since the and-inputs are logically-equivalent, *
* this means two connections to the same SINK. */
struct s_trace *tptr;
tptr = start_ptr;
/* For intra-cluster routing, logical equivalence does not occur, so it is impossible to get a value bigger than 0 */
assert(remaining_connections_to_sink == 0);
while(tptr != NULL)
{
node_to_heap(tptr->index, 0., NO_PREVIOUS, NO_PREVIOUS,
OPEN, OPEN);
tptr = tptr->next;
}
}
static void
breadth_first_expand_neighbours_cluster(int inode,
float pcost,
int inet,
boolean first_time)
{
/* Puts all the rr_nodes adjacent to inode on the heap. rr_nodes outside *
* the expanded bounding box specified in route_bb are not added to the *
* heap. pcost is the path_cost to get to inode. */
int iconn, to_node, num_edges;
float tot_cost;
num_edges = rr_node[inode].num_edges;
for(iconn = 0; iconn < num_edges; iconn++)
{
to_node = rr_node[inode].edges[iconn];
/*if(first_time) { */
tot_cost = pcost + get_rr_cong_cost(to_node) * rr_node_intrinsic_cost(to_node);
/*
} else {
tot_cost = pcost + get_rr_cong_cost(to_node);
}*/
node_to_heap(to_node, tot_cost, inode, iconn, OPEN, OPEN);
}
}
static void
breadth_first_add_source_to_heap_cluster(int inet)
{
/* Adds the SOURCE of this net to the heap. Used to start a net's routing. */
int inode;
float cost;
inode = net_rr_terminals[inet][0]; /* SOURCE */
cost = get_rr_cong_cost(inode);
node_to_heap(inode, cost, NO_PREVIOUS, NO_PREVIOUS, OPEN, OPEN);
}
static void
mark_ends_cluster(int inet)
{
/* Mark all the SINKs of this net as targets by setting their target flags *
* to the number of times the net must connect to each SINK. Note that *
* this number can occassionally be greater than 1 -- think of connecting *
* the same net to two inputs of an and-gate (and-gate inputs are logically *
* equivalent, so both will connect to the same SINK). */
int ipin, inode;
for(ipin = 1; ipin <= vpack_net[inet].num_sinks; ipin++)
{
inode = net_rr_terminals[inet][ipin];
if(inode == OPEN)
continue;
rr_node_route_inf[inode].target_flag++;
assert(rr_node_route_inf[inode].target_flag == 1);
}
}
static void
alloc_net_rr_terminals_cluster()
{
int inet;
net_rr_terminals = (int **)my_malloc(num_logical_nets * sizeof(int *));
saved_net_rr_terminals = (int **)my_malloc(num_logical_nets * sizeof(int *));
for(inet = 0; inet < num_logical_nets; inet++)
{
net_rr_terminals[inet] =
(int *)my_chunk_malloc((vpack_net[inet].num_sinks + 1) *
sizeof(int), &rr_mem_chunk_list_head,
&chunk_bytes_avail,
&chunk_next_avail_mem);
saved_net_rr_terminals[inet] = (int *)my_malloc((vpack_net[inet].num_sinks + 1) * sizeof(int));
}
}
enum e_block_pack_status
try_add_block_to_current_cluster_and_primitive(INP int iblock, INP t_pb *primitive)
{
/* Allocates and loads the net_rr_terminals data structure. For each net *
* it stores the rr_node index of the SOURCE of the net and all the SINKs *
* of the net. [0..num_logical_nets-1][0..num_pins-1]. */
int ipin, iblk_net;
int orig_num_nets_in_cluster;
boolean success, found;
t_model_ports *port;
success = FALSE;
found = FALSE;
assert(primitive->pb_graph_node->pb_type->num_modes == 0); /* check if primitive */
assert(primitive->logical_block == OPEN && logical_block[iblock].clb_index == NO_CLUSTER); /* check if primitive and block is open */
/* check if block type matches primitive type */
if(logical_block[iblock].model != primitive->pb_graph_node->pb_type->model) {
/* End early, model is incompatible */
return BLK_FAILED_FEASIBLE;
}
orig_num_nets_in_cluster = num_nets_in_cluster;
save_and_reset_routing_cluster();
/* try pack it in */
assert(primitive->logical_block == OPEN);
assert(logical_block[iblock].clb_index == NO_CLUSTER);
primitive->logical_block = iblock;
logical_block[iblock].pb = primitive;
logical_block[iblock].clb_index = curr_cluster_index;
/* for each net of logical block, check if it is in cluster, if not add it */
/* also check if pins on primitive can fit logical block */
port = logical_block[iblock].model->inputs;
success = TRUE;
while(port && success) {
for(ipin = 0; ipin < port->size && success; ipin++) {
if(port->is_clock) {
assert(port->size == 1);
iblk_net = logical_block[iblock].clock_net;
} else {
iblk_net = logical_block[iblock].input_nets[port->index][ipin];
}
if(iblk_net == OPEN) {
continue;
}
if(!is_net_in_cluster(iblk_net)){
nets_in_cluster[num_nets_in_cluster] = iblk_net;
num_nets_in_cluster++;
}
success = add_net_rr_terminal_cluster(iblk_net, primitive, iblock, port, ipin);
}
port = port->next;
}
port = logical_block[iblock].model->outputs;
while(port && success) {
for(ipin = 0; ipin < port->size && success; ipin++) {
iblk_net = logical_block[iblock].output_nets[port->index][ipin];
if(iblk_net == OPEN) {
continue;
}
if(!is_net_in_cluster(iblk_net)){
nets_in_cluster[num_nets_in_cluster] = iblk_net;
num_nets_in_cluster++;
}
success = add_net_rr_terminal_cluster(iblk_net, primitive, iblock, port, ipin);
}
port = port->next;
}
if(success) {
success = reload_ext_net_rr_terminal_cluster();
}
if(success) {
/* route it */
reset_rr_node_route_structs(); /* Clear all prior rr_graph history */
success = try_breadth_first_route_cluster(); /* route from scratch */
}
if(success) {
return BLK_PASSED;
} else {
/* Cannot pack, restore cluster */
primitive->logical_block = OPEN;
logical_block[iblock].pb = NULL;
logical_block[iblock].clb_index = NO_CLUSTER;
restore_routing_cluster();
num_nets_in_cluster = orig_num_nets_in_cluster;
return BLK_FAILED_ROUTE;
}
}
static void
save_and_reset_routing_cluster() {
/* This routing frees any routing currently held in best routing, *
* then copies over the current routing (held in trace_head), and *
* finally sets trace_head and trace_tail to all NULLs so that the *
* connection to the saved routing is broken. This is necessary so *
* that the next iteration of the router does not free the saved *
* routing elements. Also, the routing path costs and net_rr_terminals is stripped from the
* existing rr_graph so that the saved routing does not affect the graph */
int inet, i, j;
struct s_trace *tempptr;
for(i = 0; i < num_nets_in_cluster; i++)
{
inet = nets_in_cluster[i];
for(j = 0; j <= vpack_net[inet].num_sinks; j++) {
saved_net_rr_terminals[inet][j] = net_rr_terminals[inet][j];
}
/* Free any previously saved routing. It is no longer best. */
/* Also Save a pointer to the current routing in best_routing. */
pathfinder_update_one_cost(trace_head[inet], -1, pres_fac);
tempptr = trace_head[inet];
trace_head[inet] = best_routing[inet];
free_traceback(inet);
best_routing[inet] = tempptr;
/* Set the current (working) routing to NULL so the current trace *
* elements won't be reused by the memory allocator. */
trace_head[inet] = NULL;
trace_tail[inet] = NULL;
}
}
static void
restore_routing_cluster()
{
/* Deallocates any current routing in trace_head, and replaces it with *
* the routing in best_routing. Best_routing is set to NULL to show that *
* it no longer points to a valid routing. NOTE: trace_tail is not *
* restored -- it is set to all NULLs since it is only used in *
* update_traceback. If you need trace_tail restored, modify this *
* routine. Also restores the locally used opin data. */
int inet, i, j;
for(i = 0; i < num_nets_in_cluster; i++)
{
inet = nets_in_cluster[i];
pathfinder_update_one_cost(trace_head[inet], -1, pres_fac);
/* Free any current routing. */
free_traceback(inet);
/* Set the current routing to the saved one. */
trace_head[inet] = best_routing[inet];
best_routing[inet] = NULL; /* No stored routing. */
/* restore net terminals */
for(j = 0; j <= vpack_net[inet].num_sinks; j++) {
net_rr_terminals[inet][j] = saved_net_rr_terminals[inet][j];
}
/* restore old routing */
pathfinder_update_one_cost(trace_head[inet], 1, pres_fac);
}
}
void save_cluster_solution()
{
/* This routine updates the occupancy and pres_cost of the rr_nodes that are *
* affected by the portion of the routing of one net that starts at *
* route_segment_start. If route_segment_start is trace_head[inet], the *
* cost of all the nodes in the routing of net inet are updated. If *
* add_or_sub is -1 the net (or net portion) is ripped up, if it is 1 the *
* net is added to the routing. The size of pres_fac determines how severly *
* oversubscribed rr_nodes are penalized. */
int i, j, net_index;
struct s_trace *tptr, *prev;
int inode;
for(i = 0; i < max_ext_index; i++) {
rr_node[i].net_num = OPEN;
rr_node[i].prev_edge = OPEN;
rr_node[i].prev_node = OPEN;
}
for(i = 0; i < num_nets_in_cluster; i++) {
prev = NULL;
net_index = nets_in_cluster[i];
tptr = trace_head[net_index];
if(tptr == NULL) /* No routing yet. */
return;
for(;;)
{
inode = tptr->index;
rr_node[inode].net_num = net_index;
if(prev != NULL) {
rr_node[inode].prev_node = prev->index;
for(j = 0; j < rr_node[prev->index].num_edges; j++) {
if(rr_node[prev->index].edges[j] == inode) {
rr_node[inode].prev_edge = j;
break;
}
}
assert(j != rr_node[prev->index].num_edges);
} else {
rr_node[inode].prev_node = OPEN;
rr_node[inode].prev_edge = OPEN;
}
if(rr_node[inode].type == SINK)
{
tptr = tptr->next; /* Skip next segment. */
if(tptr == NULL)
break;
}
prev = tptr;
tptr = tptr->next;
} /* End while loop -- did an entire traceback. */
}
}
boolean is_pin_open(int i) {
return (rr_node[i].occ == 0);
}
void
print_intra_cluster_route(char *route_file)
{
/* Prints out the routing to file route_file. */
int inet, inode;
t_rr_type rr_type;
struct s_trace *tptr;
char *name_type[] =
{ "SOURCE", "SINK", "IPIN", "OPIN", "CHANX", "CHANY", "INTRA_CLUSTER_EDGE" };
FILE *fp;
fp = my_fopen(route_file, "w", 0);
fprintf(fp, "\nRouting:");
for(inet = 0; inet < num_nets; inet++)
{
if(vpack_net[inet].num_sinks == FALSE)
{
fprintf(fp, "\n\nNet %d (%s)\n\n", inet, vpack_net[inet].name);
fprintf(fp, "\n\n Used in local cluster only, reserved one CLB pin\n\n");
} else if(trace_head[inet]){
fprintf(fp, "\n\nNet %d (%s)\n\n", inet, vpack_net[inet].name);
tptr = trace_head[inet];
while(tptr != NULL)
{
inode = tptr->index;
rr_type = rr_node[inode].type;
fprintf(fp, "%6s %d ", name_type[rr_type], inode);
/* Uncomment line below if you're debugging and want to see the switch types *
* used in the routing. */
/* fprintf (fp, "Switch: %d", tptr->iswitch); */
fprintf(fp, "\n");
tptr = tptr->next;
}
}
}
fclose(fp);
}
static float rr_node_intrinsic_cost(int inode) {
/* This is a tie breaker to avoid using nodes with more edges whenever possible */
float value;
value = rr_node[inode].pack_intrinsic_cost;
return value;
}
/* turns on mode for a pb by setting capacity of its rr_nodes to 1 */
void set_pb_mode(t_pb *pb, int mode, int isOn) {
int i, j, index;
int i_pb_type, i_pb_inst;
const t_pb_type *pb_type;
t_pb_graph_node *pb_graph_node;
pb_type = pb->pb_graph_node->pb_type;
for(i_pb_type = 0; i_pb_type < pb_type->modes[mode].num_pb_type_children; i_pb_type++) {
for(i_pb_inst = 0; i_pb_inst < pb_type->modes[mode].pb_type_children[i_pb_type].num_pb; i_pb_inst++) {
pb_graph_node = &pb->pb_graph_node->child_pb_graph_nodes[mode][i_pb_type][i_pb_inst];
for(i = 0; i < pb_graph_node->num_input_ports; i++) {
for(j = 0; j < pb_graph_node->num_input_pins[i]; j++) {
index = pb_graph_node->input_pins[i][j].pin_count_in_cluster;
rr_node[index].capacity = isOn;
}
}
for(i = 0; i < pb_graph_node->num_output_ports; i++) {
for(j = 0; j < pb_graph_node->num_output_pins[i]; j++) {
index = pb_graph_node->output_pins[i][j].pin_count_in_cluster;
rr_node[index].capacity = isOn;
}
}
for(i = 0; i < pb_graph_node->num_clock_ports; i++) {
for(j = 0; j < pb_graph_node->num_clock_pins[i]; j++) {
index = pb_graph_node->clock_pins[i][j].pin_count_in_cluster;
rr_node[index].capacity = isOn;
}
}
}
}
}